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In analogy with the familiar addition formula for Legendre polynomials, a generalized addition 
theorem is proved. A general spherical harmonic, depending on the two angles 01 and .p" is expressed as 
an expansion involving spherical-harmonic functions of (0, .p) and of (0', .p'). The six angles are related 
to each other through the equations 

cos 01 = cos (J cos 0' - sin 0 sin 0' cos (.p' - .p cos 0), 

sin 01 cos (.pI - .p) = sin 0 cos 0' + cos 0 sin 0' cos (.p' - .p cos 0), 
sin 01 sin (.pI - .p) = sin (J' sin W - .p cos 0). 

The expansion is then used in the proof of an integral theorem for spherical harmonics. 

1. INTRODUCTION 

The familiar addition formula for Legendre 
polynomials1 can be written as 

where 

Pn(cos 0') = Pn(cos (1)Pn(cos 0) 

+ 2
fli n 

(n - ,u)! P~(cos (1) 
fl~l(n +,u)! 

X P~(cos 0) cos ,u(4)1 - 4», (1.1) 

cos 0' = cos 01 cos 0 + sin 01 sin 0 cos (4)1 - 4». 
(1.2) 

The angle ()' can be interpreted as the included angle 
between the two vectors r1 and r, whose directions are 
specified by (01 , 4>1) and (0, 4», respectively. 

The Legendre polynomials are a subset of the more 
general spherical harmonics. Equation (1.1) is a 
relationship between members of such a subset, on 
the left-hand side, and members of two full sets, on 
the right-hand side. It is to be expected that other 
similar relationships exist, in which a full set of 
spherical harmonics, involving 0' and a suitably 
defined 4>', is related to the two full sets of spherical 
harmonics involving (01,4>1) and (0,4». 

It is first necessary to find a suitable definition for 
the angle 4>' which is to accompany 0'. A simple 
definition is found, and the reason for its selection is 
explained. An equation of the form (1.1) is then 
given, in which Pn(cos (1) is expressed as a summation 
over spherical harmonics which are functions of 
(j, cp, (j', cp'. Finally, this equation is generalized so 

• This work was supported by the U.S. Defense Atomic Support 
Agency, under Contract DA-49-146-XZ-402. 

1 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Co., 1953), p. 1274. 

that a general spherical harmonic, written as a func
tion of 01 and 4>1' is then given as a summation over 
spherical-harmonic functions involving 0, 4>, 0', 4>'. 

2. DEFINITION OF .p' 

The vectors rand r1 , with polar-coordinate com
ponents (r, 0, 4» and (rl' 01, 4>1), are illustrated in 
Fig. 1. These vectors are shown with respect to a 
rectangular coordinate system with axes labeled by 
x, y, and z. 

A transformation is needed which will refer the 
vector r1 to a new coordinate system whose polar axis 
lies along r. The transformation to be used is similar 
to an Euler-angle transformation, but with an im
portant difference which avoids indeterminacies. 

Figure 2 shows a new set of coordinate axes, 
labeled x', y', and z', which are obtained from the 
first set by two rotations. The first is a rotation about 
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FIG. I. The vectors rand r 1 shown in relation to the x, y, z axes. 
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the z axis by the angle cp; this rotation moves the 
y direction into the position of the y' axis, which 
thus must lie in the (x, y) plane. The second rotation 
is about the y' axis and moves the z direction down 
by the angle 0, until it lies in the position of the z' 
axis, which lies along the vector r. In this way, by the 
two rotations through the angles cp and 0, the x, y, z 
directions are moved into the positions shown as the 
x' , y', z' axes. 

Figure 2 thus defines the z' axis unequivocally, 
since this axis must lie along the direction of the 
vector r. The y' axis will also be defined uniquely, if 
o is greater than zero and less than 7T. The plane 
tht;ough the origin of coordinates which is perpendic
ular to r will then intersect the (x, y) plane in a straight 
line which contains the y' axis. The direction of this 
axis can then be obtained, as shown in Fig. 2, through 
the application of the . right-hand rule. If a. is a unit 
vector in the direction of the z axis while r/r is a 
unit vector in the direction of the z' axis, then the 
unit vector in the y' direction is 

a. x r 
liy' = r sin 0 . (2.1) 

If the vector r happens to be parallel to the z axis 
so that sin 0 is equal to zero and the vector product 
az x r is also equal to zero, then the direction of the 
y' axis becomes indeterminate. Since any value of cp 
can be used in specifying the direction of r when () 
is equal to zero or to 7T, it is apparent from Fig. 2 that 
the y' axis can be directed in any direction within 
the (x, y) plane. 
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FIG. 2. The relationship between the x', y', z' axes 
and the x, y, z axes. 

FIG. 3. The relationship 
between the vector r 1 and 
the x', y', z' axes. 
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It is essential that provISIOn be made for this 
indeterminacy in the orientation of the y' axis (and 
the corresponding indeterminacy in the orientation 
of the x' axis) when the angle cp' is defined, to accom
pany the angle 0'. 

What is desired is that the definition of cp' should 
permit the specification of the direction of the vector 
r1 in terms of the direction of the vector r and the 
direction angles 0' and cp'. In the ordinary situation, 
in which r is not parallel or anti parallel to the z 
direction, the y' axis is uniquely defined and no 
problem arises. However, when r lies in the positive 
or negative z direction, the angle cp is not well 
defined, and it becomes difficult to give the azimuth 
angle CP1 for the vector r1 in terms of the ill-defined 
azimuth angle cp of the vector r. 

The solution Qf this problem of azimuth indeter
minacy is shown in Fig. 3. With respect to the x' ,y', z' 
axes, the direction of the vector r1 is specified by the 
polar angle ()' and by an azimuth angle which is given 
by the expression cp' - cp cos (). When r is not parallel 
(or antiparallel) to the z axis, then the use of cp' -
cp cos 0 instead of cp' represents a simple displacement 
of the azimuth-angle coordinate. However, in the 
exceptional cases where r is parallel or anti parallel to 
the z axis, the choice of cp' - cp cos () provides an 
unequivocal specification of the azimuth angle CPl' 
even when cp itself, and cp' accordingly, are both 
indeterminate. 

3. UNIT VECTORS 

In terms of the rectangular set of unit vectors i, j. 
k directed along the x, y, z axes, there are three 
polar-coordinate unit vectors associated with the 
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vector r; these are 

ar = i sin 0 cos ~ + j sin 0 sin ~ + k cos 0, 
a8 = i cos 0 cos ~ + j cos 0 sin ~ - k sin 0, (3.1) 
ae/> = - i sin ~ + j cos ~. 

A similar set of unit vectors is associated with the 
vector r1 : 

aIr = i sin 01 cos ~1 + j sin 01 sin ~1 + k cos 01 , 

alB = i cos 01 cos ~1 + j cos 01 sin ~1 - k sin 01 , 

ale/> = -i sin ~1 + j cos ~1' (3.2) 

The primed axes in Fig. 2 have been chosen to lie in 
the directions of the unit vectors (3.1), so that the 
primed unit vectors i' , j', k' are given by 

i' = a 6 , j' = ae/>' k' = a r . (3.3) 

The unit vector which is parallel to the vector r1 

can be written as aIr' in the form given in (3.2), but 
it can also be expressed in terms of the primed axes: 

aIr = i' sin 0' cos (~' - ~ cos 0) 

+ j' sin 0' sin (~' - ~ cos 0) + k' cos 0'. (3.4) 

Equations (3.1)-(3.4) yield the trigonometric trans
formations 

cos 01 = cos 0 cos 0' - sin 0 sin 0' cos (~' - ~ cos ~), 

(3.5a) 
sin Ol cos (~l - ¢) 

= sin 0 cos 0' + cos 0 sin 0' cos (¢' - ¢ cos 0), 

(3.5b) 

sin 01 sin (~1 - ~) = sin 0' sin (¢' - ¢ cos 0), (3.5c) 

and the inverse transformations 

cos 0' = cos 01 cos 0 + sin 01 sin 0 cos (~1 - ¢), 

(3.6a) 
sin 0' cos (¢' - ¢ cos 0) 

= -cos 01 sin 0 + sin 01 cos 0 cos (¢1 - ¢), 

(3.6b) 

sin 0' sin (¢' - ¢ cos 0) = sin 01 sin (¢1 - ¢). (3.6c) 

4. ADDITION THEOREM 

The addition formula (1.1) is based on (3.6a), but 
a similar formula can readily be written down, based 
on (3.5a): 

P,,(cos ( 1) = P,,(cos O)P,,(cos 0') 

+ 2"in (n - ,u)! P~(cos O)P~(cos 0')( - 1)" 
,,=t{n + ,u)! 

x cos (,u(¢' - ¢ cos 0». (4.1) 

It is this formula which will be generalized into an 
addition theorem applicable to any spherical harmonic 
X::,(Ol' ~1) and not just to the Legendre polynomial 
P n (cos ( 1), 

In the notation of Morse and Feshbach,2 a geueral 
spherical harmonic can be defined by 

xm(o ..J..) = eime/>lplml(cos 0 ) n 1, 't'1 n 1 , (4.2) 

where 

dlml 
p~ml(cos ( 1) = (sin01)lml I I Pn(cos01)· (4.3) 

d(cos ( 1) m 

It will be assumed that 0, ~, 0', ¢' are independent 
variables, while 01 and ~1 are the dependent functions 
gi.ven by (3.5). Two operators Dt.e/> and DB,e/> will be 
defined by 

± [-1 a ¢ a i a] 
D6

.e/> = sin 0 ao - cos 0 a¢ =f sin2 0 cos 0 a~ . 
(4.4) 

In terms of these operators, the spherical harmonic 
(4.2) can be written as 

X:;'(OI' ~1) = eime/> sin lml 0 (D6.e/»mp n(cos OJ), (4.5) 

in which the operator expression (D8.e/»m has the 
meaning (Dt.e/»Iml when m is positive, (D9,e/»lml when 
m is negative. The proof of (4.5) is based on the 
easily verified results, 

+ eie/>l sin 01 
D6.e/> cos 01 = 'e/>' , 

e' sm 0 
(4.6a) 

(Dt,e/»2 cos 01 = 0, (4.6b) 

and the complex conjugate equations involving D9,e/>' 
It is apparent also that 

X~'(O,~) = eime/>sinlml 0 (D6.e/»mp,,(cos 0). (4.7) 

When Pn(cos ( 1) on the right-hand side of (4.5) 
is replaced by the series expression (4.1), the result 
is the generalized addition theorem: 

X:;'(OI' ¢1) = X:;'(O, ¢)P n(cos 0') 

+ 2"in (n - ,u)! (-l)"P:'(cos 0') 
,,=1 (n + ,u)! 

x eime/> sin lml 0 (D )m 6.e/> 

X {P~( cos 0) cos [,u( ¢' - ¢ cos Om. 

(4.8) 

Equation (4.8), together with the transformation 
equations (3.5), constitutes the desired generalization 
of (1.1) and (1.2). The use of the azimuth-angle 

2 Ref. I, p. 1898. 
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expressions cPl - cP and cP' - cP cos () is a necessary 
complication, without which the important equation 
(4.5) could not be established. However, once a 
choice of (n, m) has been made and the operations in 
(4.8) carried out, the angle cP' - cP cos () can be 
replaced by a redefined cP', here and in' Fig. 3, if this 
is desired in a particular application of the formula. 
The replacement cannot be introduced until after the 
operations (Do.4»m have been completed. 

5. INTEGRAL THEOREM 

The addition theorem (4.8) leads directly to an 
integral theorem. Equation (4.8) expresses the spher
ical harmonic X;:'«()l' cPl) as a function of four 
independent variables (), cP, ()', cP'. The dependence 
upon cP' is particularly simple as can be seen when 
(4.8) is written in the form 

p,~n 

+ ~ [Ac cos (P,cP') + As sin (P,cP')], (5.1) 
p,~l 

where the coefficients Ac and As depend upon the 
variables (), cP, ()' and the parameters n, m, p" but not 
upon cP'. 

Equation (5.1) can now be integrated with respect 
to cP', with the other three variables held constant. 
Each term in the summation over p, integrates to 
zero, leaving only 

L~~:21t X~«()l' cPl) dcP' = 2Tr X~«(), cP)P n(cos ()'). (5.2) 

Other related integral theorems are given in a 
following paper.3 
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With the aid of a generalized addition theorem for spherical harmonics [J. Math. Phys. 11, 1 
(1970), preceding paper], six integral theorems for vector spherical harmonics are proved. A source-point 
direction (0" <p,) is first expressed in terms of a field-point direction (0, rp) and a polar-coordinate angle
pair (0', <p'), which has as its polar axis the field-point direction. For a particular choice of nand m, all 
the components of the vector spherical harmonics for the source, expressed in terms of (0" rp,), are 
integrated over the relative azimuth angle rp' while the field-point direction (0, rp) and the relative polar 
angle 0' are held fixed. The result in each case is a spherical harmonic or vector spherical harmonic of the 
field-point direction, with the same nand m but now depending on (9, 4» instead of (9" 4>,), multiplied 
by an explicit function of the relative polar angle 0'. 

1. INTRODUCTION 

In the preceding article, l a generalized addition 
theorem for spherical harmonics was established. 
This addition theorem led directly to the proof of an 
integral theorem for spherical harmonics. In the 

* This work was supported by the U.S. Defense Atomic Support 
Agency, under Contract DA-49-146-XZ-402. 

, R. E. Clapp, J. Math. Phys. 11, 1 (1970). 

integration, a vector C1 is swung about a fixed vector 
c, with a constant angle ()' separating the two vectors. 
A suitably defined azimuth angle cP' locates the azi
muth of C1 in its motion about c. This integration, 
over a full circuit, gave the result 
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direction (0" <p,) is first expressed in terms of a field-point direction (0, rp) and a polar-coordinate angle
pair (0', <p'), which has as its polar axis the field-point direction. For a particular choice of nand m, all 
the components of the vector spherical harmonics for the source, expressed in terms of (0" rp,), are 
integrated over the relative azimuth angle rp' while the field-point direction (0, rp) and the relative polar 
angle 0' are held fixed. The result in each case is a spherical harmonic or vector spherical harmonic of the 
field-point direction, with the same nand m but now depending on (9, 4» instead of (9" 4>,), multiplied 
by an explicit function of the relative polar angle 0'. 

1. INTRODUCTION 

In the preceding article, l a generalized addition 
theorem for spherical harmonics was established. 
This addition theorem led directly to the proof of an 
integral theorem for spherical harmonics. In the 
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integration, a vector C1 is swung about a fixed vector 
c, with a constant angle ()' separating the two vectors. 
A suitably defined azimuth angle cP' locates the azi
muth of C1 in its motion about c. This integration, 
over a full circuit, gave the result 
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where X,~' is a general spherical harmonic and P n is a 
Legendre polynomial. 

In this article, the result (1.1) is generalized to 
apply to problems which arise in the use and applica
tion of vector spherical harmonics-vector functions 
which are closely related to the scalar spherical 
harmonics X:~. Because there are three independent 
vector spherical harmonics for each choice of (n, m), 
and each of these has three scalar components, the 
generalization of (1.1) leads to nine independent 
scalar equations. However, these nine scalar equations 
group naturally into three radial-component equa
tions, each of scalar form, and three transverse
component equations, each of which combines two 
scalar equations into a vector equation with only two 
independent components rather than three. 

Thus, there are only six separate integral theorems 
to be considered, rather than nine. This article gives 
the proof of each of these six integral theorems. 

2. VECTOR SPHERICAL HARMONICS 

The notation for the vector spherical harmonics 
to be used in this article follows that used by Morse 
and Feshbach.2 The scalar spherical harmonics are 
defined by 

where 

d lml 
plml(cos 0) = (sin o)lml Pn(cos 0). (2.2) 

n d(cos o)lml 

The vector spherical harmonics separate into three 
sets: 

P;:'(O, 4» = arX;:'(O, 4», (2.3) 

Bm(o -I.) = [n(n + l)]! [a (n - Iml + 1 Xm 
n ''f' (2n + 1) sin 0 a n + 1 n+1 

_ n + Iml xm) a im(2n + 1) xmJ 
n n-1 + 4> n(n + 1) n' 

(2.4) 

m(n -I.) _ [n(n + 1)]! [ im(2n + 1) Xm en u, 'f' - aa n 
(2n + 1) sin 0 n(n + 1) 

(
n -Iml + 1 Xm 

- a", n + 1 n+l 

- n +n lml 
X;:'_1) J (2.5) 

In (2.4) and (2.5) the arguments of the scalar har
monics are (0,4» in each case. Explicit forms for the 
unit vectors aT' aB , and a", are given in Eqs. (3.1) of 
Ref. 1. 

2 P. M. Morse and H. Feshbach, Methods of Theoretical PhYSics 
(McGraw-Hili Book Co., 1953), pp. 1898, 1899. 
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FIG. 1. The relationship between the source-point vector r 1 and 
the field-point vector r. During the integration over rp', the vector 
r 1 is swung about r with the relative polar angle ()' held constant. 

3. THEOREM 1 

The six integral theorems involve integrations 
over 4>' of components of the vector spherical har
monics which are expressed as functions of (01, 4>1). 
For example, the vector spherical harmonic P;:'(Ol' 4>1) 
has the form 

P;;'(OI' 4>1) = a1rX::'(01' 4>1), (3.1) 

obtained from (2.3), where the unit vector aIr and the 
orthogonal unit vectors alB and a1", have been given 
explicitly in Eqs. (3.2) of Ref. 1. The geometrical 
configuration of the vectors rand r1 is shown in Figs. 
1-3 of Ref. 1, while the trigonometric transformations 
are given in Eqs. (3.5) and (3.6) of Ref. 1. 

In the integration over 4>', the vector r is held fixed 
while the vector r1 is swung in an arc with the angle 
0' held constant. The path of integration is shown 
here in Fig. 1. Of the four independent angular 
variables 0, 4>, 0', and 4>', only 4>' varies, but both of 
the angles 01 and 4>1 will vary during the integration. 
These latter are treated as dependent variables through 
the use of Eqs. (3.5) of Ref. 1. 

The direction of the vector function (3.1) changes 
during the integration over 4>' since aIr is a function 
of 4>'. The vector function (3.1) will therefore be 
resolved into its components before the integration; 
the simplest component to be considered is the com
ponent which lies in the z' direction, the direction of 
the unit vector a r . Accordingly, the projection of (3.1) 
onto ar' 

aT • P~(Ol' 4>1) = cos (j' Xr;:(01' 4>1), (3.2) 

will be integrated over 4>'. 
When the generalized addition theorem 

Xr;:(OI, 4>1) = Xr;:(O, 4»PJcos 0') 
n 

+ ! [Ae cos (fl4>') + As sin (fl4>')], (3.3) 
1'=1 
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which was given as Eq. (5.1) of Ref. 1, is substituted 
in the right-hand side of (3.2) and the resulting 
expression is integrated term by term over the angle rp' 
with 0, rp, and Of held constant, each term in the sum
mation over fl, integrates to zero (since Ac and A. do 
not depend upon rp'), and the result is the first of the 
six integral theorems: 

Theorem 1: 

L~~~217 ar • P;:'(Ol' rp1) drp' 

= 21TX;:'(O, rp) cos O'Pn(cos 0'). (3.4) 

4. THEOREMS 2 AND 3 

Two more integral theorems are obtained when the 
addition theorem (3.3) is differentiated with respect to 
0' and rp'. It can first be verified, from Eqs. (3.1), 
(3.2), and (3.5) of Ref. 1, that 

001 1 
00' = - sin 0' (ar • a19), (4.1a) 

Orp1 _ -1 
~O' - . 0 . 0' (ar • a1<1»' ( 4.1 b) 
u sm 1 sm 

001 --(a·a) or/>' - r 1<1>' 

Orpl -1 
----(a·a) ~,/., - . 0 r 18' 
U", sm 1 

(4.2a) 

(4.2b) 

From the properties of the spherical harmonics (2.1), 
it can also be verified that 

~ Xm(o ,/.) _ n(n + 1) 
00

1 
n 1, 'r1 - (2n + 1) sin 0

1 

X [n -n l: ll+ 1 X:~I(OI' rp1) 

- n +n lml 
X;:'_I(Ol, rpl)]. (4.3a) 

..£.. X;:'(Ol' rpl) = imX;:'(Ol' rpl)' 
Orpl 

(4.3b) 

From (4.1)-(4.3) and from the definitions of B;:' and 
C;:' in (2.4) and (2.5), it can be seen that 

o m [n(n + 1)]* m 
~O Xn(Ol' cPl) = - . Ljf ar • Bn(Ol' cPl)' 
v ' SIn u 

(4.4) 

..£.. X;:'(Ol' rpl) = - [n(n + 1)]*ar • C;:'(OI' rpl)' (4.5) 
orp' 

Differentiation of (3.3) with respect to 0' now gives 

ar • B;:'(Ol , rpl) 

= [n(n + l)]-! 

X [X;:,(O, rp) sin2 0' d P icos 0') 
d(cos 0') 

- sin 0' i (OA~ cos (fl,rp') + oA,. sin (fl,rp'))] , 
1'=1 00 00 

while differentiation with respect to rp' gives 

ar • C;:'(OI' rpl) = [n(n + l)r* 
n 

(4.6) 

X I [fl,Ac sin (fl,rp') - fl,A. cos (fl,rp')]. 
1'=1 

(4.7) 

When the explicit forms for Ac and A., obtainable 
from Eq. (4.8) of Ref. 1, are introduced, then (4.6) 
and (4.7) become addition theorems in their own 
right for use with the vector spherical harmonics 
B;:' and C;:'. 

Equations (4.6) and (4.7) can now be integrated 
with respect to rp' to give the second and third integral 
theorems, respectively: 

Theorem 2: 

(<I>'=211 a
r

• B;:'(OI' rpl) drp' 
J<I>'=o 

= 21T[n(n + l)r*X;:'(O, rp) sin2 0' d PicosO'); 
d(cos 0') 

Theorem 3: 

(<I>'=217 a
r 

• C;:'(OI' rpl) drp' = O. 
J<I>'=o 

5. RECURSION FORMULAS 

(4.8) 

(4.9) 

The familiar recursion formula for spherical 
harmonics,3 

cos 0 X'::(O, rp) = n - I m I + 1 X'::+1(O, rp) 
2n + 1 

+ n + ImJ Xm (O,/.) (5.1) 
2n + 1 n-l' '" , 

leads directly to a similar formula for the vector 
spherical harmonics p;:,(O, rp): 

cos 0 P::'(O, cP) = n - Iml + 1 P::'+l(O, rp) 
2n + 1 

3 Ref. 2, p. 1326. 

+ n + Iml P;;'_I(O, rp). (5.2) 
2n + 1 
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Corresponding recursion formulas can be established 
for the vector spherical harmonics B;:,(t9,4» and 
C~(t9, 4», through (5.1) as applied to (2.4) and (2.5), 
but there is some cross-coupling of the two symmetries: 

cos () B;:'«(), 4» 

= (n - Iml + l)[n(n + 2)]1 Bm «() 4» 
(2n + l)(n + 1) n+1' 

im C;:'(t9,4» 
n(n + 1) 

(n + Iml)[(n - l)(n + l)]t Bm (19 .I.) 
+ (2n + l)n n-1 ''f'' (5.3) 

'cos () C;:'(t9, 4» 

= (n - Iml + l)[n(n + 2)]1 Cm (0 4» 
(2n + l)(n + 1) n+1' 

+ im B~'(t9, 4» 
n(n + 1) 

(n + Iml)[(n - l)(n + 1)]1 Cm_ «() .I.). 
+ (2n + l)n nt' 'f' 

(S.4) 

6. THEOREM 4 

From the equations in Sec. 3 of Ref. I, it can be 
shown that 

(a9 • aIr) = sin ()' cos (4)' - 4> cos () 

= (ljsin t9)(cos 19 cos 19' - cos 191), (6.1) 

(a4>' aIr) = sin 19' sin (4)' - 4> cos 19) 
1 0 = - - (cos ()1)' (6.2) 

sin () 04>' 

From (2.3), (5.1), and (6.1), it is apparent that 

a8' P n (191, 4>1) = -.- X n+1«()l, 4>1) 
m -1 [n - Iml + 1 m 

sm 19 2n + 1 

- cos 19 cos ()' X;:'(t91, 4>1) 

+ X n-1«()1, 4>1) . n + Iml m ] 

2n + 1 
(6.3) 

Each of the scalar spherical harmonics on the right
hand side of (6.3) can be replaced by an expansion of 
the form (3.3). Integration over 4>' then gives 

f4>'~21Ta9' P;:'«()l' 4>1) de/>' 
J4>'~O 

= -.- X n+1(O, 4»Pn+1(cos 0) 
-271' {n - Iml + 1 m , 

sm () 2n + 1 

- [cos 0 X;:'«(), 4>)][cos ()'Pn(cos 0')] 

+ n + Iml X;:'_l(O, 4>)Pn_1(COS O,)}. (6.4) 
2n + 1 

Equation (6.4) can be simplified with the aid of 
(5.1) and with the use of (4.3a) in the form it takes 

with m = O. The result is the first half of the fourth 
integral theorem: 

Theorem 4a: 

f4>'~2IT a8 . P;:'(t91, 4>1) de/>' 
J4>'~O 

= 271' [n - Iml + 1 Xm (0 .I.) 
. n+l ''f' 

(2n + 1) sm 0 n + 1 

_ n + ImlXm (£1 .I.)] . 2£1' d P ( £1') 
n-l V, 'f' sm v n cos V • 

n d(cos 19') 
(6.5a) 

From (2.3), (6.2), and (4.5), the relationship 

a4> • P;:'(t91, 4>1) = _.1_ ~ [cos t91X;:'(t91, 4>1)] 
sm t9ac/>' 

[n(n + 1)]1 m + . ar·[cost91Cn(t91,c/>1)] 
sm 19 

can be established, and the recursion formulas (5.1) 
and (5.4) can then be used to replace the bracketed 
expressions by linear combinations of scalar or 
vector harmonics. The integration over 4>' can then 
be carried out without difficulty, by methods used 
in earlier theorems, with the result: 

Theorem 4b: 

f4>'~2IT a4> • P;:'(t91, 4>1) d4>' 
J4>'~O 

= 27Tim X';:(t9, 4» sin2 19' d P n(cos 19'). 
n( n + 1) sin 19 d( cos 0') 

(6.Sb) 

Theorems (4a) and (4b) deal with the transverse 
components of p;:,(t91, 4>1), i.e., the components that 
are perpendicular to the unit vector ar . A vector 
combination of just these transverse components is 
equivalent to the subtraction of the longitudinal 
component from the original vector: 

P;:'(t91, 4>1) - arar • P;:'(OI' 4>1) 

= a8a9 . P;:'(t91, 4>1) + a4>a4> • P;:'(t91, 4>1)' (6.6) 

When this vector combination of (6.Sa) and (6.Sb) is 
made, it is found to have the grouping of terms that 
appears in (2.4). The result is: 

Theorem 4: 

L~:2IT [P;:'( ()1' 4>1) - arar . P;:'( 01 , 4>1)] d 4>' 

= 27T[n(n + l)]-IB;:'(O, c/» sin2 19' d P n(cos 19'). 
d(cos 0') 

(6.7) 
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7. THEOREM 5 8. THEOREM 6 

The fifth integral theorem deals with the transverse 
part of the vector spherical harmonic B;:,(Ol' ~1)' In 
analogy with (6.1) and (6.2), four scalar products are 
needed: 

(a . a ) = sin 01 _ cos 0 sin 0' (J01 
o 10 sin 8 sin 0 (JO' ' 

(7.1a) 

( ) 
sin 01 cos 0 sin 0' (J~1 

a·a - - -o 1,p - sin 0 (JO' ' 
(7.1b) 

(7.1c) 

which can all be derived from the equations in Sec. 
3 of Ref. 1. 

From (2.4), (4.3), and (7.1), it is found that the 
transverse portion of B;:,(Ol' ~1) is 

aoao • B;:'(Ol' ~1) + a,pa,p • B;:'(Ol' ~1) 

= _[ ( 1)1-1 ( cos 0 sin 0' ~ xm(o -'-) 
n n + ao sin 0 (J8' n 1, 'f'l 

cos 81 ~ Xm(o -'-)) + alP sin 0 (J~' n 1, 'f'l 

[n(n + 1)]1 (n -Iml + lXm (8 -'-) + ao n+1 1, '/'1 
(2n + I) sin 0 n + I 

- n +nlml 
X::'_l (81, ~1)) 

im cos 8' m 8 -'-) + 1 a,pX n ( 1, '/'1 . 

[n(n + 1)] sin 8 
(7.2) 

In the integration of (7.2) over ~', there are five terms 
to be considered. The first two terms can be trans
formed with the aid of (4.4), (4.5), and (5.4), then 
integrated through Theorems 2 and 3. The remaining 
three terms may be integrated directly, by Theorem 1 
or its scalar equivalent, Eq. (5.2) of Ref. 1. What is 
obtained from these integrations is the fifth integral 
theorem: 

Theorem 5: 

L~:21T [B:;'(Ol' ~1) - arar • B;:'(Ol, ~1)] d~' 

= 27TB;:'(0, ~)( cos O'P n(cos 0') 

+ sin
2

0' d Pn(COSO')), (7.3) 
n(n + 1) d(cos 0') 

Four additional partial derivatives, analogous to 
those given in (4.1) and (4.2), can be obtained from 
Eqs. (3.5) of Ref. 1: 

(J01 1 [. Il 8' - = -- SIll v cos 
(J8 sin 01 

+ cos 0 sin ()' cos (~' - ~ cos 8) 

- ~ sin2 8 sin ()' sin (f - ~ cos ())], (8.1a) 

(J01 = _. _1_ sin () cos () sin ()' sin (~' - ~ cos ()), 
(J~ SIll 81 

(8.1b) 

(J~' sin ()' . 
_1 = _. _ [-cos 8 cos ()' SIll (~' - ~ cos ()) 
(J() s.1n2 ()1 

+ sin () sin (;l' sin (~' - ~ cos 0) 

X cos (~' - ~ cos ()) + ~ sin 8 cos () sin ()' 

+ ~ sin2 
() cos ()' cos (~' - ~ cos ())], (8.1c) 

(J~1 sin () [. Il 8 . Il' - = -- SIll v + cos SIll v 
(J~ sin2 81 

X cos ()' cos (f - ~ cos 8) 

- sin () sin2 8' cos2 (f - ~ cos ())]. (8.ld) 

In terms of these derivatives, (7.1) can be rewritten as 

sin 01 (J~1 
(ao • a10) = sin 8 (J~ , 

-1 (J()1 
(ao • a1,p) = sin 8 (J~ , 

(8.2a) 

(8.2b) 

. ((J~1 (J~1) (a .... a18) = -sm ()1 - - ~ tan 8 + ~ tan 8 - , 
'I' (J8 (J~ 

(8.2c) 

(8.2d) 

In analogy with (7.2), the transverse portion of the 
vector spherical harmonic C;:'«()l' ~1) can be written 
in the form 

aoao • C;:'(Ol' ~1) + a.pa.p· C;:'«()l' ~1) 

= [n(n + 1)r! [ao Si~ 0 :~ X;:'(81 , ~1) 

- a,p(:o - im<p tan 0 + <P tan 0 (Ja~)Xr;:(Ol' <PI)} 
(8.3) 

When X;;,(OI' <PI) in (8.3) is replaced by the expansion 



                                                                                                                                    

SIX INTEGRAL THEOREMS FOR VECTOR SPHERICAL HARMONICS 9 

(3.3) and the resulting expression integrated over 4>', 
the sixth of the integral theorems is obtained: 

Theorem 6: 

L~=21T [c:(e1 , 4>1) - a,a, . c:(e1 , 4>1)] d4>' 
= 27Tc:(e, 4»P icos e'). (8.4) 

9. APPLICATIONS 

These six integral theorems are of particular value 
when a vector field function is to be obtained from a 
vector source function. An example is the retarded 
Hertz vector, as obtained from an electrical source
current distribution.4 The theorems show that if a 
source function, depending on the angles (e1 , 4>1), has 
that dependence characterized by a particular choice 
of nand m, then the integration over the azimuth 

4 R. E. Clapp. L. Huang, and H. T. Li, J. Math. Phys. 11, 9 (1970). 

angle 4>' will immediately ensure that the field function, 
in its dependence upon the angles (e,4», will be 
characterized by the same choice of nand m, provided 
that the Green's function relating field to source does 
not itself depend upon 4>'. Whatever dependence the 
Green's function may have upon the angle e' (the 
angle between the vector r1 to the source point and 
the vector r to the field point) is here immaterial, and 
it cannot affect the "mode separation" of the expan
sion into vector spherical harmonics. 

It should be noted, however, that certain of the six 
theorems introduce coupling between a P:;' source 
function and a B:;' field function, or vice versa. That 
is, the theorems mix the P:;' and B:;' symmetries 
while keeping the C:;' symmetry separate from the 
other two. 

The use of these theorems in electromagnetism will 
be illustrated in a following article.4 
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Vector Spherical Harmonic Expansion in the Time Domain of the 
Retarded Hertz Vector for a Distributed, Transient 

Source-Current Configuration * 
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An equation giving the retarded Hertz vector II(r, t) in terms of a source-current distribution 
J(r" t,) is derived. Both vector functions are written as expansions in vector spherical harmonics, with 
the expansion coefficients containing the dependence upon radial distance and time, while the angular 
dependence is kept within the harmonic functions. After integration over two angles, expressions are 
obtained giving the expansion coefficients for the Hertz vector, which depend upon (r, t), in terms of the 
corresponding coefficients for the current, which depend upon (r" I,). The original four-dimensional 
problem is thus reduced to two dimensions, but with the four-dimensional causality requirements 
satisfied at each step of the analysis. 

1. INTRODUCTION 

Although the electromagnetic radiation from a 
general time-dependent source-current distribution 
is usually analyzed in the frequency domain, for 
certain problems the time domain is more appropriate. 
An example is the electromagnetic radiation from the 

• This work was supported by the U.S. Defense Atomic Support 
Agency, under Contract DA-49-I46-XZ-402. 

t Present address: Department of Physics. University of Vermont, 
Burlington, Vermont. 

electrical currents generated in the air by an atmos
pheric nuclear detonation.1 

In this example the source currents are highly 
transient, and retardation across the source region 
plays an important role. Furthermore, part of the 
current is in the form of relativistic electrons, pro
duced by Compton collisions between gamma rays 
from the detonation and electrons from air molecules. 

'A. S. Kompaneets, Zh. Eksp. Teor. Fiz. 35, 1538 (1959) [Sov. 
Phys.-JETP 8, 1076 (1959»). 
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The fields radiated by relativistic electrons show 
forward directivity, which is not easily expressed in 
the frequency domain, but which enters readily into 
a time-domain formalism. 

The analysis is most straightforward if the medium 
is assumed to be the vacuum. In the example men
tioned above,l there is a time-dependent conductivity 
in the source region, but this conductivity is actually 
formed of electrons and ions whose motion in the 
local fields can be represented as an addition to the 
primary source current. Similarly, dielectric polariza
tion of the air molecules can also be represented 
mathematically as a secondary increment to the 
source-current distribution. Thus if the secondary 
currents are all treated explicitly, the vacuum equa
tions will be adequate for the calculation of the fields 
generated by all the source currents. 

The source-current distribution will be expressed as 
an expansion in vector spherical harmonics, with 
each coefficient depending in an arbitrary way upon 
the radial distance and the time. With the aid of 
theorems established earlier, 2 the angular dependence 
of the source will be integrated over, leaving the field 
function for each vector-spherical-harmonic mode 
expressed as a function of radial distance and time. 

The Hertz-vector formalism will be used because 
of the relative simplicity of the integrations. In later 
articles3•4 the magnetic field and electric field will be 
given explicitly. 

2. HERTZ-VECTOR FORMALISM 

The electromagnetic fields generated by a time
dependent distribution of charges and currents can be 
expressed in terms of the vector and scalar potentials, 
together with an auxiliary condition which limits 
the charge and current densities to those which 
satisfy the equation of continuity. It is more conven
ient, however, to make use of the Hertz-vector 
formalism. 5 The need for an auxiliary condition is 
avoided through the use of the free-charge polariza
tion vector 9' to represent the source distribution. As 
will be shown, the integrals can then be reformulated 
so that the final equation for the Hertz vector ex
presses the source in terms of the current density J 
without any explicit appearance of the charge density p. 

The free-charge polarization vector IS defined in 
the equations 

a 
J=-9', p=-V.9'. (2.1) at 

• R. E. Clapp and H. T. Li, J. Math. Phys. 11,4 (1970) (preced-
ing paper). 

• R. E. Clapp and L. Huang, J. Math. Phys. 11, 14 (1970). 
• R. E. Clapp, L. Huang, and H. T. Li, J. Math. Phys. 11, 16 (1970). 
• J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Co., 

1941), pp. 28-32, 430, 431. 

For a transient source, therefore, 

9' = ft=tJ dt, 
Jt=to 

(2.2) 

where to is a time which precedes any current flow. 
[Any pre-existing electrostatic field can be represented 
through a constant of integration 9'0 added to the 
right-hand side of (2.2).] Because of the form of (2.1), 
the equation of continuity of charge is automatically 
satisfied_ 

The Hertz vector, II(r, t), is defined by 

II(r, t) = _1_ Iff! 9'(fl' t - sic) dVl , (2.3) 
47TEO s 

in the MKS units used by Stratton.5 In (2.3), the 
volume element at the source point rl is dVl , and sis 
the distance from the source point to the field point r, 
that is, 

(2.4) 

Equation (2.3) defines the retarded Hertz vector, from 
which the retarded electric and magnetic field vectors 
can be obtained, by the equations 

1 a2 

E = VV . II - - - II, (2.5) 
c2 at2 

a 
H = EOV X - II. (2.6) at 

These field vectors satisfy Maxwell's equations. 
An advanced Hertz vector could also be defined, 

through the use of 9'(fl' t + sic) instead of 9'(rl' 
t - sic) in the integrand of (2.3). Equations (2.5) and 
(2.6) would then give advanced electromagnetic field 
vectors. These would also satisfy Maxwell's equations. 
However, there is no evidence that these advanced 
fields play any role in macroscopic electromagnetism. 
Accordingly, only the retarded Hertz vector (2.3) will 
be considered further in this article. 

3. EXPANSION IN VECTOR SPHERICAL 
HARMONICS 

The scalar and vector spherical harmonics have been 
defined in Sec. 2 of Ref. 2. The vector functions J, P, 
and II will be expanded in terms of the vector spherical 
harmonics P;:', B;:', and C;;'. The Hertz vector is 
defined at the field point (r, t) and will be written 
as the expansion 

00 +n 
n =! ! {TI;,'ir, t)p;;,(e, c/» + TIE,n(r, t)B;;,(e, c/» 

7/=0 m=-n 

+ TIc,nCr , t)C;;,(e, c/»}, (3.1~ 

while the free-charge polarization vector is defined at 
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the source point (rl' 11) and has the expansion 

00 +n 

!f = 2 2 {:f;,'n(rl' t1)P:;'(Ol' CPl) 
n=O ffl=-n 

+ :fE.n(rl , tl)B:;'(Ol' CP1) 

+ :fe.n(r1 , t1)C:;'(01' CP1)}' (3.2) 

The current density J has an expansion of just the 
form (3.2), but involving the expansion coefficients 
l;:n(rl, 11), lE,n(r1, (1),'and le,n(rl, 11)' 

From the definitions of the vector spherical har
monics (in Ref. 2), it can be seen that Bg and q are 
both identically zero, so that for n = 0 only the terms 
involving Pg are nonvanishing. The definitions also 
show that the vector spherical harmonics which 
differ only in the algebraic sign of m are complex 
conjugates. Since the vector functions J,!f, and II are 
real quantities, not complex quantities (in this time
domain analysis), it consequently follows that the 
expansion coefficients which differ only in the sign of 
m are also complex conjugates, as illustrated by 

.1'-m{ I ) _ [<l'+m( »)* "r.n,r1 , 1 - "r.n r1 , tl • (3.3) 

4. DEFINITION OF 0' AND cp' 

It will be convenient to define a polar coordinate 
system whose polar axis lies along the field-point 
vector r. In terms of this coordinate frame, the 
source-point vector r1 has the polar coordinates 
(rl' 0', cp'), and the source-point volume element is 
given by 

dV1 = r~ sin 0' drl dO' dcp'o (4.1) 

The polar angle 0' is the angle included between the 
vectors rand r1 , so that 

r • r 1 = rr1 co~ 0', (4.2) 

and the azimuth angle cp' will be defined as shown in 
Fig. 3 of Ref. 6. The trigonometric transformation 
which expresses (01 , CPl) in terms of (0, cp) and (0 ' , cp') 
is given as Eqs. (3.5) of Ref. 6. 

In this coordinate system, the Hertz vector (2.3) 
takes the form 

II(r, t) = -- ri drl - sin 0' dO' 1 fr1=oo 18
'=" 1 

47T~0 Tl=O 8'=0 S 

X i""=b!f(r1, t - sic) dcp'. (4.3) 
""=0 

5. INTEGRATION OVER cp' 

In the expression for the Hertz vector [Eq. (4.3)], 
the integration over the azimuth angle cp' will be 

• R. E. Clapp, J. Math. Phys. 11, I (1970). 

carried out first. The geometrical configuration is 
shown in Fig. 1 of Ref. 2. The source-point vector rl 
is maintained at the constant length r1 and is swung 
about the field-point vector r with the angle 0' between 
these two vectors held constant. 

The integration over cp' is a full circuit, from 
cp' = 0 to cp' = 27T, and in this integration the distance 
s, defined in (2.4), remains constant (since 0' is con
stant). Thus in the integrand of the cp' integration, 
only the source-point angles (01 , CP1) will vary. By 
(3.2) it can be seen that the variation is therefore 
confined to the vector spherical harmonics themselves 
and that the expansion coefficients will remain 
constant. 

The theorems of Ref. 2 can now be brought into 
the analysis and utilized in the cp' integration of 
(4.3). In this way all nine components of the three 
vector spherical harmonics for a given (n, m) can be 
integrated over cp', giving explicit functions of cos 0', 
multiplying vector spherical harmonics of (0, cp). 

6. INTEGRATION OVER 0' 

After the integration over cp' has been done, the 
integration over 0' takes the general form 

(8'=11 1 
F(r, r1 , t) = J8'=0 ~ g(cos O')f(r1 , t - sic) sin 0' dO', 

(6.1) 

where f is one of the expansion coefficients in (3.2) 
and g is an explicit function obtained from one of the 
six integral theorems in Ref. 2. 

During the integration (6.1), the distances rand r 1 

are held constant, but the distance s changes as 0' 
changes. By the law of cosines, the relationship (2.4) 
can be written as 

S2 = r2 + r; - 2rrl cos 0', (6.2) 

and its differentiation, with rand r 1 held constant, 
gives 

s ds = rr1 sin 0' dO'. (6.3) 

Equation (6.1) can thus be replaced by 

f
s=<r+r1 ) 1 

F(r, r1 , t) = - gmf(r1 , t - sic) ds, (6.4) 
s=lr-rI! rr1 

where the quantity ~ is defined by 

, = cos 0' = i(rrl)-I(r2 + r~ - S2). (6.5) 

The integration (6.4) can be rewritten also as an 
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integration over the source-point time variable tl by 

tl = t - sic, (6.6) 

dtl = -(lie) ds. (6.7) 

In this case the quantity ~ is expressed as a function 
of tl having the form ~t' where 

The integration then has the appearance 

The function gW, obtained from the integral 
theorems of Ref. 2, is in each case a polynomial in L 
and by (6.5) it is therefore an even polynomial in s. 
For each such function, an associated function 
G(r, r 1 , s) can be defined by 

(6.10) 

and this associated function is now an odd polynomial 
in s. 

The integration over ()', as transformed by (6.4) 
into an integration over s, will be carried out as an 
integration by parts, with the aid of (6.10). The 
result is 

[ 
1 Js=(r+rl ) 

F(r, '1' t) = - G(r, r 1 , s)f(r1 , t - sjc) 
rr1 s=ir-rli 

l
s=(r+Tl) 1 

- - G(r, r1 , s) 
s=ir-rJ/ rr1 

(6.11) 

In each case to be considered, the function f(r1 , t1) 

represents an expansion coefficient which has the 
time dependence of a component of the free-charge 
polarization vector ~. The time derivative of such a 
component gives the corresponding component of 
the source-current density J as shown by (2.1). Thus 
the derivative aflas in (6.11) actually represents a 
current component. An example is given by 

a nm ( S) 1 Jm ( S) 
oS :J r •n r1 , t - ~ = - ~ r.n r1 , t - ~ . (6.12) 

Similarly, wherefappears in (6.11) undifferentiated, 
representing for example the coefficient ff;:n' it can 

be written as a time integral of the coefficient J:::n : 

where to is to be chosen as a time which precedes any 
current flow. [As mentioned in connection with Eq. 
(2.2), any pre-existing static field, formed by an 
earlier charge displacement which is not included in 
the transient current that is being analyzed, can be 
represented by a constant of integration added to the 
right-hand side of (6.13).] 

7. MATRIX REPRESENTATION 

After the integration over 1/ and the transforma
tion from (6.1) to (6.4) but before the integration 
over s, the Hertz-vector expansion coefficients can be 
represented compactly through the matrix equation: 

(7.1) 

In (7.1) each of the Greek indices (f and A runs 
through the three values r, B, and C. A repeated Greek 
index indicates summation over these values. Thus 
(7.1) represents three equations, each of which may 
involve three expansion coefficients for the free-charge 
polarization vector ~. 

However, some of the elements of the matrix 
g~~la) are zero, so that the equations are in fact 
relatively simple. The matrix elements, determined 
through the use of the theorems in Ref. 2, are 

g;~m = ~Pnm, 

(n) ') ~') (1 - ,2) d P (~) 
gB.B( = Pi + n(n + 1) d~ n , 

g~)cm = Pnm, 

g(n)(,) = g(n)m = (1 - ~2) 1 !!:.- Pnm, 
r.B B.r [n(n + 1)]~ d, 

g;~6m = g~.)rm = 0, 

g~~~m = g~km = o. 

(7.2a) 

(7.2b) 

(7.2c) 

(7.2d) 

(7.2e) 

(7.2f) 

When the integrals having the form (6.4) are 
integrated by parts, as illustrated in (6.11), then the 
Hertz-vector expansion coefficients (7.1) take the 
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(7.3) 

The matrix elements G~nl are related to the matrix 
elements g~~l through an 'equation of the form (6.10): 

G~~l(r, rI' s) = i~~Sg~~lm ds; (7.4) 

therefore they can be obtained explicitly with the aid 
of (7.2). 

8. SUMMARY 

Equation (7.3), together with (3.1) and (3.2), 
gives the Hertz vector nCr, t) in terms of the source
current density function J(rI' tI)' The use of the 
expansion in terms of vector spherical harmonics, 
for both the Hertz vector and the source-current 
density, has provided a mode separation, in which a 
particular source mode, characterized by (n, m), 
leads to a field mode which is also characterized by 
(n, m). A source current with the symmetry of the 
vector spherical harmonic C::' leads to a field mode 
with this same symmetry, but there is cross-coupling 
between source and field modes having the symmetries 
of the vector spherical harmonics P::, and B::,. 

The retarded Hertz vector nCr, t) is expressed as an 
integral over the source current J(rI' t}) within that 
region of space-time which is consistent with 
causality requirements. Since the original form of the 
Hertz vector, given in Eq. (4.3), is in accord with the 
requirements of causality, and since there is no 
contamination by "advanced" fields either in (4.3) 
or in any later stages of the analysis, it can be con
cluded that the Hertz vector in the form (7.3), 
though expressed in the r, t plane where causality 
requirements are not very transparent, will neverthe
less remain fully consistent with the physical require
ment that the electromagnetic effect of a moving 
charged particle should travel at the velocity of light 
if the medium is the vacuum. 

The explicit calculation of the electric and magnetic 
fields from the Hertz vector given here in (7.3) and 
(3.1), will be carried out in two following articles.3•4 
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The preceding paper [1. Math. Phys. 11, 9 (1970)] gave the retarded Hertz vector in terms of a 
general transient source-current distribution. Here, this Hertz vector is differentiated to give the vector 
potential and t~e magnetic field vector. All of these vector quantities have been expanded in vector 
spherical harmonics, and in each case it is the expansion coefficients, which are functions of the radial 
distance r and the time t, which are expressed in the (r,1) plane as two-dimensional integrals over the 
source-current expansion coefficients having the corresponding values of nand m, where these are the 
mode parameters characterizing the vector spherical harmonics P::,(O, c/», 8;;'(0, c/», and C;;'(O, c/». 

1. INTRODUCTION 

In a previous article,1 the retarded Hertz vector was 
obtained for a fully general transient source-current 
distribution. The source current J(r1, II) was ex
pressed as an expansion in vector spherical harmonics, 
with the dependence upon the angles «()1, CPl) con
tained within these harmonics, while the dependence 
upon the radial distance '1 and the source time II was 
contained within the expansion coefficients. Similarly, 
the Hertz vector n(r, I) was expressed as an expansion 
in vector spherical harmonics which were functions of 
the angles «(), cp), with expansion coefficients which 
were functions of the radial distance, and the time I. 

It was found that, for a given (m, n) labeling the 
vector spherical harmonics, the expansion coefficients 
for the Hertz vector could be expressed in terms of 
the expansion coefficients for the source current. 
There was no coupling between the expansion 
coefficients for different choices of n or for different 
choices of m. There was, however, coupling between 
two of the three vector harmonics-those denoted by 
P;:' and B;:'-but no cross-coupling between either of 
these two and the third vector narmonic, denoted 
by C;:'. 

In the present article, this Hertz vector is substituted 
into the equation 

a 
H = €oV X -n, 

at 
(1.1) 

which gives the magnetic field H in terms of the Hertz 
vector n in MKS units for which 

€o = 8.854 X 10-12 farad/meter. (1.2) 

An alternative formulation will also be given in terms 

• This work was supported by the U.S. Defense Atomic Support 
Agency, under Contract DA-49-146-XZ-402. 

t Present address: Department of Physics, University of Vermont, 
Burlington, Vermont. 

1 R. E. Clapp, L. Huang, and H. T. Li, J. Math. Phys. 11, 9 
(1970) (preceding paper). 
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of the vector potential A, defined here by the equation 

A = 1.. ~ n. (1.3) 
c2 at 

For the quasi-vacuum conditions that have been 
postulated, the magnetic field H is then given by 

where 

1 
H = - V x A, (1.4) 

Po 

1 2 
- = €oc . 
Po 

2. MAGNETIC FIELD EXPANSION 

(1.5) 

If the Hertz vector and the magnetic field vector 
are both expressed in polar coordinate components, 
then the vector equation (1.1) separates into the 
component equations: 

Hr = ~[- ~ ~ ITe + .E.(sin () ~ IT",)], (2.la) 
rsm (J ocp ot a(J at 

He = ;[Si~ () oacp :t IT. - :r(r :t IT",) 1 (2.1 b) 

H = ~[_.E. ~ IT. + ~(, ~ ITo)]. (2.1c) 
'" , 00 at or at 
However, it will be more convenient and will lead 

to more compact field expressions if the magnetic 
field vector is first expanded in terms of the vector 
spherical harmonics defined in Sec. 2 of Ref. 2. This 
expansion can be written in the form 

00 +n 
H(r, t) = L L {H;::n(r, t)P;:'(O, cp) 

n=l m=-n 

+ HB.n(r, t)B;:'«(), cp) + He,n(r, t)C;:'«(), cp)}. 
(2.2) 

This summation begins with n = 1 because the 
spherically symmetric current component with n = 0 

• R. E. Clapp and H. T. Li, J. Math. Phys. 11,4 (1970). 
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does not give rise to any component of magnetic field, 
but only to a spherically symmetric, radially-directed 
electric field. 

The expansion (2.2) parallels the similar expansions 
for the Hertz vector and for the current-density vector, 
as described in Sec. 3 of Ref. 1. As in the earlier 
expansions, the reality of the field vector requires that 
expansion coefficients which differ only in the sign of 
m should be complex conjugates of each other, as in 
the example 

H;:::(r, t) = [H:'~(r, t)]*. (2.3) 

3. TIME DERIVATIVE OF HERTZ VECTOR 

When the Hertz vector, in the matrix form in Eq. 
(7.1) of Ref. 1, is differentiated with respect to the 
observation time t, the result is 

x r·=(r+r1)g~~lmJr.n(r1' 1 - ~) ds. 
)'=I.-r11 c 

(3.1) 

The notation here is the same as the notation in Ref. 
1, with Greek subscripts running through the three 
values r, B, C, associated with the three vector 
spherical harmonics P;:', B;:', c;:'. As in (2.2), the 
dependence upon time and radial distance lies with 
the expansion coefficients, so that when the time 
derivative is taken it is only necessary to differentiate 
these expansion coefficients, as was done here in (3.1). 

When the integration over ds in (3.1) is replaced 
[with the use of (6.4)-(6.9) of Ref. 1] by an integration 
over dt1 , then (3.l) takes the form 

;t n:'n(r, t) = 2:
0 
(f f):; g~~lat)J'J.':ir1' (1) d11 dr1, 

(3.2) 

where the abbreviation <Sf) has the following equiv
alent meanings: 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

which define the realm of integration in the (r1' (1) 
plane. 

4. VECTOR IDENTITIES 

While a number of mathematical identities in
volving vector spherical harmonics have been given by 
Morse and Feshbach,3 they are not in the form that 
is needed here. For the present application, there are 
three curl identities, 

v x P;:'(O, 1» = {(n(n + l)]!{r}C:;'(O, 1», (4.1) 

v x B~'(e, 1» = -(I/r)C:;'(O, 1», (4.2) 

v x C;:'(O, 1» = (l{r)B;:'(O, 1» 
+ {[n(n + 1)]!/r}P;:'(8, 1», (4.3) 

which can readily be generalized to the situation in 
which each vector spherical harmonic is multiplied by 
a scalar function of the form Q(r, t). The generalized 
identities are 

v x [QP;:'l = {[n(n + l)]!/r}QC;:', 

V x (QB;:'] = - ~ ~ (rQ)C;:', rar 

V x [QC:;'] = ! aa (rQ)B;:' 
r r 

(4.4) 

(4.5) 

+ (n(n + 1)]! QP;:'. (4.6) 
r 

5. MAGNETIC FIELD 

In the interest of a compact notation, the three 
vector spherical harmonics will be represented collec
tively by V:'n(8, 1», where the Greek index (1 takes on 
the three values r, B, C, as in (3.1). The explicit 
definitions are 

V~,n = B;:', 

Ve,n = C;:'. 

(5.1 a) 

(5.lb) 

(S.lc) 

In terms of this new notation and with the summation 
convention for repeated Greek indices, (2.2) can be 
written compactly as 

00 +n 
H(r, t) = ~ ~ H:;n(r, t)V:;:n((j, 1», (5.2) 

n=l ffl=-n 

with similar expressions for the Hertz vector and its 
time derivative. 

3 p, M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hi1l Book Co., 1953), pp. 1898-1901. 
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In particular, the time derivative of the Hertz 
vector can be given in the form 

: n = ~ 1 V~n(fJ)~ g~~l('t)JT.nCrI' tI) dtI drI' 
vt 2100 n,m r 

(5.3) 

Substituting into (1.1) with the use of (4.4)-(4.6) gives 

W::n(r, t) 

= 2:2 [n(n + l)]!(ff)p n('t)rIJe,n(rI, t I ) dtI drI, 

(5.4) 

Hli,r,(r, t) = ;r :r[ (ff)P n('t)r1Jc,rlrl> 11) d/l drI} 

(5.5) 
He,n(r, t) 

= ;r [n(n + l)]!(ff)Prl't)J;:,,(rI, (1) dtI dr1 

- ~(fJ)p n(~t) ~ [r1JE',n(r1, t1)] dtl drI· (5.6) 
2r orl 

In Eq. (5.6), the second expression on the right-hand 
side is obtained through an integration by parts, in 
which the form (3.3d) is used for the integral operator. 

6. DISCUSSION 

Equations (5.4)-(5.6) give the magnetic field ex
pansion coefficients, which are to be inserted into (5.2). 
It can be seen that there is an element of symmetry in 
the dependence of the three magnetic-field components 
upon the three current components, but that the 
symmetry is not as conveniently expressed in matrix 
form as was the case for the Hertz vector itself, as 
given in Eq. (7.1) of Ref. 1. 

While the forms (5.5) and (5.6) are chosen here 
because of their compactness, there are other forms 
for these magnetic-field components which avoid 
the use of the operators a/or and 0/or1 • These other 
forms can be obtained from (5.5) and (5.6) through 
integration by parts and by carrying out indicated 
differentiations. 
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1. INTRODUCTION 

In a preceding article,l expressions were obtained 
for the magnetic-field components associated with a 
general transient current distribution. Now, similar 
expressions are derived for the electric-field com
ponents, and, as before, these are derived from the 

previously derived expressions for the components of 
the retarded Hertz vector. 2 
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t Present address: Department of Physics, College of the Holy 
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1 R. E. Clapp and L. Huang, J. Math, Phys. 11. 14 (1970), 
2 R. E. Clapp. L. Huang, and H. T. Li, J. Math. Phys, 11. 9 

(1970), 

J n terms of the retarded Hertz vector II, the 
electric-field vector is given by the equation 

1 02 

E = VV . II - - - n. 
c2 0t2 

(Ll) 

In terms of the more familiar scalar and vector 
potentials, the electric vector is 

a 
E = -Vcp - - A, ot (1.2) 
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In particular, the time derivative of the Hertz 
vector can be given in the form 

: n = ~ 1 V~n(fJ)~ g~~l('t)JT.nCrI' tI) dtI drI' 
vt 2100 n,m r 

(5.3) 

Substituting into (1.1) with the use of (4.4)-(4.6) gives 
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= ;r [n(n + l)]!(ff)Prl't)J;:,,(rI, (1) dtI dr1 

- ~(fJ)p n(~t) ~ [r1JE',n(r1, t1)] dtl drI· (5.6) 
2r orl 

In Eq. (5.6), the second expression on the right-hand 
side is obtained through an integration by parts, in 
which the form (3.3d) is used for the integral operator. 

6. DISCUSSION 

Equations (5.4)-(5.6) give the magnetic field ex
pansion coefficients, which are to be inserted into (5.2). 
It can be seen that there is an element of symmetry in 
the dependence of the three magnetic-field components 
upon the three current components, but that the 
symmetry is not as conveniently expressed in matrix 
form as was the case for the Hertz vector itself, as 
given in Eq. (7.1) of Ref. 1. 

While the forms (5.5) and (5.6) are chosen here 
because of their compactness, there are other forms 
for these magnetic-field components which avoid 
the use of the operators a/or and 0/or1 • These other 
forms can be obtained from (5.5) and (5.6) through 
integration by parts and by carrying out indicated 
differentiations. 
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The identification of the vector potential 

A=!~II 
c2 at (1.3) 

has already been made in (1.3) of Ref. 1. A corre
sponding identification of the scalar potential, in 
terms of the Hertz vector, is 

rp = -V· II. (1.4) 

2. SCALAR IDENTITIES 

In analogy with the vector identities given in Sec. 4 
of Ref. I, there are certain scalar identities which 
arise from the action of the divergence operator 
upon the vector spherical harmonics and upon 
products of a scalar function Q(r, t) and the vector 
spherical harmonics. 

The three basic divergence identities are 

V • P;:'(O, 4» = (2jr)X;:'(0, 4», (2.1) 

V • B;:'(O, 4» = - ([n(n + l)]! jr} X;:'(O, 4», (2.2) 

V • C;:'(O, 4» = O. (2.3) 

The scalar spherical harmonics X;:' and the vector 
spherical harmonics P;:', B;:', and C;:' have been 
defined in Sec. 2 of Ref. 3. 

The more general divergence identities, in which 
each vector spherical harmonic is multiplied by the 
scalar function Q(r, t), are 

V • [QP;:'] = ~ ~ (r2Q)X;:', (2.4) 
r ur 

V· [QB;:'] = -([n(n + 1)]~jr}QX;:', (2.5) 

V . [QC;:'] = O. (2.6) 

As will be seen, it is the vanishing of the divergence 
in (2.6) that can be associated with the fact that the 
source-current components involving the vector 
spherical harmonics C;:' do not lead to any charge 
accumulation; hence these currents do not give any 
electrostatic contribution to E(r, t). These currents 
are circulatory in character, and make only inductive 
and radiative-field contributions. 

3. DIVERGENCE OF HERTZ VECTOR 

In the evaluation of the divergence of the Hertz 
vector, one of the functions defined in Sec. 7 of Ref. 2 
appears repeatedly. This is the function 

G~)a<r, r1 , s) = i:sPnm ds, (3.1) 

where 

3 R. E. Clapp and H. T. Li, J. Math. Phys. 11,4 (1970). 

Special values of this function are 

G~.)c(r, r 1 , r + r I ) 

= (2n + 1)-I(rn+1rln + r-nr~+1), 
G~)c(r, r I , r - r I ) 

= (2n + 1)-I(rn+1rln - r-nr~+1), 

G~)c(r, r I , r l - r) 

(3.3a) 

(3.3b) 

= (2n + 1)-I( _rn+1r1n + r-nrr+1). (3.3c) 

Equations (3.3) are established in the Appendix. 
The divergence of the Hertz vector does not 

involve the source currents with the lo,n symmetry, 
as noted earlier in connection with Eq. (2.6). However, 
both the l;:n and the lE,n current components make 
contributions to this divergence. The explicit form 
for this divergence is 
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The integral symbol <Sf) has been defined in Eq. (3.3) 
of Ref. 1. 

4. ELECTRIC FIELD 

The electric-field vector is obtained from Eq. (Ll). 
This includes an operation in which the gradient of the 
divergence of the Hertz vector is taken, and for this 
operation it is convenient to make use of the identity 

V[Q(r, t)X:;'(O, 4»] = (:r Q(r, t) )p:;,(O, 4» 

+ [n(n + l)]!Q(r, t)B:;'(O, 4». 
(4.1) 

The second time derivative of the Hertz vector also 
appears, and this is conveniently found from the time 
derivative of the expression given in Eq. (3.2) of Ref. 
1. After an integration by parts, this second time 
derivative is found to be expressible in the compact 
matrix form 

0
2 

IT'" ( ) - 11" r, t ot2 • 

= ~(ff)!2 g~~Mt)(~ r:',,(r1, tI») dt1 drI · (4.2) 
2Eo r otl 

As before, a repeated Greek index indicates slimma
tion over the values r, E, and C, and the functions 
g~~l are as defined in (7.2) of Ref. 2. . 

When the operations indicated in Eq. (Ll) are 
carried out, the resulting expressions for the expan
sion coefficients for the electric-field vector are 

1 ltl~t 
E;,,(r, t) = - - J;,,(r, tI) dti 

EO t1~tO 

+ n(n + 1) J.rl~' t'~t-(r-r1)/Cr_n_2r~+1 

(2n + I)Eo r1~0 Jt1~tO 
X J;nCrI , tI) dt1 dri 

n(n + 1) J.'1~ooit1=1-(r1-r)/c + ~-I~n 
(2n + I)Eo r1=r 11=10 

X J;n(rI , tI) dti dri 

- n(n + 1) (ff) (r-n--2r~+1 + rn- Ir1") 
2(2n + I)Eo 

x J:.':,,(r1 , t1) dt! dr! 

+ n(;E;2 1) (J J) Gg:)C<r, r I , et - etI) 

X J;n(rI , tI) dti dri 

+ en + l)[nen + I)]! 
(2n + I)Eo 

f.
"~'f.t1~t-(r--rl)/c 

X r-"-2r~+1 
r1~0 11=tO 

n[n(n + 1)]!f.r1~OOlt1=t-(r1-r)/c ,,-1 -n 
- r G 

(2n + I)Eo r1~r t1=10 

X J7J.n(rI , tI) dti dri 

[n(n + 1)J! 

2(2n + I)Eo 

X (f f) [en + l)r-n-2r~+1 - nrn- Ir1n] 

X J7J.nCrI' t1) dti dri 

+ [n(n + 1)]! 
2Eor2 

X (f J) [ri 0~1 G~~(r, rI , et - efI ) ] 

X J;;,,,(r1, tI) dt1 drI , (4.3) 

n[n(n + 1)]!J.'l='iI1=t-('-'l)/C 
Ell,n(r, t) = - r-n-2r~+1 

(2n + I)Eo '1=0 t1=lo 

X J;n(rl, tI) dtl drl 

+ (n + 1)[n(n + 1)]! 

(2n + I)Eo 

I.r1=oo 111=t-(rl-r)/ C 
X r n- 1r1n 

'l=r t1=1. 
X J;,,(rI , tI) dtl dri 

+ [n(n + I)]! 
2(2n + I)Eo 

X (f f) [nr-n-2r~'+1 - (n + 1)rn- 1r1"] 

X J;n(rI , tI) dtl dri 

+ [n(n + 1)]1 
2Eor2 

X (J J) [r :r Gg:)c(r, rl, et - etI) ] 

X J;,,(r1 , tI) dti dri 
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x J11.ir1' t1) dt1 dr1 

+ n(n + 1) (ff) (rn- 2rr+1 + rn- 1r1n) 
2(2n + 1)£0 

x J11.n(r1, t1) dt1 dr1 

+ 2£:r2(J J) [rr1 a::r1 

X" G~)c(r, r 1 , ct - ct1) ] 

X J11.n(r1, t1) dt1 dr1, (4.4) 

APPENDIX 

For the derivation of Eqs. (3.3), it is first noted 
that the Legendre polynomial p",m, which can be 
written in the form 

P (Y) __ 1_ ~ (Y2 _ 1)n (AI) 
n ~ - 2nn! d,n ~ , 

is an odd polynomial in , if n is odd or an even 
polynomial if n is even, so that 

Pn(-,) = (-l)nPnm· 

When the argument, is written out as 

, = (1/2rr1)(r
2 + ri - S2), 

(A2) 

(A3) 

(4.5) then the Legendre polynomial P nm has the form 

5. DISCUSSION 

Equations (4.3)-(4.5) give the components of the 
electric field in terms of the components of the 
source current. These equations are not given in 
the general matrix form, since their relative complex
ity precludes for the present a simple matrix represen
tation. However, there are elements of symmetry 
involved, and a compact matrix representation may 
eventually be devised. 

The electric-field components are here given as 
explicit integrations over the source-current com
ponents. For the inductive and radiative contribu
tions, the integration is limited to the realm specified 
by the notation (f f). This realm limits the source 
currents which are "visible" at the observation point. 
However, in addition to these immediately-sensed 
contributions, there are electric-field contributions 
which are electrostatic and are associated with the 
earlier flow of current, establishing a distribution of 
electric charge which generates an electrostatic field. 
The contributions to the electric field which are 
associated with this electrostatic dipole-moment 
distribution are expressed in the integrals which have 
as their lower limit t1 = to, where to is a time preceding 
any of the transient current flow which contributes to 
the fields that are being calculated. 

The important aspect of Eqs. (4.3)-(4.5) is their 
expression of the causal relationship between the 
source current J and the electric field E which is 
generated by this source current. When these equa
tions are used as the basis for a numerical solution of 
Maxwell's equations, the requirements of causality 
will be met.4- S 

4 R. E. Clapp, Proc. IEEE 56,329 (1968). 
• G. H. Peebles and R. E. Clapp, Proc. IEEE 56, 1365 (1968). 
• R. E. Clapp, J. Geophys. Res. 73, 6395 (1968). 

P nm = [1/(2rr1)n]fn(r2, r~, S2), (A4) 

where the functionin is a finite polynomial in its three 
arguments. 

It follows that the integral 

F nCr, r1, R) = i~:R P nm ds (AS) 

is an odd polynomial in R, so that 

Fn(r, r1, -R) = -Fn(r, r1, R). (A6) 

It can also be shown, from the form of (A4), that 

Fn(-r, r1, R) = (-l)nFn(r, r1, R), (A7a) 

Fn(r, -r1' R) = (-I)nFn(r, r1, R), (A7b) 

Fn( -r, -r1' R) = Fn(r, r1, R). (A7c) 

The three integrals to be evaluated are 

F nCr, r1, r + r1) = i~:+r1p nm ds, (ASa) 

Fir, r1, r - r1) = i~:,.-r1pnmdS, (ASb) 

F nCr, r1 , r1 - r) = i:r1

-

r 

P nm ds. (ASc) 

All three are defined here with no restrictions on the 
relative magnitudes of rand r1 • From (A6) it can be 
seen that 

Fn(r, r1, r - r1) = -Fn(r, r1, r1 - r), (A9a) 

and from the symmetrical way that rand r 1 enter into 
, in (A3), it is also clear that 

Fn (r1 , r, r1 - r) = -Fn(r, r1 , r - r1), (A9b) 

Fn(r1' r, r1 + r) = Fn(r, r1 , r + rl)' (A9c) 

Equation (A3) can be solved for s, giving 

(A10) 
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When, and '1 are both held constant, the differentials 
ds and d, will be related by 

s ds = -rri d,. (All) 

If'I is smaller than " the expansion 

converges, and it is possible to write 

F nCr, rI' r + '1) - F nCr, '1, , - rI) 

=Js~r+rlPnCO ds = - r'~-Is-lrriPiO d, 
s~r-rl J'~+I 

= '1 P iO - d' = rl - . (A13) l
'~+1 r r~ 2 

'~-I S ,n (2n + 1) 

In (AI3) the series (AI2) has been substituted, and the 
orthogonality properties of the Legendre polynomials 
have been utilized. 

If, on the other hand, '1 is greater than " then the 
convergent series expansion is 

ri/s = PoCO + (r/rI)P1W + (r2M)P2W + ... , 
(A14) 

and the resulting equation, analogous to (A13), is 

F1,(r, r1 , r + rI) - Fir, r1 , rl -,) 

= ,(,n/r~)2(2n + 1)-1. (AlS) 

From (A4) and (A5), it is apparent that the multi
plication of Fn (" '1' R) by (2rr1)n will cancel the 
factors in the denominator and give a finite polynomial. 

In particular, if Eq. (Al3) is multiplied on both sides 
by (2rr1)n, it becomes a relationship between the sum 
of two finite polynomials (on the left) and a monomial 
(on the right). Evidently, all of the terms in the two 
polynomials must subtract out, except for the terms 
which add to give the monomial on the right. More
over, this algebraic relationship involving finite 
polynomials, while established for '1 less than " can 
be continued analytically to include the regions where 
'1 is greater than ,. Similarly, Eq. (A1S), while 
established for '1 greater than " is a simple algebraic 
relationship which can be continued analytically to 
the realm where '1 is less than ,. 

When (A9a) is inserted into (A1S), the result is 

F nCr, '1' r + r1) + Fn(r, r1 , r - r1) 

= '(rn/r~)2(2n + 1)-1. (A16) 

Now, from (A l3) , (A16), and (A9a), the desired 
results are obtained: 

F n(', rl, , + r1) = (2n + l)-\rn+1'ln + ,-nr~+1), 
(A17a) 

F nCr, '1' , - r1) = (2n + 1)-1(rn+1r1n 
- r-nr~+1), 

(A17b) 

F nCr, '1> '1 - r) = (2n + 1r\ - rn+1r1
n + r-nr~+1). 

(A17c) 

These results are equivalent to Eqs. (3.3), since it 
is apparent from the definition of Fn in (AS) that 

F nCr, '1, R) = Ggz.1cC" r1 , R). (AlB) 
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Kernel Integral Formulas for the Canonical Commutation Relations of 
Quantum Fields. * II. Irreducible Representations 

GERHARD c. HEGERFELDTt 

institut fur Theoretische Physik, Universitiit Marburg, Germany 

(Received 27 December 1968) 

Continuing our investigation of the kernel or group integral for the canonical commutation relations 
introduced by Klauder and McKenna, we prove that a representation fulfilling any sort of kernel integral 
formula is irreducible. This has been conjectured by Klauder and McKenna. After collecting some 
auxiliary results, a complete classification of all representations is given for which a kernel integral for
mula in the form of a limit superior holds. It is shown that these are just the partial tensor-product repre
sentations and that the limit superior can be replaced by an ordinary limit over a fixed subsequence, thus 
allowing the transition from norms to scalar products. Then the basis-independent kernel integral in the 
form of a sup lim is investigated. Here the supremum is taken over all bases of the test-function space. 
Under a not-very-strong irreducibility assumption, we show that this can be reduced to the vacuum 
functional and that there exists a fixed sequence of sub'spaces of the test-function space such that the 
sup lim can be replaced by an ordinary limit which again allows a transition to scalar products, The 
results are strikingly similar to the case of cyclic field, This tempts us to conjecture that a representation 
fulfilling a kernel integral formula is both irreducible and cyclic with respect to the field just as in the case 
of finitely many degrees of freedom. 

1. INTRODUCTION 

In a previous paper,I kernel integral formulas for 
representations of the canonical commutation rela
tions (CCR) of Bose fields have been investigated for 
the cases where the field is cyclic. This was motivated 
by the close similarity between the Schrodinger repre
sentation for finitely many degrees of freedom and the 
general form of a representation with cyclic field. A 
counter example at the end of Part I had shown that 
not all of these representations can satisfy a kernel 
integral formula. This suggests that we consider the 
other important property of the Schrodinger repre
sentation-namely, irreducibility. As stressed before, 
there exist representations with cyclic field which are 
not irreducible, and vice versa, while the Schrodinger 
representation is both cyclic with respect to Q, which 
corresponds to the field, and irreducible. 

Let 'D denote the test-function space which is a real 
and in general incomplete scalar product space. A 
representation of the CCR is a family of unitary 
operators U(f), V(g) in a Hilbert space Je, j and g in 
'D, satisfying 

V(g)U(f) = ei(f,a)U(f)V(g), 

U(fl + f2) = U(fI)U(f2), (Ll) 

V(gl + g2) = V(gl)V(g2), 

where (f, g) denotes the scalar product In 'D. The 

* Based on a part of the author's Habilitationsschrift "Aspekte der 
kanonischen Vertauschungsrelationen fUr Quantenfelder," University 
of Marburg (1968). 

t Address from October 1969: Institut flir Theoretische Physik, 
Gottingen. 

1 G. C. Hegerfe1dt, J. Math. Phys. 10, 1681 (1969), hereafter 
referred to as Part I. 
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unitarity of U(f) and V(g) implies U(O) = V(O) = 1, 
U(f)* = U( -j), and V(g)* = V( -g). It is further 
assumed that U(Af) and V(Ag) are strongly continuous 
in A for fixedjand g. We put U(f,g) == U(f)V(g). 

Let hI , h2' ... be a complete orthonormal system of 
'D. Such a system will be called a basis of 'D. We 
denote by WN the subspace {hI' ... , hN} of all linear 
combinations of the first N h;'s, and by 'Do the sub
space {hI' h2' ... } of all finite linear combinations of 
the h/s. If we deal with several bases simultaneously, 
they will be indexed by a superscript, such as hf, 
h~ , .. '. W~ and 'Dg have corresponding meanings. 
We denote the Lebesgue measure in Wv induced by 
the scalar product (f, g) by d"f For any 1jJl' 'PI' 'P2' 
1jJ2 E Je we put 

I",(?pI, 'PI' 'P2, ?P2) 

== r dNfdNg_1_ 
JWNXH"N (21T)'Y 

X (1jJI, U(f, g) 'PI) (U(f, g)CP2, 1jJ2)' (1.2) 

As an abbreviation we put 

I ,v('P, 'Po, 'Po, 'P) == IN('P, 'Po), 

(v('Po, 'Po, 'Po, CPo) == IN('Po)' (1.3) 

In the case of several bases, I'J., is defined in an anal
ogous way. In Part I a kernel integral formula was 
said to hold if, for some unit vector 'Po E Je and all 
fPl1jJ E Je, 

lim (v('P, 'Po, 'Po, 1jJ) = ('P, 1jJ) (1.4) 
N-ex) 

or 
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or 

where the supremum is taken over all bases of'lJ. 
In Sec. 2 we are going to prove that any of these 

formulas implies the irreducibility of the representa
tion U(J, g). This important fact had already been 
conjectured by Klauder and ~cKenna.2 In Sec. 3, 
some mathematical results are collected which are 
needed for the following. 

A complete classification of all representations 
fulfilling the kernel integral formula with the limit 
superior in Eq. (1.5) is obtained in Sec. 4. We will 
meet the same phenomenon as in Part I, where Eq. 
(1.5) for a cyclic CPo implied the existence of a sub
sequence ni such that lim In;(cp, CPo, CPo, "P) = (cp, "P) , 
for all cP, "P E Je. Here it turns out that one can replace 
the first CPo by any vector CPt and the second CPo by CP2, 
and one obtains as limit ('P, "P)('P2' 'Pt). 

In Sec. 5, necessary and sufficient conditions are 
derived for the kernel integral formula with the 
supremum over all bases to hold. This is the most 
general formula and imposes the weakest conditions 
on the representation. Our results again show a strik
ing similarity to those of Part I. Under the assumption 
that not only U('lJ, 'lJ) but also U('lJ~, 'lJg) is 
irreducible, it is shown that the validity of Eq. (1.6) 
for some 'Po and cP = 'Po implies its validity for all 
'P and all unit vectors 'Po. As in Part I, it turns out that 
the supremum can be replaced by an ordinary limit 
over a sequence of bases independent of 'P and CPo. 
Then the existence of a kind of diagonal sequence 
I!l:: is proved such that for any "Pt , 'Pt, 'P2' "Ps E Je, the 
expression in Eq. (1.2) goes to ("Pt, "P2)( 'P2, 'Pt). 

Finally, we discuss our results in the last section. 
In view of the close similarity of the cyclic and 
irreducible case, we conjecture that the validity of a 
kernel integral formula implies that the representation 
is not only irreducible, but also cyclic with respect to 
the field. This would be a close analogy to the case of 
finitely many degrees of freedom. 

2. NECESSITY OF IRREDUCmILITY 

In this section it will be shown that irreducibility of 
the representation is a necessary condition for a kernel 
integral formula to hold. For the ordinary limit in 
Eq. (1.4), this has been conjectured by Klauder and 
McKenna. 2 Up to now it has only been proved for 
finitely many degrees of freedom by a rather intricate 
construction. 3 Our derivation is independent of the 

• J. R. Klauder and J. McKenna, J. Math. Phys. 6, 68 (1965). 
3 J. McKenna and J. R. Klauder, J. Math. Phys. 5, 878 (1964). 

number of degrees of freedom and fairly simple. It 
comprises the earlier result as a special case. As it 
turns out, it even suffices for irreducibility that 
sup I~("P, 'Po) = 11"P112 for all "P E Je. This is a weaker 
p,n 

condition than Eq. (1.6) since I!("P, CPo) ~ 11"Pll s for 
all"P, (3, n. 

Theorem 2.1.' Let U(J, g) be a representation of the 
CCR with j, g E 'lJ, and let one of the following 
conditions hold for all"P E.re and some 'Po, II 'Poll = 1: 

(a) lim I!( "P, 'Po) = 11"Pll s for some basis (3; 

(b) lim I ~("P, 'Po) = 11"Pll s for some basis (3; 
n-+oo 

(c) sup lim I!("P, 'Po) = lI'1pI12; 
p n-+ 00 

(d) supI~("P, 'Po) = sup Iw('I), 'Po) = 11"P112; 
p,n w 

where W runs through all finite-dimensional sub
spaces of'lJ. Then the representation is irreducible. 
The same result holds for dim 'lJ < 00 if one puts 
n = dim 'lJ and omits the limits over n. 

The proof is a simple consequence of the follow
ing lemma: 

Lemma 2.1: Let U(J, g) be a representation of the 
CCR withj, g. Let 

r 

Je = EEl Je i , dim Jei > 0, r > 1, (2.1) 
i=1 

and let the Jei be invariant under U(J, g) for all 
j, g E 'lJ. Then for any unit vector 'Po E Je there exist a 
"P E Je and a c ;;::: 0 such that, for every finite-dimen
sional subspace W N of 'lJ, 

f dNj dNg (21)N I("P, U(f, g)'PoW ~ c < 1I"P112, 
JUTNXJJTN 7T 

(2.2) 
where N = dim WN . 

Proof' Let 'Po = EEli 'Pi be the decomposition of 'Po 
with respect to the :rei in Eq. (2.1). Since r > 1, there 
exists a "P = EEli "Pi such that, for all numbers A, 

By the invariance of Jei , the left-hand side ofEq. (2.2) 
becomes 
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and by Schwarz's inequality applied to the integral 
this is 

! 
~ t (f d,VjdNg (2:)N 1(V'i' U(f, g)9"i)1 2

) 

x (fdNj dNg ~ 1(V'i' U(f, g)<Pj)1 2)!. 
(27T) 

Due to Eq. (2.31) of Part T, i.e., lI.v( <p, 9"0)12 ~ II qll12 x 
119"011 2, this is, 

~ (f: IIV'ill . II9"iIIJ == c. 

This number c is independent of W N' In view of Eq. 
(2.3), Schwarz's inequality implies 

c < (t IIV'iI1 2)(t II <pill 2) = 11V'112. Q.E.D. 

Proof of Theorem: Assume the representation to be 
reducible. Due to the unitarity of U(j, g) one can 
write Je = Jel EB Je2 with nontrivial invariant Jel and 
Je2 • Then by the above lemma none of the conditions 
(a)-(d) can hold for all V' E Je. Q.e.D. 

For the case of the ordinary limit and for the limit 
superior, one immediately obtains as a corollary the 
following sharpened irreducibility condition: 

Corollary 2.1: Let hI' h2' ... be a basis of'D for 
which either condition (a) or (b) of the above theorem 
holds. Then already U('Do, 'Do) is irreducible where 
'Do = {hI' h2 , ••• }. 

Proof' Replace 'D by 'Do in the above theorem. 
Since hI, h2' ... is also a basis of lUo, the statement 
follows from the theorem. 

3. SOME AUXILIARY RESULTS 

In this section some results are collected which will 
be needed later on. 

Let Je be the tensor product of two Hilbert spaces 
Jel and Je2 : 

(3.1) 

For any vector V' E Je one can choose sets of ortho
normal vectors V'lll and V'j2) in Jel and Je2 , respectively, 
i = 1, ... , such that 

V' = L AjV'!I) ® V':2), Al ~ A2 ~ ... ~ O. (3.2) 
i 

These sets can of course be completed to bases of Je l 

and Je2 • This decomposition is called a standard diag
onal expansion4 of 1p with respect to Jel @ Je2 • 

, H. Araki and J. Woods, "Complete Boolean Algebras of Type I 
Factors," University of Maryland Report No. 563 (1966); Pub!. 
Res. Inst. Math. Sci., Ser. A, Kyoto University 2, 157 (1967). 

Let A be some index set, and let Ra , IX E A, be von 
Neumann algebras of bounded linear operators in a 
Hilbert space Je. Denote by B(Je) the set of all bounded 
linear operators in Je and by 

Ra v RfJ == {Ra U RfJ}", (3.3) 

the von Neumann algebra generated by Ra and Rp. 
Here U means set-theoretical union and " double 
commutant. Ra is a factor if 

or, equivalently, 
Ra II R~ = {c • 1 } 

Ra V R~ = B(Je). 

(3.4) 

(3.5) 

DefinitionS 3.1: (Ra, IX E A) is called factorization of 
B(Je) if each Ra , IX E A, is a factor which commutes 
with any other RfJ and if the von Neumann algebra 
generated by the Ra equals B(Je): 

Ra II R~ = {c • I}, 
Ra c Rp, IX ¥= f3; 

V Ra = {U Ra}" = B(Je). 
aeA aeA 

(3.6) 

If all factors are of type T, (Ra, IX E A) is called a 
type-I factorization. Murray and von Neumann6 have 
shown that any finite type-I factorization R I , ..• , Rn 
is a tensor product factorization, i.e., 

Je = Jel @ ••• @ Je" , 

Ri = B(Jei) @ (01;), i = 1,"', n. (3.7) 
i*i 

They have further shown that if (RI' R2) is a factori
zation of B(Je) and Rl is of type T, then also R2 is of 
type 1. 

To apply this to the CCR, consider a representation 
U(j, g) with j, g E 'D. Let W be a finite-dimensional 
subspace of 'D, dim W = N say. Since the restriction 
of the representation to j, g E W just yields a repre
sentation of the CCR for N degrees of freedom, one 
can, according to von Neumann's theorem, 7 write 
Je = Jel @ Je2 in such a way that for j, g E W 

U(f, g) = UI(f, g) @ 12 , (3.8) 

where U1(j, g) is the Schrodinger representation for 
N degrees of freedom in Je l . If one puts 

R(W) == {U(f, g);j, g E W}", (3.9) 

then, by Eq. (3.8), R(W) is a type-I factor. 
Now let hI' h2' ... be a basis of 'D, and let 'Do = 

{hI' h2' ... } be defined as in the Introduction. Let 

6 Cf. M. A. Neumark, Normierte Algebrell (VEB Deutscher Verlag 
der Wissenschaften, Berlin, 1959), p. 456. . 

• F. J. Murray and J. von Neumann, Ann. Math. 37, 116 (1936). 
7 J. von Neumann, Ann. Math. 32,191 (1931). 
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nl < n2 < ... be natural numbers; denote by Ir+l the 
set IrH == (nr+l' ... ,nrH), and define 

Ri == {U(f, g);j, g E {h~; IX Eli}}"· (3.10) 

Then, according to Eq. (1.1), 

i~ Ri = {y Rr = {UU, g);J, g E'lToY· (3.11) 

Hence, if U('lTo, 'lTo) is irreducible, one has 

V Ri = B(Je) (3.12) 
i 

and (Ri' i = 1,2, ... ) is a type-I factorization. This 
fact was noted in Ref. 4. 

We close this section by proving the following use
ful lemma which is contained in Ref. 8: 

Lemma 3.1: Let WI' W2,'" be a sequence of 
finite-dimensional subspaces of 'IT, dim Wn = N(n) 
say, and let U(f, g) be a representation of the CCR in 
Jewithf,g E 'IT. For each n, let Je(n) bea subspace ofJe 
irreducible under U(Wn' Wn), and denote by Pn the 
projection operator onto Je(n). Define IN(n)(1pl' rpl' 
rp2' "P2) as in Eq. (1.2), the integration now being over 
Wn X Wn. Then, if Pn converges strongly to 1, 

for all "PI' f[!l' f[!2, "P2 E Je. 

Proof' For any "P~n), f[!~n), rp~n), 1p~n) E Je(n), one has 

1 (",In) mIn) mIn) ."In» = (.,,(n) 1II(n»(m(n) mIn»~ N(n) 't'l , 't'l , 't'2 ''t'2 't'l ''t'2 .,-2, 't'l 

(3.14) 

by Lemma 2.1 of Part I. Let I ~ e > 0, and put 
e' = e/19. Then there exists an index no such that 
lI"Pi - Pn"Pill < e', IIf[!i - Pnf[!i11 < e' for n ;?: no, i = 
1,2. One can assume II"Pill = IIf[!ill = 1, i = 1,2. 
Then, by Eq. (3.14), 

Dn == IIN(n)("Pl, f[!l' f[!2' "P2) - (1pl, 1p2)(f[!2, f[!1)1 

= IIN(n)(1pl' f[!l' f[!2' 1p2) 

- IN(n)«Pn"Pl - "PI) + "PI"'" 

(Pn "P2 - "P2) + 1p2) + (Pn 1pl, Pn 1p2) 

X (Pn f[!2' Pnf[!l) - ("PI> 1p2)(f[!2, f[!1)1· (3.15) 

Using the linearity of IN(n) in the indicated way, one 
obtains for the first difference on the right-hand side 
IS terms, each of which contains at least once an 
argument of the form Pnf[! - f[!, thus being smaller 

8 J. R. Klauder, J. McKenna, and E. J. Woods, J. Math. Phys. 
7, 822 (1966). 

than e' for n ;?: no by Eq. (2.31) of Part I. The second 
difference is smaller than 4e'. Hence Dn < 19e' = e 

for n ;?: no' Q.E.D. 

4. THE KERNEL INTEGRAL AS LIMIT 
SUPERIOR: COMPLETE SOLUTION 

Before classifying all representations fulfilling a 

kernel integral formula with lim as in Eq. (1.5), we 
briefly quote a result by Araki and Woods for kernel 
integrals as an ordinary limit. They make the general 
assumption that U('lTo, 'lTo) is irreducible. In view of 
our results of Sec. 2, we can write the result of Araki 
and Woods4 in the following somewhat sharpened 
form: 

Theorem 4.1: Let U(j, g) be a representation of the 
CCR in Je withf, g E <D. Let hI, h2' ... , be a basis of 
'IT, and define In as in Eq. (1.2). Then the following 
conditions are equivalent: 

(a) U('lTo, 'lTo) is irreducible, and there exists a 
unit vector f[!o E Je such that lim In (f[!o) = 1; 

(b) for any "PI' f[!l' f[!2' "P2 E Je, 

lim In( "PI> f[!1' rp2' "P2) = (1pl' 1p2)( rp2' rpl)' 

Araki and Woods have further shown that U(f, g), 
when restricted to f, g E 'lTo, is a partial tensor
product representation (PTPR) if (a) or (b) is fulfilled 
and that it is a direct- or tensor-product representation 
(TPR) if the correct limits are approached for any 
ordering of the basis vectors hI, h2' . . . . According 
to the remark on corollary 5.1 of Part I, the converse 
also holds. Thus we can write the result of Araki and 
Woods4 in the following form: 

Theorem 4.2: Let U(f, g) withf, g E'lT be a repre
sentation of the CCR, and let hI, h2' ... be a basis 
of 'IT. Then U('lTo, 'lTo) is a tensor-product repre
sentation with respect to this basis if and only if 
conditions (a) or (b) of the preceding theorem hold 
for any ordering of the basis vectors hi' 

This result provides an alternative classification of 
TPR of the CCR. Now it will be shown that the kernel 
integral with the limit superior is linked to PTPR. 
Simultaneously it will turn out that the limit superior 
can be replaced by an ordinary limit over a subse
quence which is independent of f[!. This will allow a 
transition from norms to scalar products. The precise 
formulation runs as follows: 

Theorem 4.3: Let U(f, g) withf, g E 'IT be a repre
sentation of the CCR in Je, and let hI, h2' ... be a 
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basis of 'U. Then the following conditions are equiv
alent: 

(a) U('Uo, 'Uo) is irreducible, and there exists a 
unit vector CPo E Je such that 

(4.1) 
n-+ 00 

(b) There exists a sequence of natural numbers 
nI < n2 < ... such that for any 'If I , CPI' CP2' 
'lf2 E Je, 

lim 1",( 'lfl , CPI' CP2' 'lf2) = (1pI' 1p2)( CP2, CPI); (4.2) 
i-oo 

(c) U('Uo, 'Uo) is a PTPR with respect to the basis 
hI' h2' .... 

Proof: We show (a) ~ (c) ~ (b) ~ (a). 

Ad (a) ~ (c): The restriction of U(f, g) to f, g E 

Wn = {hI' ... ,hn} is a representation of the CCR 
for n degrees of freedom. According to Eq. (3.8), one 
can decompose Je as 

:Ie = Je(n) ® Je;n) 

in such a way that, for f, g E Wn , 

(4.3) 

U(f, g) = U if, g) ® l;n), (4.4) 

where U n(f, g) is the Schrodinger representation for n 
degrees of freedom in Je(rd' In the standard diagonal 
expansion [cf. Eq. (3.2)] of CPo with respect to Je(n) ® 

Je;a) , 

m =' ;,.(n)1,,(n) ® lIl~(n) ;,. (n) > A (n) > ... > 0 
,0 £.." 11 it' 1 _ 2 _ _, 

i 

(4.5) 

Since ;"~rd ~ 1, Eq. (4.1) yields 

(4.10) 
n 

Hence there exists a subsequence ;,.~n,) converging to 
1. The convergence can be assumed to be so fast that 

L (1 - Ain ,)') < 00. (4.11) 

Define the factors Ri for these ni as in Eq. (3.10). Then 
(R i , i = 1, 2, ... ) is a type-I factorization because 
U('Uo' 'Uo) is irreducible by assumption. Now 
lemmas 2.2 and 4.9 of Ref. 4 are directly applicable. 
Accordingly, Eq. (4.11) implies that U(f, g) with f, g E 

'U 0 is a PTPR with respect to the basis hI , h2 , ... and 
basis subdivision (1, ... ,nl), (nl + 1, ... , n2),. ••• 

Ad (c) ~ (b): We use the same notation as in Part 
I, Sec. 5. According to Lemma 5.1 of that section, one 
can assume the reference vector "Po of the partial 
tensor product to be cyclic with respect to U{'Uo). 
According to Eq. (5.14) of Part I, 

is invariant under V(g) for g E Wn,. Hence one has in 
Jeni a representation for lli degrees offreedom which is 
cyclic with respect to U(f) and thus equivalent to the 
Schrodinger representation. Moreover, since Pni , the 
projection operator onto Je"i' converges strongly to 1 
by Lemma 4.1 of Part I, (b) is an immediate conSI<
quence of Lemma 3.1 above. 

Ad (b) ~ (a): Equation (4.1) follows from 

IIn(cp, "P)I ~ IIcpl12 111p112. 
one has, due to orthonormality, 

L A~n)' = 1. 
The same inequality also implies that condition (b) 

(4.6) of Theorem 2.1 is fulfilled. Hence U('Uo, 'Uo) is 
i 

Inserting Eq. (4.5) into In{ CPo) and noting that [due to 
Part I, Eq. (2.31)] In is not only linear but also con
tinuous in each argument for fix.ed n, one can extract 
the (possibly infinite) sums; the result is 

1 (m ) = , A(nIA(.n)A(n)A(n)(lIldn ) 1JJdn »)(1Il(n) 11Idn») 
n .,-0 £.. t , k I Tt 'T' Tk' T I 

'i,j,li,l 

J
' 1 

x d"f dng --n ('If~n), U n(f, g)'If~n») 
WnxW" (211) 

X (U n(f, g)'If~n), 'If;n». (4.7) 

Using Eq. (2.30) of Part I for the last integral, one 
gets 

I n( rpo) = I A~nI4. (4.8) 
i 

Equations (4.5) and (4.6) imply 

I (m) < .?c(n)', ji(n)' _ 1(n)2 
n.,-O _ I £.. t - Al . (4.9) 

i 

irreducible by Corollary 2.1. Q.E.D. 

The above theorem provides a complete classi
fication of all representations for which a kernel 
integral formula with a limit superior holds because 

Eq. (4.2) implies lim I,.(cp, 'If) = Ilcpl\2 \\'If\\2 for all 
cP, 'If E Je, and this in turn implies Eq. (4.1) and the 
irreducibility of U{'Uo, 'Uo). The first part of the 
above theorem is strikingly similar to Theorem 6.1 
of Part I. There it has been shown that if CPo is cyclic 

for U{'Uo) and lim In (CPo) = 1, then lim Ini(cp, CPo, 
CPo,1p) = (cp,1p) for some fixed subsequence and all 
cP, 1p E Je. Since this implies the irreducibility by 
Theorem 2.1, one has the following corollary: 

Corollary 4.1: Condition (a) in Theorem 4.3 can be 
replaced by the following: 

(a/) There exists a unit vector CPo which is cyclic with 



                                                                                                                                    

26 GERHARD C. HEGER FELDT 

respect to U(<tJo) and which fulfills 

lim In (lfo) = 1. 
n 

Similar to Theorem 6.1 of Part I, the convergence 
of InJ Ifo) towards 1 for some subsequence ni implies 
the convergence of In/ "PI> Ifl , 1f2' "P2) towards 
("PI' "P2)( 1f2' Ifl) if U(<tJo, <tJo) is irreducible. This will 
be shown in a remark following Corollary 5.1. 

5. THE BASIS-INDEPENDENT KERNEL 
INTEGRAL 

A definition of the kernel integral as in Eq. (1.6) by 
a supremum over all bases has the advantage that one 
deals with basis-independent expressions and that the 
restrictions on the representation are weaker than in 
the other two cases. It has, however, the disadvantage 
that scalar products in X are not so easily expressible 
as in the case of an ordinary limit. In this section we 
therefore pursue a twofold purpose. First we show 
that under a somewhat stronger irreducibility con
dition the validity of the basis-independent kernel 
integral formula for a nonzero vector implies its 
validity for aU vectors of X and that the supremum can 
be replaced by a limit over a fixed sequence of bases. 
Then it will be shown that one can replace this 

lim lim by a simple limit which again allows the 
transition from norms to scalar products. 

If U(f, g),f, g E cD, is an irreducible representation 
of the CCR and if CUo is some linear subspace of CU 
which is dense in CU with respect to the scalar product 
in 'U, then it is probably not true in general that the 
representation remains irreducible when restricted to 
I, g E CUo. Of course, with appropriate continuity 
conditions this will follow immediately. If 'Do con
sists of all finite linear combinations of a countable 
set of elements, then the irreducibility and also the 
cyclicity of U('Uo, 'Uo) imply the separabilit) of the 
Hilbert space X-a fact which is quite welcome for 
physical applications. 

Lemma 5.1: Let hI, h2,'" be a basis of 'U, put 
CU o = {hI> h2' ... }, and let U(CUo, CUo) be irreducible 
or, somewhat weaker, let U(CUo, 'Do) be cyclic vector 
Ifo. Then X is separable. 

Proof" Put Wn = {hI, h2' ... , hll } and 

Then, by assumption, 

X = U X n • 
n 

For I, g E Wn , the representation is continuous with 
respect to the Euclidean topology of Wn. In Wn the 
points with rational coordinates are dense and 
countable. The linear combinations with rational 
coefficients of the corresponding U(/, g)lfo are dense 
in X n. Hence all Xn and then also X are separable. 

Q.E.D. 

It is also an open question if, conversely, the separa
bility of X and irreducibility of U(CU, 'U) imply the 
irreducibility of U('Uo , CUo). Therefore, whenever 
needed, we will have to assume the irreducibility of 
U('Uo, 'Uo). Since, by Theorem 2.1, one knows that at 
least U(CU, CU) is irreducible, this assumption seems 
not very strong. Now we prove the first of the two 
results mentioned above, where WP, 'UP and IP have ,. nO' n 
the same meaning as in the Introduction. 

Theorem 5.1: Let U(J, g),j, g E CU, be a representa
tion of the CCR, and let U(cug, 'Ug) be irreducible for 
any basis. Then the following conditions are equivalent: 

(a) There exists a unit vector Ifo E X satisfying 

suplimI~(lfo)=l; (5.1) 
P n 

(b) for'any "P, If EX 

sup lim I~("P' If) = 11"P1121IlfI12; (5.2) 
fJ n 

(c) there exists a sequence of bases (h(') h(') ... ) 
1 ' 2' , 

Y = 1,2 .... , such that for any "P, 'P EX 

lim lim 1~')(1p, 'P) = 1/'!1'1/2 1/'P1/ 2. (5.3) 
\1--'00 n 

The proof is based on the following lemma9 : 

Lemma 5.2: Under the assumptions of the above 
theorem condition, (a) implies that there exists a 
seque,nce of bases (hi'>' h~'), ... ), Y = I, 2, ... , and 
that for each y there are natural numbers n, = 
n;(Y), n1 < n2 < ... , and projection operators P(:,71;) 
onto subspaces X( •. 71i) of X which are irreducible under 
U(W,~:), W~:» such that for all If E JC 

lim lim iI'P - p( •. lIi)'P11 = O. (5.4) 
\'-00 i-co 

Proof' If (a) holds, there exists a sequence of bases 
(hi'), h~V), ••• ), Y = 1,2, ... , such that 

lim lim l~)( 'Po) = 1. (5.5) 
v n 

For each Y and n one can, as in Eq. (4.3), decompose 
X as 

'70 _ W(.) 0. wd.) 
"'" - ""'(n) "" ""'(n) , 

• This is a generalization of Lemma 4.10 of Ref. 4. 

(5.6) 
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such that for f, g E W~v) 

U(j, g) = U~v)(j, g) @ 1;~/, (5.7) 

where U~V)(f,g) is irreducible in Jel~\ . Let the standard 
diagonal expansion of CPo with respect to the decom
position in Eq. (5.6) be 

CPo = 2 ).~v,n)¥'lv,n) @ ¥,;(v,n>, 
i 

Ai",n) 2 -,,~v.n) 2 ... 2 O. (5.8) 

By Eq. (4.9) one then has 

(5.9) 

Define the projection operator p(v,n) and the subspace 
Je(v.n) by 

p(v,n) == 1\~) @ I ¥,~(v,n» (¥,~h',n)l, 

Je(v,n) == p(v,n)Je, (5.10) 

According to Eq. (5.7), U(f, g) acts irreducibly in 
Je(v.n) for f, g E W~V). Now we put for each v 

- ( . lim -,,/,n) == 1 - E v , (5.11 ) 
n 

Then, by Eqs. (5.9) and (5.5), Ev 2 0 and 

lim Ev = O. (5.12) 
v-+ 00 

For each v, there exists a subsequence mi = mi(v), 
i = 1, 2, ... , such that -"iv,mi ) tends to 1 - Ev' 

The set {A; IIA II ::;; I} of operators in ~ is weakly 
compact.lO Therefore, due to the separability of Je, 
there is for each v a subsequence p(v.ni) of the P(v.mi) 
which converges weakly to an operator Tv' We show 
that Tv = (1 - Ev)l. Indeed, let f, g E W~V), and let 
ni 2 n. Then U(f, g) commutes with p(v.n.) ' hence 
also with its weak limit Tv' Thus U(f, g) c~mmutes 
with Tv for aUf, g E 'lJ~v). Due to the irreducibility of 
U('lJ~V), 'lJ~v», Tv is a multiple of the unit operator, 
Tv = (XvI. Since' 

(CPo, p(v,n)CPO) = 1 - -"iv,n)2, 

it follows that (Xv == I - Ev, and Eq. (5.4) is a con
sequence of Eq. (5,12). Q.E.D. 

Proof of Theorem: Due to the lemma, it suffices to 
show Eq. (5.4) --+ (c) --+ (b) --+ (a). 

Ad Eq. (5.4) --+ (c): One can assume Ilcpll = 11"1'11 = 
1. Let 1 ~ E > 0, and put E' == E/19. By Eq. (5.4) 
there exists an index Vo = VOCE, cP, "1') such that for 
each v 2 Vo there is an index io = iO(E, v, cP, "1') with 
the property that for 'II ~ '110 , i ~ io, 

10 J. Dixmier, Les a/gebres d'operateurs dans l'espace Hi/bertien 
(Gauthiers Villars, Paris, 1957), p. 34. 

Then, as in Eq. (3.15), for '112 '110' i 2 io, 

II~~}(¥" cp) - l~/(P(v,n,)¥" p(v.ni)cp)1 ::;; 15E'. (5.13) 

Since, for f, g E W~:), P(v,ni)Je is irreducible under 
U(f, g), the second term becomes IIP(v.n)¥'11 2 X 

IIP(v.ni)CPI12, according to the kernel integra!' for ni 

degrees of freedom. This product differs from 
1I¥'I1 2 11cpl12 = 1 by at most 4E'. Hence for v 2 Vo, 
i 2 io('II), 

1 2 I~v}(¥" cp) 2 1 - 19E' = 1 - E, (5.14) 

and thus for'll 2 Vo 

1 2 lim I~)(¥" cp) 2 1 - E. 
n 

This is just Eq. (5.3) for II cpll = 11"1'11 = 1. 
Ad (c) --+ (b) --+ (a): The first part follows from 

II~(¥" cp)1 ::;; 11¥'11211cp111l, and the second part is trivial. 
Q.E.D. 

We note that the irreducibility condition entered in 
Lemma 5.2 only. Therefore it can be weakened slightly. 
It suffices that U('lJ~V), 'lJ~V» is irreducible for 'II = 
I, 2, ... , where the 'lJ~V) belong to the bases (hiV) , 
h~V), ... ) entering Eq. (5.5). The proof contains the 
following corollary: 

Corol/ary 5.1: Let (hI' h~V), ... ) be a sequence of 
bases, v = I, 2, ... , and let each U('lJ~V), 'lJ~V» be 
irreducible. If there exists a unit vector CPo satisfying 

lim lim 1~)( CPo) = 1, (5.15) 
v""" 00 n-+C() 

then for all cP, "I' E Je 

lim limI~)(¥" cp) = 1/¥,1/ 2/lcpI/2. (5.16) 
\1-+00 n-+oo 

With similar methods one can show the correspond
ing corollary to Theorem 4.3. If U('lJo, 'lJo) is irreduc
ible and if for some unit vector CPo 

lim I n.( CPo) = 1, (5.17) 
i-+ 00 

then for all "1'1' CPl' CP2' "1'2 E Je 

lim 1ni(¥'l, CPl' CP2, "1'2) = ("1'1, "I'2)(CP2, CPl)' (5.18) 

To prove this it suffices to show, by Lemma 3.1, that 
the projection operators P n, defined in the same way 
as in Eq. (5.10) via Eq. (4.5) converge strongly to 1. 
Indeed, since I/cpo - Pn,CPol12 = 1 - -"in,)2, one has 
II CPo - Pn/Poll --+ O. Now let f, g E Wn with n :::;; ni • 

Then P n, commutes with U(f, g), hence also with 
all elements of R(Wn) = {U(f, g);j, g E Wn}'" If 
A E R(Wn) and cP = A CPo , then II cP - Pn.CPl/ :::;; 
II A II • II CPo - P n, CPo II --+ O. Since the set of these vectors, 
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11 = 1,2, .. " is dense in X, one has proved that 
p". -+ 1 strongly. The same reasoning has been used 
by/Araki and Woods4 to prove (a) -+ (b) in Theorem 
4.1. 

Similar to Theorem 6.2 of Part I, it may again not 
be possible to replace the limit superior in Eq. (5.3) 
by an ordinary limit over a subsequence which is 
independent of "P, 'P since one does not know if the 
limit over i of /(V)(/P, 'P) in Eq. (5.14) exists. However, 

nj • 

similar to Theorem 6.3 of Part I, one can find a krnd 
of diagonal sequence of finite-dimensional subspaces 

of clJ such that sup lim can be replaced by an ordinary 
limit which yields the desired value also for scalar 
products. These subspaces need not be contained in 
each other. 

Theorem 6.2: Let the assumptions be as in the pre
ceding theorem, and let any of the conditions (a), 
(b), or (c) hold. Then there exists a sequence of finite
dimensional subspaces Wn of'lJ, dim Wn = N(n) say, 
such that for all "PI , 'PI' 'P2' "P2 E X 

lim j dNjdNg~ 
n'" 00 J W.XWn (21T) 

X ("PI' U(f, g)'PI)(U(f, g)1f'2' "P2) 

= ("PI, "P2)('P2, 'PI)' (5.19) 

Proof" In any strong neighborhood of 1, there lies 
one of the projection operators p{v.n) of Lemma 5.2, 
so that 1 is a neighboring point of this set of operators. 
Thus, in view of the separability of X, there exists a 
subsequence of these operators which converges 
strongly to the unit operatorY Denote the operators 
of the subsequence by P n and the associated spaces of 
the W~~l by Wn. SincePnX is irreducible under U(f, g) 
for f, g' E Wn , Lemma 3.1 applies. Q.E.D. 

It is not clear if, conversely, Eq. (5.19) implies 
condition (a)-although one would expect this. The 
difficulty is the following: If hf ' h~ , ... is a basis of 
'lJ, then I~( 'Po) may alternately increase and decrease 
for increasing n. The above theorem only states that 
there exists a sequence of bases and for each of these 
an N(v) such that (~lvl( 'Po) -+ I for v -+ 00. This means 
that for appropriate v, N one has IjJl('Po) ~ I-E. 
But I'~~~I ('Po) may already be smaller, and th~ same 
may hold for the limit superior over N. In thIS way 
one can only conclude that Eq. (5.19) implies 

sup/~("P' 'P) = 11"P11211'P1I2 (5.20) 
p,n 

11 J. Dixmier, Ref. 10, p. 33, Corollary. The existence of s?ch a 
subsequence is also easily shown directly by the same constructIOn as 
in the proof of Theorem 6.3 of Part I. 

for all "P, 'P E .le. This in turn implies the irreducibility 
of the representation. Choosing any kernel 

K(f', g';/", g") = (U(f', g')'Po, U(f", g")'Po) 

with some unit vector 'Po, one obtains an integral 
formula for the reproducing kernel if one puts 'PI = 
'P2 = 'Po and "PI = U(f', g')'Po and "P2 = U(f", g")'Po 
in Eq. (5.19). This formula in turn implies Eq. (5.19) 
for all "PI' "P2 E X and for 'PI = 'P2 = 'Po, by the same 
argument as in Part I, Sec. 2. 

Corollary 5.2: Let the assumptions be as in Theorems 
5.1 and 5.2. Then, from 

sup lim r d~ dng _1_1 K(O, O;j, g)1 2 = 1, 
p n JWnPXWnP (21T)n 

it follows that there exists a sequence of subspaces Wn 
of 'lJ, dim Wn = N(n) < 00, such that for all /', 
g',j", g" E ClJ 

lim j dNj d'''g ~ K(f', g' ;j, g)K(f, g;J', g') 
n .... oo JWnXWn (27T) 

= K(f', g';j", gil). (5.21) 

6. DISCUSSION 

Up to now it has been an open question whether or 
not there exists a kernel integral formula in the form 
of a supremum over the possible bases of the test 
function space for all irreducible representations. For 
this case we have obtained partial results only. At 
least one knows by Theorem 2.1 that reducible repre
sentations are excluded. On the other hand, the case 
of limit superior has been characterized completely by 
the PTPR. One may ask for which of these the kernel 
integral in its strongest form, the ordinary limit, holds. 
This is also not known. Only if the limit is independent 
of the ordering of the basis vectors of 'lJ has one a 
complete description by the TPR. 

The similarity between Theorem 6.2 of Part I for 
representations with cyclic field and Theorem 5.1 for 
irreducible representations may be an indication that 
the validity of a kernel formula could imply that the 
representation is both irreducible and cyclic with 
respect to the field. Although this has been proved 
only for the limit and limit superior throug~ the 
corresponding properties of PTPR, in partIcular 
Theorem 6.2 seems to point in this direction. It 
reminds one somehow of PTPR-however, with the 
difference that the subspaces Wn appearing there need 
not be increasing, i.e., ordered with respect to inclu
sion. In any Xn = P nX, the operators U(f), j E Wn , 
are cyclic since one deals with the Schrodinger 
representation for finitely many degrees of freedom, 
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and this may be an indication that U(f) ,f E Un Wn , is 
cyclic. However, since the Jen need neither be orthog
onal nor contained in each other, it is an open 
question if one can find a vector 

rp E~ = U .len 
n 

cyclic for U(f),f E Un Wn , and we have not succeeded 
in constructing such a vector. 

If our conjecture about the cyclicity of U(f) were 
correct, one would ·have a close analogy to the finite 
case where one also has irreducibility and cyclicity of 
U(f). But then, in the infinite case, the kernel integral 
would not hold for all irreducible representations. 

The results of this paper admit of straightforward 
applications to obtain sufficiency criteria for irre
ducibility and to obtain necessary and sufficient con
ditions for PTPR in such a way that only the vacuum 

functional or the kernels enter. A general sufficient 
condition of this kind for irreducibility is the validity 
of Eq. (5.21). Theorems 4.2 and 4.3, as well as Corol
lary 4.1, can be regarded as necessary and sufficient 
conditions for TPR and PTPR. 
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The projection theorem for weights of a representation of a semisimple group G on restriction to a 
semis imp Ie subgroup is derived, and the existence of a subgroup corresponding to a given projection is 
discussed. Dynkin's definition of the index of a simple subgroup is extended to the case of G being only 
semisimple, and the geometrical meaning of the index is given. A method is developed for finding 
branching rules for both regular and nonregular subgroups. Explicit general formulas for the branching 
multiplicities are obtained for all cases when G is of rank 2 and for B 3(R 7) --+ G,. Applications to the 
construction of weight diagrams and the "state-labeling" problems for B, and G, are mentioned. 

1. INTRODUCTION 

The problem of obtaining branching rules for 
representations of semisimple Lie groups restricted to 
a subgroup has recently been treated by various 
methods.1.2 The same subgroup can often be realized 
in different ways with different branching rules. For 
subgroups of simple groups, Dynkina introduced the 
index of a simple subgroup to distinguish the different 
possibilities. 

The application to elementary particle theory of 

1 M. L. Whippman, J. Math. Phys. 6, 1534 (1965). 
• V. B. Mandel'tsveig, SOy. Math. 6, 851 (1965); N. Straumann, 

Helv. Phys. Acta 38, 481 (1965); A. Navon and J. Patera, J. Math. 
Phys. 8, 489 (1967); Nuovo Cimento Supp!. 5, 963 (1967); B. Gruber, 
(report of work prior to publication). Two noteworthy papers, 
inaccessible to the author up to the time of writing, are: A. Mal'cev, 
Am. Math. Soc. Trans!. No. 33 (1950); Shi Sheng-Ming, Chinese 
Math. 6, 610 (1965). 

3 E. B. Dynkin, Am. Math. Soc. Trans!. II 6, 111 (1957). For the 
index see pp. 130, 122. 

some of the Ra(Al) subgroups of simple groups of 
rank 2 has been discussed by Behrends et al.4 Another 
procedure which ultimately rests on branching rules 
is Racah's5.6 construction of the infinitesimal operators 
of SU2n+l(A2n), R2n+l(Bn), and G2 out of tensor 
operators under Ra, in order to give a group-theoret
ical classification of atomic and nuclear states in L-S 
coupling. For j-j coupling, the infinitesimal operators 
of SP2n(Cn) can be constructed by the same method. 6 

The tensor operators required are those belonging 
to the irreducible representations of Ra occurring in 
a certain branching rule for the regular (adjoint) 
representation (e) of the desired group. For example, 

4 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev. 
Mod. Phys. 34,1 (1962). 

5 G. Racah, "Group Theory and Spectroscopy," lecture notes, 
Institute for Advanced Study, Princeton, 1951 (unpublished). 

• B. R. Judd, Operator Techniques in Atomic Spectroscopy 
(McGraw-Hili Book Company, New York, 1963), Chap. 5. 
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and this may be an indication that U(f) ,f E Un Wn , is 
cyclic. However, since the Jen need neither be orthog
onal nor contained in each other, it is an open 
question if one can find a vector 

rp E~ = U .len 
n 

cyclic for U(f),f E Un Wn , and we have not succeeded 
in constructing such a vector. 

If our conjecture about the cyclicity of U(f) were 
correct, one would ·have a close analogy to the finite 
case where one also has irreducibility and cyclicity of 
U(f). But then, in the infinite case, the kernel integral 
would not hold for all irreducible representations. 

The results of this paper admit of straightforward 
applications to obtain sufficiency criteria for irre
ducibility and to obtain necessary and sufficient con
ditions for PTPR in such a way that only the vacuum 

functional or the kernels enter. A general sufficient 
condition of this kind for irreducibility is the validity 
of Eq. (5.21). Theorems 4.2 and 4.3, as well as Corol
lary 4.1, can be regarded as necessary and sufficient 
conditions for TPR and PTPR. 
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The projection theorem for weights of a representation of a semisimple group G on restriction to a 
semis imp Ie subgroup is derived, and the existence of a subgroup corresponding to a given projection is 
discussed. Dynkin's definition of the index of a simple subgroup is extended to the case of G being only 
semisimple, and the geometrical meaning of the index is given. A method is developed for finding 
branching rules for both regular and nonregular subgroups. Explicit general formulas for the branching 
multiplicities are obtained for all cases when G is of rank 2 and for B 3(R 7) --+ G,. Applications to the 
construction of weight diagrams and the "state-labeling" problems for B, and G, are mentioned. 

1. INTRODUCTION 

The problem of obtaining branching rules for 
representations of semisimple Lie groups restricted to 
a subgroup has recently been treated by various 
methods.1.2 The same subgroup can often be realized 
in different ways with different branching rules. For 
subgroups of simple groups, Dynkina introduced the 
index of a simple subgroup to distinguish the different 
possibilities. 

The application to elementary particle theory of 

1 M. L. Whippman, J. Math. Phys. 6, 1534 (1965). 
• V. B. Mandel'tsveig, SOy. Math. 6, 851 (1965); N. Straumann, 

Helv. Phys. Acta 38, 481 (1965); A. Navon and J. Patera, J. Math. 
Phys. 8, 489 (1967); Nuovo Cimento Supp!. 5, 963 (1967); B. Gruber, 
(report of work prior to publication). Two noteworthy papers, 
inaccessible to the author up to the time of writing, are: A. Mal'cev, 
Am. Math. Soc. Trans!. No. 33 (1950); Shi Sheng-Ming, Chinese 
Math. 6, 610 (1965). 

3 E. B. Dynkin, Am. Math. Soc. Trans!. II 6, 111 (1957). For the 
index see pp. 130, 122. 
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procedure which ultimately rests on branching rules 
is Racah's5.6 construction of the infinitesimal operators 
of SU2n+l(A2n), R2n+l(Bn), and G2 out of tensor 
operators under Ra, in order to give a group-theoret
ical classification of atomic and nuclear states in L-S 
coupling. For j-j coupling, the infinitesimal operators 
of SP2n(Cn) can be constructed by the same method. 6 

The tensor operators required are those belonging 
to the irreducible representations of Ra occurring in 
a certain branching rule for the regular (adjoint) 
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TABLE I. Branching rules for regular representations. 

G G' (e') 'i:. (f) 

A' (I) 2(t) + (0) 
A, 

, 
A' (1) (2) 

I 

A' (I) 3(0) 
A, X A, I 

A' (1) (1) 
I 

A~ x A~ (1) x (0) + (0) x (1) W.xW 
A' (1) 2(t) + 3(0) 

B. = C 2 
, 

A2 (1) 2(1) + (0) , 
A'O 

I 
(1) (3) 

A' (1, 1) (1,0) + (0, 1) 2 

A~ x A~ (I) x (0) + (0) x (1) (!)xW 
A' (1) 4(!) + 3(0) 

G. I 
AS (1) 2(~) + 3(0) I 

A' I 
(1) (2) + 2(1) 

A·8 
I 

(I) (5) 

in Racah's method, R7 --+ Ra has 

(e) --+ (5) + (3) + (1). 

If, however, Ra is obtained by restricting rotations in 
a 7-dimensional space to those in a 3-dimensional 
subspace, the branching rule is 

(e) --+ 5(1) + 6(0). 

Again, G2 --+ Ra by Racah's method gives 

(e) --+ (5) + (1), 

whereas Zorn's7 construction of G2 depends upon 

(1,0) -- 2(1) + (0), 

which corresponds to 

(e) --+ (2) + 3(1), 

and there are still other possibilities (see Table I). 
In the present paper, the projection theorem8

-

that the weights of a representation project orthogo
nally into the weights of the induced representations 
of a subgroup-is proved in Sec. 2. The proof makes 
use of the one-to-one correspondence between basis 
vectors and components of tensor operators, and 
also their unique properties, namely the normaliza
tion of the vectors and the existence of Hermitian 
conjugate operators.9 The method also brings out 
the geometrical significance of the index of a simple 
subgroup. While Dynkin's definition of the index 
can be applied immediately to semisimple subgroups 
of a simple group (each simple component having its 
own index), the case of semisimple containing groups 

1 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New 
York, 1962), p. 142. 

8 E. B. Dynkin, Ref. 3, p. 141. 
9 See O. E. Baird and L. C. Biedenharn, J. Math. Phys. 5, 1730 

(1964). 

is important and not trivial (R, is an example). In 
Sec. 3, the concept of an index is extended to the 
general case, and the geometrical meaning is given. 
Conditions for the existence of a subgroup corre
sponding to a given projection are discussed in Sec. 4. 

Section 5 describes a general method of finding 
branching rules. The branching multiplicities are 
obtained in explicit general form in Sec. 6 for all 
semisimple subgroups of semisimple groups of rank 
2 and also for Ba(R7) --+ G2 • Applications to the 
problem of constructing the weight diagrams for G2 

and B2 and their state-labeling problems are mentioned 
in Sec. 7. The Appendix describes the method of 
obtaining the series expansions needed in Sec. 6. 

2. THE PROJECTION THEOREM 

First, the notation for infinitesimal generators and 
tensor operators is explained. Let X/l be the infinites
imal generators of a semisimple group G of rank 
N with Ef1. being the generator corresponding to a 
nonzero root IX and Hr (r = 1, 2, ... , N) the com
muting generators. The basis vectors of a representa
tion (k) of G will be labeled by the set of numbers 
k == kk,.z, where the kr are the components of the 
weight of k and the numbers z distinguish vectors of 
the same weight. Another vector of the same repre
sentation will be labeled by 'k == k'k,.z'. The sum
mation convention will be applied to the symbols' k 
and to other weight labels. 

A tensor operator10 T(k) belonging to the represen
tation (k) of G has components T(k), where 

[X/l' T(k)] = ('kl X/llk) T('k). (1) 

The generators themselves form a tensor operator 
X(e) belonging to the regular representation, whose 
components may be chosen to be 

X(IX) = Ea , X(r) = K-tHr , (2) 

when the metric tensor is 

gr. = I rt.rIX. = Kors ' 
a 

and X-/l is the Hermitian conjugate of XI" 

(3) 

Let a semisimple subgroup G' of G, of rank N', 
have roots a, and generators Yu , or, in split form, 
Fa' Jp • The branching rule for the representation (k) 
of G on restriction to G' has the form 

(k) -+ I n(l)(/), (4) 

'0 The basic properties of these tensor operators may be found in 
A. P. Stone [Proc. Cambridge Phil. Soc. 57, 460 (1961»), where the 
introduction of irreducible tensor operators should have been 
attributed to ·E. P. Wigner, Gruppenfheorie (Frederick Vieweg und 
Sohn, Braunschweig, 1931), p. 262. 
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where the numbers n(l) are the branching multiplici
ties. Then a tensor operator T(k) under G is reduced 
to tensor operators S(I) under G' by a reducing 
matrix V: 

S(I) = V(I, k)T(k). (5) 

A matrix U which reduces the basis vectors of a 
representation also reduces the corresponding tensor 
operator,lo The correspondence between these reduc
ing matrices is not one-to-one, however. If G' is the 
direct product of a number of simple groups G; with 
regular representations (fj), Eq. (I) shows that since 
the weights of each simple subgroup lie in orthogonal 
spaces, Y(!;) and Ajl Y(!;) satisfy the same equations, 
where the Ai are constants. Choosing the bases to be 
orthonormal, X(e) is reduced to the set A.-;IY(jj), for 
some values of Aj , by a unitary matrix U. 

Gantmacherll proved that one can choose Jp not 
to contain E~. Suppose the generators of G' are given 
by 

Fa = W(a, ,u)XI" 

J p = W(p, r)Hr • 

(6) 

(7) 

It will first be shown that Fa does not contain Hr. 
By substituting Eqs. (5) and (7) in the equation 

[J p' S(I)] = IpS(I) 

and taking the coefficient of T(k) , one obtains for 
each k, I 

V(I, k)[W(p, r)k, - Ip] = O. 

Taking kr = 0 gives 

V(I, k) = 0 (kT = 0, Ip :;t: 0). 

For the regular representations this is 

W(a, r) = O. 

By taking the Hermitian conjugate of Eq. (6), 

W( -a, -IX) = [W(a, IX)] * . 

(8) 

Since the operators in Eq. (7) are Hermitian, 
W(p, r) is real. If G is the direct product of simple 
groups Gi , W(p, r) is given in terms of the unitary 
matrix U by 

W(p(j), r(i» = Aj(Kj/Ki)!U(p(j), rei»~, (9) 

where i, j labels quantities and indices for Gi , G;, 
respectively, and Eq. (2) has been used. Writing 
IAjlO for A;U, where 0 is real, shows that 0 is part 
of a real orthogonal matrix. Thus the Aj may be taken 
to be real and positive, and Eq. (9) holds with U 
replaced by O. 

11 F. Gantmacher, Mat. Sb. N.S. 5(47), 101 (1939), quoted in 
Ref. 3, p. 123. 

The projection theorem now follows from Eq. (8); 
if I comes from k, then 

Ip(;) = AlKj/K;)!O(p(j), r(i»kTW ' (10) 

This is an orthogonal projection of the weights of 
(k) into those of (l) with changes of scale, provided 
that Ki is the same for all groups Gi whose weights 
project into the same weight of G'. The simplest 
condition is to make all Ki the same. If N' = N, the 
orthogonal projection becomes a rotation (with 
reflections, in general). 

3. INDICES OF A SUBGROUP 

The definition of an index involves the scalar 
product for a group. By Eq. (3) the scalar product 
in the weight space of Gi is 

(11) 
where 

(p, q)o == PTqr' (12) 

The scalar product (11) is invariant when the genera
tors HT of G; are multiplied by a constant factor, thus 
preserving the form of Eq. (3). This will be referred to 
as a renormalization of the operators. If the longest 
root 0 is to have the same length c for several groups, 
the scalar product has to be multiplied by a factor, 
giving 

(p, q) = c2(p, q)o/(o, 0)0' (13) 

Dynkin3 defined the index I of a simple subgroup 
G' of a simple group G as follows: If the scalar 
products are chosen to make the longest roots of G, 
G' have equal lengths c = J2, and f* maps the 
weights of G into those of G', a reverse mapping f is 
given by 

(f*(k), I) = (k,f(I», (14) 

where I, k standing alone represent their weights. 
Then I is defined by 

(f(l),f(l» = 1(1, I). 

The scalar products are those of the appropriate group. 
If G' is semisimple, then each simple invariant 

subgroup G; of G' has an index I j • If dj is the longest 
root of G;, the scalar product for G' becomes 

(p, q) = L [c2/(d j , dj)o]pp(;)qp(;)' (15) 
; 

To extend the definition of the indices to semi
simple groups G, the scalar product for G has to be 
taken in the form (13), where 0 is a root of G for 
which (15,15)0 is greatest, all K; being equal. The 
scalar product for G' is still given by Eq. (15). The 
indices turn out to be independent of the value of c. 
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The mapping f* is such that f*(k) is just I given by 
Eq. (10). Equation (14) then shows that 

'" AjK~(b, 15)0 . 
fr(l) = k ! O(p(}), r)lp(j), 

j K1(d j , dj)o 
(16) 

where KI is the common value of the K i . The index 
I j of G~ is defined by 

(f(l),f(I» = L 1;(1, I)j. (17) 
j 

Substituting (16) in (17) gives 

I j = A~(b, b)l/(d j , dj)j. (18) 

Now if a root a of G projects into d j (apart from 
the change of scale), the relation between dj and the 
projection ap is, by Eq. (10), 

dj = A;(Kj/KIitap. 

Since d j is of length e, 

A; = (d j , dj»)(ap , ap)l' 

Substituting this in Eq. (18) leads to 

I j = (15, b)o/(ap, ap)o. 

(19) 

The indices may thus be calculated very easily from 
the geometry of the projection. 

Equation (19) shows that Aj is invariant under 
renormalization of the operators. Hence, a normaliza
tion of the generators of G' can be found for which 
W in Eq. (9) becomes identical with 0 and the 
projected root diagram of G' is its actual root diagram. 
With Ki = KI , this will be called a standard projec
tion. The absolute size of the root diagrams is still 
variable depending upon K1 • 

The definition of the indices Ii of a semisimple 
subgroup G' of a semisimple group G is now as 
follows: If the root diagrams of the Gi are such that 
each Ki is the same, if the scalar products are normalized 
so that the longest roots of G, G; are of equal length, 
where the longest root of G is determined by using 
the form (12) and the scalar product for G has the 
form of Eq. (13), and if f* maps the weights of G 
into those of G', while the mappingfis given by Eq. 
(14), the indices I j of the subgroups G~ are defined 
by Eq. (17). 

Dynkinl2 proved that for G, G' simple, the index is 
an integer. Indices are written as superscripts to the 
symbol for the subgroup. 

4. CONDITIONS FOR A SUBGROUP 

Dynkin3 employs certain useful terms which will 
now be defined. A subgroup is regular if all its roots 

12 Ref. 3, p. 131. 

are also roots of the containing group (in a standard 
projection). Every semisimple group has a principal 
subgroup of type AI, for which each simple positive 
root of the group projects into the positive root of 
AI' The projection is thus onto the normal to the 
hyperplane joining the ends of the simple roots. In 
any case, the positive root of a subgroup AI, as it 
occurs in the projection, is termed the defining vector 
of the subgroup. 

A necessary and sufficient condition for the existence 
of a subgroup corresponding to a suitable projection 
is that coefficients W(a, a) can be found such that the 
Fa have the correct commutators among themselves. 
The remaining commutators are guaranteed by the 
projection. 

The general condition arising from [Fa' Fb) for 
a + b =;6 0 is easily found, but it is not needed in 
the present paper. To deal with the commutator 
[Fa, F_a], let the generators be normalized to give a 
standard projection, and let a root a of G project into 
the root a of G'. Define A by 

a = a + A, 

where A is perpendicular to a and has components 

A" = O(a, r)ar • 

Then IIO(p, r), O(a, r)11 is a real orthogonal matrix. 
Writing 

leads to 

arHr = apJ p + A"L". 

There are two conditions to be satisfied: 

L W(a, cx.)W( -a, -~)Ca._p1 = 0, y =;6 0, (20) 
«.fJ 

where the e's are structure constants of G and 

(21) 

Two particular deductions from Eqs. (20) and (21) 
are the following: 

(i) If Fa is formed out of the two operators E«, 
Ep , then a - p must not be a root of G, and the 
vectors a, ~, a must be coplanar with a lying between 
a, p. 

(ii) If Fa is formed from one operator E«, then a 
must be identical with a, in a standard projection. 

Any root of G is the defining vector of a regular 
subgroup of type AI' A sufficient condition for the 
existence of a nonregular subgroup Al is the following: 
If at least two roots a, {J satisfying condition (i) pro
ject into a, then a is the defining vector of a subgroup 

AI' 
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For if Fa is formed from E« and Ep , Eq. (21) and 
the unitary condition determine I W(a, a)l, I W(a, P)I. 

5. BRANCHING RULES 

Branching rules may be obtained from the characters 
of the irreducible representations. A standard projec
tion will be assumed in every case. 

Let cpr be the parameters of G and 

e(q) == exp (iqrcfl). 

If the weight q of G projects into the weight m of G' , 
the transformation to the parameters of G' is found 
from the equation6 

mp 1>'P = qr1>r. 

It follows that the projected form of e(q) is e(m), with 
the convention that e(w) is to be calculated with the 
parameters of the group to which the weight w 
belongs. 

WeyP3 proved that the character of the irreducible 
representation (k) is 

X(k) = ~(k)/D., 

where 

~(k) == L t3se(S(k + R», 
s 

D. == ~(O), 

R being half the sum of the positive roots and S any 
element of the Weyl group, of parity t3s . It is known14 

that 
D. = e(R)Il(1 - e( -a», (22) 

where the product is taken over all the positive roots 
a. If primes refer to a subgroup, the branching rule 
(4) corresponds to 

(23) 

where the suffix P indicates restriction to the subgroup 
by means of a particular projection. 

It will now be proved that D. p is divisible by D.'. 
The positive part of the weight space will denote the 
region in which every weight is positive, i.e., its first 
nonzero Cartesian coordinate is positive. The positive 
part of the weight space of G' may be chosen to lie 
in the positive part of the weight space of G. If roots 
~ project into a positive root a, then either ~ is 
identical with a or not all the vectors A in Eq. (21) 
are negative. Hence, at least one positive root of G 
projects into each positive root of G' and the result 
follows from Eq. (22). 

13 H. Weyl, Math. Z. 24, 377 (1926). 
14 N. Jacobson, Ref. 7, p. 252. 

The ratio ~ pj D. p becomes indeterminate if a positive 
root a projects into the null vector. The correct form 
is easily found in the case N' = N - I. Because of 
reflections parallel to ~ the weights occurring in ; 
fall into pairs m ± poc, where m is orthogonal to a 
and p is a number. The indeterminate factor is thus 

I
· e(poc) - e( - poc) 2 
1m = p. 

« .... 0 1 - e( -oc) 

The correct ratio ~pjD.p is obtained by omitting the 
vanishing factor in D. and replacing ~ p by 

22' t3spe(m) = 2 t3spe(m), (24) 
where 

m + poc = S(k + R), 

the sum on the left of (24) being over the elements S 
corresponding to positive values of p and that on the 
right over all S, p. 

To apply Eq. (23), choose the positive roots of G' 
so that the positive vectors which remain in D.pjD.' 
may be expressed in terms of certain positive roots 
oc(s) with positive coefficients, and write 

Xs == e(a(s». 

Then using Eq. (22), D.' jD.p can be expanded in a 
power series containing no positive powers of Xs' 

If (I), (I') are inequivalent representations of G', then 
/ + R', S'(l' + R') are inequivalent under the Weyl 
group for G'. Hence, n(l) is the constant term in the 
expansion of 

e( -/- R')~p(k)D.'jD.p (25) 

in terms of the Xs' The terms of ~p containing a 
negative power of any Xs do not contribute. 

6. APPLICATION 

The explicit general branching multiplicities for 
rank-2 groups and for Ba -+ G2 will now be derived. 
The existence of the subgroups may be deduced from 
the conditions of Sec. 4; they have also been tabulated 
by Dynkin.a The branching rules for the regular 
representations of rank-2 groups in all cases are given 
in Table I, where 

(e) -+ (e') + 2 (f). 

The weights and parities occurring in ~ are given in 
Table II using the coordinates explained below. 

The more complicated formulas quoted for the 
coefficients are derived in the Appendix. It is important 
to note that all functions are defined to be zero unless 
all their arguments are nonnegative integers. 
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TABLE II. Reflected weights. 

G Qs S(k + R) 

+1 (A, +1,A.+1) 
-1 (-A. - 1, -A, - 1) 
+1 (A.+1,-A, -A.-2) 
-1 (A, + A. + 2, -A. - 1) 
+1 (-A, -A.-2,A, +1) 
-1 (-A l -I,A, +A.+2) 

+1 ±(j, + !,j. + !) 
+1 ±(j. + !, -j, -i) 
-1 ±(it + i, -j. - !) 
-1 ±(j. + !, j, + ~) 
+ 1 ±(U, + 2, u. + 1) 
-1 ±(u.+1,u,+2) 
+ 1 ±(u, + u. + 3, -u, - 2) 
-1 ±( -u, - 2, u, + u. + 3) 
+1 ±(-u.-l,u,+u.+3) 
-1 ±(Ul + u. + 3, -u. - 1) 

Group A2 

If lXI' IX2 are the simple positive roots, the highest 
weight of the irreducible representation (AI, 1.2), 
where (I, 0) and (0, 1) are the fundamental repre
sentations, is Al bi + A2b2 , where 

(26) 

The vectors IXI , bl , b2 , IX2 form a string of roots for G2 • 

Branching A2 ~ A~ 

If IX denotes the defining vector of AI' IX may be 
taken to be 1X1 + 1X2' The projection is then lXI' 

IX2 -+ fIX. By Eqs. (26), a weight (AI, 1.2) projects into 
the weight HAl + 1.2) of AI' It is convenient to write 

x == e(iIX), 

giving 
ApiA' = x(1 - X-l)2. 

The leading term in ~'U) is X2i+l, and (25) leads to 

n(j) = weAl + .1.2 + 1 - 2j) 

- weAl - 2j) - w(A2 - 2j), 

where wen) is zero unless n is a positive integer, in 
which case wen) is equal to n. The different cases are 

n(j) = Al + 1.2 + 1 - 2j, 

= .1.< + I, 
= 2j + 1, 

HAl + ,1.2) ~ j ~ tA> , 

tA> ~j ~ tA<, 

tA< ~j ~ 0, 

where A> is the greater and .1.< the lesser of AI, ,1.2' 
Both integral and half-integral values of j occur, and 
its maximum value is HAl + .1.2), 

Some particular cases of this branching rule have 
been given by Behrends et al.' 

Branching A2 -+ Af 
This is the principal AI, with the projection lXI' 

1X2 -+ IX. The method is the same as before and yields 

n(j) = P2(Al + 1.2 - j) - PiAl - 1 - j) 

- P2(A2 - I - j). 

If n is a nonnegative integer, Pr(n) is the number of 
partitions of n with no part greater than r. Thus 

P2(n) = [in] + I (n ~ 0), 

where [p] means the largest integer contained in p. 
Only integral values of j occur. 

Some cases of this branching rule are given by 
Hamermesh.15 

Group Al x Al 

If the positive roots are called lXI' 1X2' weights may 
be expressed conveniently either as 

or as 
Ul,j2) = HIXI + C!.2)h + HIX2 - 1(1)j2' 

Any irreducible representation has the form 

(Jl' J2) = (Jl) x (J2) , 

for which 

(27) 

(28) 

(29) 

ji = JI + J2 , j2 = J2 - JI , 1j21 Sh. (30) 

The branching rules are best obtained by using Eq. 
(29) and the characters of Al . 

Branching Al X Al ~ A~ 

This is a regular subgroup. If the projection is 
1X1 -+ IX, 1X2 -+ 0, then 

Branching Al X Al -+ A~ 

Here lXI' 1X2 -+ IX, giving the principal AI, and 

(JI' J2) -+ (jI) + (jl - 1) + ... + (ij2i). (31) 

This gives the subgroup Ra of R, obtained by fixing one 
axis in a 4-dimensional space. The branching rule (31) 
and the labeling of weights of R, by the representations 
of R: have been used earlier in connection with Wigner 
coefficients for Ra and R, .16 

Group B2 

The positive roots may be taken to be those of 
Al X Al together with the two vectors in Eq. (28). 

to M. Hamermesh, Group Theory and its Application to Physical 
Problems (Addison-Wesley Publ. Co., Inc., Reading, Mass .• 1962), 
p.418. 

16 A. P. Stone, Proc. Cambridge Phil. Soc. 51, 424 (1956); L. C. 
Biedenham, J. Math. Phys. 1, 433 (\96\). 
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The simple roots are then 

PI = OC1' P2 = HOC 2 - O(1)' (32) 

The irreducible representation (h ,jJ of highest 
weight given by Eq. (28) has j1 ~ j2 ~ 0, t. 

Branching B2 - A~ X A~ 

The positive roots of the subgroup are OC1, OC2' The 
branching rule is known,17 but it can also be obtained 
by the present method. With representations of 
Al X Al in the (jl' j2) notation, 

::(j1,j2)-! (/1' 12), j1 ~ 11 ~h ~ 12 ~ -h, (33) 

where the values of 11, 12 shift by unity. 

Branching B2 - A~ 

Taking OC2 as oc, the projection is PI - 0, P2 - tOC 

and the formula (24) is needed. Using Eq. (32) and 
the coordinates of Eq. (27), the values of p, m (now a 
number) follow immediately from the requirement 

J1OC1 + J2OC2 = POC1 + moc2' 
The result is 

n(j) = Ci1 - j2 + 1)'ID'(j1 + h + 1 - 2j) 

- (jl + j2 + 2)-rg(j1 - j2 - 2j) 

= (j1 - h + I)V1 + h + 1 - 2j), 

Hit + j2) ~ j ~ tVI - j2)' 

= (2j2 + 1)(2j + 1), Hj1 - j2) ~j ~ 0. (34) 

Both integral and half-integral values of j occur. 

Branching B2 - A~ 

Here PI + P2 may be taken to be oc, and the projec
tion is PI - OC, P2 - 0. Proceeding as in the previous 
case, 

n(j) = (2j2 + 1 )TJ1(jl + 1 - j) - (2jl + 3)TJ1(j2 - j) 

= (2h + 1)(j1 + 1 - j), j1 ~j ~j2' 

= (it - j2 + 1)(2j + 1), j2 ~j ~ 0, t. (35) 

The values of j are either all integral or all half
integral, as h, j2 are. 

Some cases of Eqs. (34), (35) have been given by 
Behrends et al.' 

Branching B2 - AtO 

This is the principal AI' The projection is PI' 
,82 - oc, and 

n(j) = P3(2jl + j2 - j) - P3(2j1 - j2 - 1 - j) 

- PaUl + 2j2 - 1 - j) 

+ P3(lit - 2h + tl - t - j). (36) 

17 H. Boerner, Representations of Groups (North-Holland Publ. 
Co., Amsterdam, 1963), p. 251. 

The function is given by 

Ps(n) = 112(n + l)(n + 5) + (i, O)(n) + (t, 0, O)(n), 

(37) 
where 

(aI' a2 ,"', am)(n) = a'P' n == P - I mod m. 

The values of j are either all integral or all half
integral. In the application to the classification of 
states, only integral values of j occur. Some cases of 
the branching rule for integralj are given by Judd.6 

Groups Sp(4), Sp(2) 

The root diagram of Sp(4)(C2) is similar to that of 
B2 , but the irreducible representations of Sp(4) are 
usually labeled (0'1' O'J, where 

0'1 = jl + j2' 0'2 = h - j2' 

Sp(2) is an example of AI, and its irreducible 
representations are labeled (0'), where 

0' = 2j. 

Making these substitutions in Eq. (34), we have the 
branching rule for Sp( 4) - Sp(2) given by Whippman.1 

Other cases may be obtained from Eqs. (35) and (36). 
The indices of the subgroups are unchanged: 

Group G2 

In terms of the vectors defined for A2 , the simple 
roots of G2 are 

YI = OCl, Y2 = 151 - OC1' 

The irreducible representations of G2 in the notation 
of Racah6.18 are of highest weight 

(u1, u2) = U1t52 + U2t51, U1 ~ U2 ~ 0, 

where the numbers U1 , U2 are integers. 

Branching G 2 - A~ 

This is a regular subgroup, the positive roots being 
OC1, OC2' OC1 + OC2' Writing 

x == e(t51), y == e(Y2) 
gives 

ll'lll = [xy(1 - x-I)(1 - y-1)(l - X-ly-l)]-l 

= ! M(n, m)x-n-1y-m-l. (38) 

If n, m are both nonnegative integers, then 

M(n, m) = min (n, m) + 1. 
One finds 

n(}.l, A2) = M(ul + U 2 - Al - A2 , UI - A2) 

- TJ1(ul - Al - A2) - TJ1(u2 - A2) 

+ TJ1(u2 - 1 - Al - A2). 

18 G. Racah, Phys. Rev. 76, 1352 (1949). 



                                                                                                                                    

36 ANTHONY P. STONE 

This leads to 

If UI ~ AI' A2 ~ U2, then 

n(Al' A2) = U1 + U2 + I - Al - A2 , 

U1 + U2 ~ Al + Az ~ U1, 

= U2 + I, Al + A2 ::;; UI ; 

if A> ~ uz, A< ::;; U2' then 

n(Al' A2) = Ul - U2 + I, Al + A2 ~ U1, 

= Al + A2 - Uz + I, UI ~ Al + 1.2 ~ U2, 

= 0, Al + 1.2 < U2. (39) 

Branching G 2 --+ Ai X Ai 
Here 1'2 will be taken as the defining vector of Ai, 

and 21'1 + 31'2 that of Ai. The irreducible representa
tions of the subgroup have highest weights 

(Jl' J2) = J1Y2 + J2(2Yl + 31'2)' 

The result is 

n«J1) X (J2» 

= A(u1 + U2 - 2J2 , 2u1 + U2 - J1 - 3J2) 

- A(UI - I - 2J2 , 2111 + U2 - J1 - 3J2) 

- A(UI + u2 - 2J2, ul + 2U2 - I - J1 - 3J2) 

where 

+ A(u2 - 2 - 2J2, u1 + 2uz - I - J1 - 3J2) 

+ A(u1 - 1 - 2J2 , u1 - u2 - 4 - J1 - 3J2), 

A(n, m) = T\(m + I)(m + 5) - i'llT(rn - n) 

X (rn - n + 2) + H'llT(m - 2n - IW 
+ H(l, O)(rn) - (1, O)(rn - n - I) 

- (1, O)(m - 2n - 2)} 

+ (!, 0, O)(m), rn::;; 3n, 

A(n, m) = 0, rn > 3n. (40) 

A simple generating function for A(n, rn) is given in 
the Appendix. 

The irreducible representations 

(lUI - tu2) X (lUI + tu2 ), 

(Ul + tU2) X (tU2), (tu1 + U2) X (lUI) 

correspond to the highest weight and two equivalent 
weights in G2 • The distinct representations in these 

three are among those which occur just once in the 
branching rule for (Ul' U2)' 

The branching rules for G2 --+ A 2 , Al X Al have 
been given in a slightly different form by Mandel'
tsvelg.19 

Branching G 2 ->- A~ 

If 21'1 + 31'2 is IX, the projection is 1'1 ->- tlX, 1'2 ->- 0, 
and 

n(j) = (ul - Uz + 1)C4(ui + U2 - 2j) 

- (UI + 2U2 + 4)Ciu1 - 1 - 2j) 

+ (2u1 + U2 + 5)C4 (U2 - 2 - 2j), 

where C4(n) is the coe~cient of xn in the expansion of 
(l ~ X)-4 in ascending powers of x. 

Branching G 2 ->- Ai 
Here IX is taken to be 1'1 + 21'2' Hence 1'1 ->- 0, 

1'2 ->- tlX, and 

n(j) = (u2 + I )B(2u1 + U 2 - 2j) 

- (u1 + 2)B(u1 + 2u2 - I - 2j) 

+ (u1 + Uz + 3)B(u1 - Uz - 4 - 2j), 

where 
B(n) = t(p + I)(p + 2)(n + I - 2p), 

P == an]. (41) 

This is the subgroup considered by Behrends et al.4 

Branching G 2 ->- A~ 

With ex given by 1'1 + iY2' the projection is 1'1 ->- IX, 
1'2 ->- 0, and 

where 

n(j) = (U1 - Uz + 1)C(ul + Uz - j) 

- (U1 + 2uz + 4)C(u1 - I - j) 

+ (2u1 + Uz + 5)C(uz - 2 - j), 

C(n) = "2\-(n + l)(n + 3)(2n + 7) + (t,O)(n). (42) 

The subgroups A~, A~ of Gz are also contained in 
its subgroup A z . 

Branching Gz ->- Ai8 

This is the principal Al given by 1'1' 1'2 ->- ex. The 
present method gives 

n(j) = PS(3u1 + 2u2 - j) - Ps(3u1 + U 2 - I - j) 

- PS(2u1 + 3u2 - 1 - j) 

+ PS(UI + 3u2 - 3 - j) 

+ P s(2u1 - U2 - 5 - j) 

- PS(lu1 - 2u2 1 - 8 - j), 

,. V. B. Mandel'tsyefg, Yad. Fiz. 1, 1106 (1965) [SOY. J. Nucl. 
Phys. 1, 787 (J 965)]. 
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with 

P5(n) = (2i8O)(1I + l)(nS + 29n2 + 281n + 769) 
+ (6\-)(211 + 11)(1, O)(n) + (t, 0, O)(n) 

+ Han] + 1) + (t, 0, 0, 0, O)(n). (43) 

The quotient of two characters is found from their 
multiplication rule. Equation (44) is easy to use in 
cases where each character in the denominator exactly 
divides one in the numerator. 

This subgroup is the one occurring in spectros
copy.5.6.IS 

Branching Bs -- G~ 

The positive roots of Ba are er and er ± es (r < s), 
where the er are three orthogonal unit vectors. The 
simple roots are 

0:1 = el - e2 , 0:2 = e2 - ea, O:a = ea· 

The irreducible representations have highest weights 

(WI' Wz , Ws) = Wlel + wZe2 + waea, 

WI ~ W2 ~ Wa ~ 0, t. 
The root diagram of Gz, with positive roots in the 
positive part of the weight space, is obtained by 
projecting onto the plane perpendicular to el
e2 - ea .20 The projection is 

Write 

x == e(Y2), y == e(YI + Y2)' 

Then ~'/~1' is exactly the same as in Eq. (38). The 
characters of Ba may be taken in the determinant 
form given by Judd,6 and the final result is 

n(ul , U2) 

= M(WI + Wa - UI , WI + W 2 - UI - U2) 

- M(wl - Wa - 1 - UI , WI + W 2 - UI - U2) 

+ M(w2 - Wa - 2 - UI , WI + W2 - UI - U2) 

- M(w2 + Wa - 1 - UI, WI + W2 - UI - U2) 

+ M(11'2 + Wa - 1 - UI , WI + Wa - I - UI - U2) 

+ M(w} - Wz - 2 - UI , WI + Wa - 1 - UI - u2) 

- M(w2 - 11'a - 2 - UI , WI - Wa - 2 - UI - u2) 

- M(WI - W2 - 2 - HI' WI - Wa - 2 - UI - u2) 

- W(\~'l + Wa - UI - U2) 

+ W(WI - 11'a - 1 - UI - uz). (45) 

20 The geometry of the projection was known to B. R. Judd, 
private communication (1956). 

The recurrence relation satisfied by the Pr{n) is given in 
the Appendix. 

In terms of the parameters, this subgroup is given 
by cpl __ 3cp, cp2 __ 2cp.6 By elementary trigonometry 

one finds, in terms of characters of AI, 

A particular case of Eq. (45) is 

n(O, 0) = 1, when WI = W2 = Wa, 

n(O,O) = 0, otherwise. 

By dealing with the whole characters, Judd6 obtained 
the branching rule in a different form. 

7. WEIGHT DIAGRAMS 

There are various methods of determining the 
weight structure of the irreducible representations of 
B2 and Gz .21.22 The method of using the branching 
rule for a rank-2 subgroup is discussed here. 

For B2 , Eq. (33) gives the branching rule for B2 -

Al X AI' The irreducible representations (/1,12) of 
Al X Al are easily expressed in the (11) X (12) form 
by Eq. (30), and their weights, which are simple, are 
plotted. The superposition of these weight diagrams 
is the weight diagram for the irreducible representa
tion (j1' j2) of B2· 

Since the irreducible representations of B2 are simply 
reducible as representations of Al X AI, the state
labeling problem is completely solved by taking 
(/1' [z) as the numbers z. 

To deal with Gz , it is simplest to use its subgroup 
A 2 • The branching rule is given in Eq. (39). The weight 
structure of all irreducible representations (AI, .1.2) 

of Az is known2z .za : The boundary weights are simple, 
and the multiplicity increases by one at each step 
inwards to a polygon with sides parallel to the 
boundary, until the polygon becomes a triangle; and 
then the multiplicity remains constant at A< + 1. 

The representations (u, u) and (u, 0) of Gz are 
simply reducible under A2 , and the state-labeling 
problem reduces to that for A z, where it has been 
solvedz4 by using the subgroup Al. The labels z are 

21 J. Tarski, J. Math. Phys. 4, 569 (1963); I. A. Malkin and V. B. 
Mandel'tsveig, Yad. Fiz. 2, 154 (1965) [SOy. J. Nucl. Phys. 2, 108 
(1966)]; B. Gruber and F. Zaccaria, Nuovo Cimento Suppl. 5, 914 
(1967); D. Radhakrishnan and T. S. Santhanam, J. Math. Phys. 8, 
2206 (1967); B. Gruber and H. J. Weber, Proc. Roy. Irish Acad. 
66A, 31 (1968). 

22 B. Gruber, J. Math. Phys. 7,1797 (1966). 
23 A formula for the multiplicity of a weight has been given by B. 

Gruber and T. S. Santhanam, Nuovo Cimento 45A, 1046 (1966); 
B. Gruber, Nuovo Cimento 48A, 23 (1967). 

24 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4,1449 (1963). 
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(AI, A2)(j)· Alternatively, the subgroup Al X Al may 
be used for some representations. For example, (2, 1) 
is simply reducible under Al X Al but not under A2 . 
These procedures, however, do not solve the general 
state-labeling problem for G2 • 

APPENDIX 

The expansion of ;}.'/;}.1> is facilitated by some 
formulas developed by MacMahon. 25 Let 

(0) == 1 - xn. 

Then 

1 = I N(P) , 
(1)(2) , , • (0) (W'1(2)2" , , , 

(AI) 

where the sum is over all partitions P = (JP 12p2 ••• ) 

of nand 

Also, 

(m + 1)(m + 2) .. , (m + 0) 

(1)(2) , , , (n) 

= I N(P) {em + 1)}Pl{(2m + 2)}P2, , • (A2) 
(1) (2) , 

summed over the partitions P of n. 
The generating function for Pr(n) is 

__ 1 ___ ~ P(n)x n 

(1)(2) ... (r) - k r • 

2. P. A. MacMahon, Combinatory Analysis (Cambridge Uni
versity Press, Cambridge, England, 1916), Vol. n, Sec. VII, Chap. V. 

By repeated use of Eq. (AI) and relations such as 

1 1 + x + x2 

--= 
(3)(1) (3)2 

Eqs. (37) and (43) may be obtained. The values of 
Pr(n) may also be obtained by constructing Euler's 
table from the recurrence relation26 

Pr(n) = Pr-tCn) + Pr(n - r). 

The function A(n, m) of Eq. (40) arises by ex
panding in terms of e(YI), e(Y2)' Its generating func
tion is 

F(y) == 1 
(1 - y)(1 - yx)(l - yx2)(1 - yx3

) 

= 2 A(n, m)ynxm. 

By assuming an expansion of F(y) in powers of y and 
relating F(xy) to F(y), one obtains 

F( ) = (0 + 1)(0 + 2)(0 + 3) n. (A3) 
y (1)(2)(3) y 

Equation (40) then follows by the use of Eqs. (A2) 
and (AI). The coefficient of yn in Eq. (A3) is a simple 
generating function for A(n, m), expressible as a 
polynomial in x. 

The functions B(n) and C(n) of Eqs. (41) and (42) 
are easily found from their generating functions, 

(1):(3)2 = I B(n)xn, 

(1)!(2) = I C(n)xn. 

26 1. E. Dickson, History of the Theory of Numbers (Chelsea 
Publ. Co., New York, 1952), Vol. Il, p. 104. 
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Charge and Pole: Canonical Coordinates without Potentials 
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F<?r particles having both magnetic and elect.ric charge it is shown that (a) in the nonrelativistic many
part~cle prob~e~ .where only Cou~omb and BIOt-Savart fields need be considered and (b) in the one
part1~le relattvI~t1c problem (orblta.l pole-charge moving around a fixed pole-charge), the well-set 
classical dynamics can be reduced directly from the equations of motion to Hamiltonian form without 
the introduction of p<?ten~i~ls and Dirac s~rings. The L~e-Koenigs theorem, which can give Hamiltonian 
form~t to any. dynamics.' IS mvoked for this. The essential feature is that canonical coordinates cannot be 
ph~slcal particle coord mates. For (~) a~d (b), suita~le canonical variables are explicitly constructed. 
Usmg only Bohr-Sommerfe!d quan.ltzatlon, the Schwmger charge-pole quantum condition is obtained 
for pure-char~e--:pure-pole mteractlons; but when Coulomb forces are additionally considered, no 
quantum restflctlOn on charge and pole strength is required. 

INTRODUCTION 

The development1 of the theory of magnetic mono
poles, from Dirac's demonstration of the charge (e)
pole (g) quantization condition eg)lic =!n up to 
Schwinger's eg)lic = n, has relied2 on the introduction 
of singular lines or strings emanating from poles. The 
strings have been conjured up just to allow potentials 
to be brought in: without a string to prevent it, a 
closed surface drawn around a pole will have a net 
flux of H through it, so H could not be written as 
curl A; with a preventing string, a vector potential 
can be produced, except on the string. As the only 
poles observed so far, giving the static force law3 

gg' /r2, do effectively sit on ends of strings, these must 
be given due consideration. 

But on the basis that poles could be isolated 
singularities of H, strings are plainly a theoretical 
ar~ifice that, first of all, destroys rotational symmetry; 
DIrac's quantization condition, in its fashion, restores 
it,4 so that it remains a little unclear whether such a 
quantization condition might not be a consequence 
of the phrasing of the problem rather than of the 
problem itself. For that matter, electromagnetic 
potentials may be counted an artifice to begin with; 
and in an extreme action-at-a-distance viewpoint 

1 P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 
(1931); Phys. Rev. 74, 817 (1948); J. Schwinger, Phys. Rev. 144, 
1087 (1966); Phys. Rev. 173, 1536 (1968); see E. Goto, H. Kolm, 
and K. Ford, Phys. Rev. 132, 387 (1963); see H. Bradner and 
W. Isbell, Phys. Rev. 114,603 (1959) for a more extensive bibliog
raphy. 

2 N. Cabibbo and E. ~errari [Nuovo Cimento 23, 1147 (l962)J 
h~ve used M:mdelstam s theory of quantum electrodynamics 
~Jthout P?t.entlals [Ann. Phys. 19, 1 (1962)1 to obtain the quantiza
tIOn cond~tJon.; but ~ere there is a dependence of field operators 
on spacehke integration paths, and restrictions on commutators 
due to Jacobi's identity have not been considered (Schwinger 
1966). ' 

• C. A. de Coulomb, Mem. de. l'Acad. Roy. des. Sci 560 et seq 
(1785). . . 

« A. Peres, Phys. Rev. 167, 1449 (1968). 

39 

(which in recent years5 has been shown to be entirely 
tenable for discussing interacting relativistic particles 
through Lorentz-covariant equations of motion in 
terms of particle coordinates only) even the fields are 
dispensable. Quantum theory, however, requires not 
merely a dynamics but a Hamiltonian formulation of 
it-or at least an action principle-in order to have a 
place for the element of action h. So, while the inher
ited structure of electrodynamics ordinarily answers 
to t.his requirement through the use of potentials 
(which then beget difficulties of gauge invariance
difficulties evidently more of the chosen mathematical 
language than of physics), in the charge-pole problem 
the usual machinery is additionally embarrassed. 

The issue can be sharply drawn at an elementary 
le~el, viz., (a) in nonrelativistic limit where static plus 
BlOt-Savart fields are used and the forces on inter
acting particles (possessing, in general, both electric 
and magnetic charge) can be written simply in terms 
of coordinates and velocities and (b) in the relativistic 
one-particle problem where a charge-pole moves in 
the field of a fixed charge-pole. In both cases the 
classical dynamics in their primitive statements are 
unambiguous and physically consequential; in neither 
case can they be formulated through an action 
principle of familiar type without the artifice of strings 
on top of potentials. 

In the present paper, problems (a) and (b) will be 
s~own to have Hamiltonian formulations growing 
directly out of the fundamental equations of motion, 
no potentials or strings being used. This is done 
through the Lie-Koenigs theorem, which can render 
substantially any dynamics into Hamiltonian form. 

5 E. H. Kerner, J. Math. Phys. 6, 1218 (1965); 9, 222 (1968); 
R. N. Hill, J. Math. Phys. 8, 201, 1756 (1967); D. G. Currie, Phys. 
Rev. 142, 817 (1966); E. H. Kerner and R. N. Hill, Phys. Rev. 
Le.tters 17, 1156 (1966). In a different vein, H. Van Dam and E. D. 
Wlgner, Phys. Rev. 138, BI576 (1965); 142, 838 (1966). 
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It is then necessary, however, to give up the identity 
of physical and canonical coordinates. 

This may seem rather objectionable, but it goes to 
illustrate what is really a very general feature of 
particle dynamics taken at the most primitive level: 
ri = F;(rn' jon). Even when such equations of motion 
are trimmed to the physical requirements of either 
Galilean or Lorentz5 covariance, their scope is very 
much larger than what any Lagrangian L(rn' in) and 
subsequent Hamiltonian H(r n' Pn) (r n canonical) will 
countenance.6 Does this mean that the wider scope 
of dynamical laws must simply be cast aside so far as 
quantum theory is concerned? The Lie-Koenigs 
theorem and the abandoning of canonical coordinates 
in general as physical coordinates may at least give hints 
of a significant way around the conventional limits. 

We shall postpone the quantal problems to a 
subsequent paper, and here simply Hamiltonize 
problems (a) and (b), producing new integrals of 
motion and placing the peculiarities of the charge
pole problem in a new light. 

EQUATIONS OF MOTION 

As was very recently pointed out by Zwanziger, 7 

the nonrelativistic limit of pole-charge dynamics has 
a simple formulation. Let ml at r1 , with electric and 
magnetic charges e1 and gl' interact with mz, e2 , 

g2 at r 2 • The fields to lowest order in vIc, r 12 == 
r1 - rz , are 

ru gz V2 x ra 
E(at 1 from 2) = e2 3" - --3-' 

ru c rl2 
rl2 e2 V2 x r12 H (at 1 from 2) = gz 3" + - -3- , 
r12 c r12 

so that the equations of motion are 

m1Yl = el(E + :1 x H) + gI(H - ~ x E), 
etc., or, up to terms of order Vl VZ/C2, 

. r 12 
mivi = (eIeZ + glg2) 3" 

r I 2 

(elg2 - e2gl) (VI - V2) x rl2 . + 3 = -m2v2 • 
c r12 

For a system of charge-poles, 

• _ '" Til gij Vij x Tij 
mivi - k,,!ij 3 + 3' 

i*i rij C rij 
(1) 

fi; = f;; == eie j + gigj, 

gij = -gji == eigj - eigi , 

Vii == Vi - Vi' 

• See P. Havas [Nuovo Cimento Suppl. 5, 363 (1957)] on the 
range of Lagrangian formulation of dynamical problems. 

7 D. Zwanziger, Phys. Rev. 176, 1480, 1489 (1968). 

The dynamics is Galilean-invariant and the 
Newtonian third law holds. Accordingly, there are 
the usual linear-momentum and center-of-mass inte
grals 

mivi = Po, 

miri - Pot = Ko 

(summation on repeated indices except where other
wise indicated), and additionally the energy integral 

!miv: + !hi/rii = E 

and the angular-momentum integral 

The latter has been known since Poincare8 and faith
fully contains the field angular momentum -gi/c of 
each pair. 

In the two-particle case, separation of the center-of
mass and relative motions gives 

MV=O, 

f g v x r mY =f- + ---, 
r2 C r3 

(2) 

Em = !mv2 + fir, Lm = r x mv - grlc, 

with M and m total and reduced masses, Rand r 
central and relative coordinates with corresponding 
velocities V and v, f and g net Coulomb and Biot..! 
Savart strengths eIeZ + glgZ' elg2 - ezgl' and Em 
and Lm the conserved internal energy and angular 
momentum. 

The rapid motion of a particle m, el , gi around a 
fixed center ez, gz at the origin is controlled by 

~ mv = f r + ~ v x r 
dt (1 - V2/C Z)! r2 C r3 

to all orders in vIc, or (I being the unit dyadic) 

( V2)! ( VV) (r g v x r) mv = 1 - - 1 - - . f - + - -- , 
c2 c2 r3 c r3 

(3) 

with 

~ = r x mv _ If r 
(1 - V2/c2}i c 

the conserved energy and angular momentum, 
respectively. 

The nonrelativistic (NR) equation (2) and relativ
istic (R) equation (3) are virtually the same when f 
is put equal to zero (el = 0 = g2 or ez = 0 = gl' 
pure-pole-pure-charge interaction). In this case an 
additional simple integral can be found just by asking 

8 H. Poincare,.Compt. Rend. 123, 530 (1896). 
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when Rr + Vv + Ss has vanishing time derivative 
under the motion v = AS, where s == r xv, A == 
-glmc (NR) or -(glmc)(l - v2Ic2)! (R), with R, V, 
and S being scalar and hence functions only of r2, v2, 
and r· v. Differentiating and setting the coefficients 
of r, v, and s to zero gives 

R + S(A/r3)v • r = 0, 

R + V - SAlr = 0, 

VAlr3 + S = 0. 

(4) 

Since Ivl and lsi are constants of motion, R, V, and S 
can be taken as functions of them and of w = v . r, 
whereupon 

d dw d v 2 d v2 
2 ~ d - = - - = - (1 - w ) - = - (1 - w) -

dt dt dw r dw s dw 

[using s = rv(1 - (2)!). Equations (4) become (primes 
meaning differentiation with respect to w) 

To decouple, we differentiate the second and introduce 
R' and S' from the first and third; this yields 

(1 - (2)V" - 3wV' + VA2js2 = 0. (5) 

The change of variables V = FI(1 - (()2)!, w = cos '!jJ, 
brings this to 

so that 

{
Sin}( A2)! V = 1 + - '!jJ/sin '!jJ 
cos S2 

(6) 

and Rand S can be found from quadrature and 
differentiation from 

dS Tn V . - = ~ 1\- sm '!jJ 
d'!jJ S2 ' 

R S ' V • dV v2 
. 2 = 1\ - sm '!jJ + - - sm '!jJ. (7) 

S d'!jJ S 

The peculiar-looking integral II == Rr + Vv + Ss 
just computed has, from (6) and (7), three parameters 
of integration that are arbitrary functions of sand v. 
Hence, through a factor S2 in V, II can be made 
regular at '!jJ = ° or 7T (r paral\el or opposite to v). 

But II is sensitive to an alteration of '!jJ by a multiple 
of 27T, i.e., to physically equivalent representations of 
the relative orientation of rand v. This oversensitivity 
is removed when (1 + A.2Is2)~ is an integer, i.e., 

A2/S2 = v(v + 2), v = 0, 1, ... , 
or 

~ == e1 g2 = ±[v(v + 2»)! If x Pol, (8) 
c c 

mv 
Po == mv(NR) or ! (R). 

(1 - V
2
/C

2
) 

This classical eigencondition also assures regular 
solutions of Eq. (5) as Gegenbauer polynomiais,9 
V= G.(w), Go = 1, G1 = 2w, G2 = 4w2 

- 1, G3 = 
8w3 - 4w, etc., the close cousins of Legendre poly
nomials, and then Rand S are readily computed in 
terms of G., G v+1' G v-I' With this classical restriction 
on glc, the conserved angular momentum has the 
magnitude 

ILl = (v + 1) Ir x Pol, 

allowing ILl = 0, which otherwise is ruled out. 
It would seem that n is a species of Runge-Lenz 

vector, but its character is unclear in view of the 
nature of the motion, which quite generally is a 
geodesic on a cone whose axis is L with apex angle 
cos-1 (glc ILl), the particle winding in on a spiral 
track to a point slv from the center of force at the apex 
and then winding out on a similar track. In partic
ular, a relationship between interaction strength glc 
and conserved Ir x Pol appears unaccountable. 

LIE-KOENIGS THEORY 

This has been discussed previously in the context 
of instantaneous, action-at-a-distance relativistic par
ticle dynamics,5 but it will be summarized here for 
completeness. Conventionally, 10 the starting point is 
an arbitrary integral-invariant of first order of the 
differential system Yi = Yi(y) [a generic format for 
any dynamics i'; = Fi(rn , Tn) when written as Ti = Vi' 

Vi = Fi(rn , vn»)· However, as can be seen below, not 
just any integral invariant will do. 

Let us simply ask for a variational principle 

0f{Ub)Yi - H(y)} dt = 0, (9) 

whose extremals are to be defined by the prescribed 
Yi = Yi · All y's are to be independently varied, 

• W. Magnus, F. Oberhettinger, and R. Soni, Formulas and 
Theorems for the Special FUllctions of Mathematical Physics 
(Springer-Verlag, Berlin, 1966). 

10 E. T. Whittaker, Treatise 011 the Allalytical Dynamics of Par
ticles and Rigid Bodies (Cambridge University Press, New York 
1960). ' 
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subject to fixed endpoint conditions. The Euler
Lagrange equations are 

or (10) 

and y = -(r-l)oHloy is to reproduce the given Y. 
As a system of partial differential equations for U 
and H this requirement can always be met at least in 
the local Cauchy-Kowalewski sense where Y is 
regular (r is anti symmetric and is necessarily singular 
for odd-order systems, but particle dynamics is always 
of even order and a local inverse for r is then 
possible). 

In vector notation, the action integrand is 

d1> == Vi· dri + Vi· dVi - H dt (11) 

(V, V, and Hfunctions of all r and v), which is always 
reducible (Pfaff's problem) to 

d1> == Pi • dQi - H dt 

(Pi(r, v); Q;(r, v); H(r(P, Q), yep, Q»), (12) 

whereupon the starting dynamics ri = Fi is Hamilton
ized. 

It may be noted that the entire Hamiltonian 
apparatus is already inherent in Eq. (II), without 
solving the often difficult Pfaff's problem down to 
Eq. (12) and producing explicit Q and P. For instance, 
Poisson brackets can be expressed in terms of the 
primitive coordinates and velocities y through 

(A B) = _ oA r-1 oB . 
, :I kl:l' 

UYk UYI 

canonical transformation theory works through 
addition of an exact differential dW(y) to d1>; the 
representation of a group of infinitesimal symmetry 
transformations as canonical transformations may 
be arranged by requiring d1> to change by an exact 
differential under the transformations; and Noether's 
theorem giving the conservation laws going with the 
symmetries is readily obtained. 

CHARGE-POLE CANONICAL VARIABLES 

Let us develop Eq. (2) on this ground. Then the 
Hamiltonian formulation of Eqs. (1) and (3) will be 
straightforward. 

A moment's calculation shows first of all that no 
Lagrangian L(r2, t2, r • t), which would permit r to be a 

canonical coordinate, can embrace the equation of 
motion (2). So we look for an action principle of type 
(9), 

d1> = VCr, v) • dr + VCr, v) • dv - H dt. 

Helpfully, we know what Hm (called Em above) and 
the angular momentum Lm are. The rotational invar
iance is already incorporated in the designation of V 
and V as vectors and of Hm as a scalar. Accordingly, 
the application of Noether's theorem gives 

r x V + v x V = Lm = - ~ ! + ms. 
cr 

Taking V most generally as V = Urr + Uvv + U.s 
and similarly for V with scalar coefficients Ua. and Va. 
that can depend only on r2, v2, and v. r, the last 
equation breaks down into 

so that 

with 

Uv - Vr = m, 

U,v • r + V.v2 = - glcr, 

Usr2 + Vsv. r = 0, 

g r 
V = ---

, C S2 ' 

gv· r 
U =--

s C S2 ' 

as before. In addition, it is strongly hinted that it 
will suffice to take Uv = m, Ur = 0, Vr = 0, and 
Vv = 0, making in all 

V 
g v· r(r x v) = mv + - ---'---"
c r(r x V)2 ' 

V = _ ~ r(f x v) 
c (r x V)2' 

Hm = Imv2 + /Ir. 

(13) 

It must be seen now whether the surmise yields up 
the dynamics 

t = v, 
. r grxv 

mv =/- - ---
r3 c r3 

(14) 

as the Euler-Lagrange equations (10), which now read 

(~~r -~:) (r) = _(~~). 
(

OV)T _ oV. oH 
OV ov v ov 

(15) 
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Here aU/or, for instance, means the dyadic 

au a 
Or = ar (U,.r + U.;'1 + Uss) 

= U 1+ OUrr + ... 
r or ' 

and (&u/or)T its transpose. 
A calculation, in which it is useful to write the unit 

dyadic I as VV + 55 + WW (w = v x s), gives 

(
iJU)T _ iJU = ~ r x I , 
or or c r3 

(
OU)T _ av = ml = _[(ay{ _ au], 
0'1 or ar J 0'1 

(
o!{ _ av = 0, 
av! ov 

so that Eqs. (15) do exactly comprise Eqs. (14). 
Now, to construct canonical variables we have to 

compress drp = U ' dr + V • d'l by half into p. dQ 
(or into P , dQ plus an exact differential, the different 
solutions to Pfaff's problem being canonical trans
forms of one another). It is natural to group the g 
parts of drp together, writing 

arp = mv ' dr + (V ' dv - V(v ' r/r2
) • dr}. 

Noting that 

(V . r) ( v· r) (V . r) 7 dr=d r7 -rd 7 

and V • r = 0, we have 

where 

arp = mv • dr + V • d(v - rv . r/r2
) 

= mv· dr - V. dtfr2, 

t == r x (r x v). 

Place v = (r v • r - t)/r2 into the first member of drp 
and use t· dr = -r· dt and V, dtfr 2 = (V/r2) • dt, 
getting 

afP = -- r· elr + - mr + -'- - s . dt. In'l'r 1 [ g r J 
r2 r2 e S2 

The vector in square brackets-call it u-is orthogonal 
to t, and this simplifies the finding ofP and Q; namely, 
if P is set equal to Et + Fu and Q to At + Bu, then 

P . dQ = EAt· dt + FBu • du + Et2 dA 

+ Fu2 dB + EBt· du + F Au • dt, 

and this can easily be shaped into drp. A simple choice 

is A = r/t = lIs, B = 0, E = mv· r/r2s, F = s/r2
, or 

Q = ! = r x (r x v) , 
s Ir x 'II 

P = mv ·r t + ~u 
r2s r2 
mv·r 

= 2 r x (r x v) 
r Ir x 'II 

m Ir x vj g 1 + 2 r + - (r x V). (16) 
r c r Ir x vi 

The inverse transformation works out as 

r = Q
2
S (Q x (P x Q) S. P x Q) 

IQ X PI 2 Q2 + c QS ' 

V = p. QS [P x (P x Q) + S. P x Q], 
m IQ x PI 2 P • Q e QS 

S == [(Q X p)2 - g2/e2J*. 
While every point in r, v maps into a point in Q, P 

space, the converse is not true: the physically relevant 
part of phase space is restricted by IQ x PI ~ g/e in 
general. With a classical eigencondition of type (8), 
such a restriction would not come up. 

This set of canonical variables looks even more 
strange because, for g = 0, Q and P do not go over 
into rand mv. But this is only a consequence of the 
above particular arrangement for Q, P and is remov
able by canonical transformation. In fact, for g = 0, 
p. dQ = mv· dr. Then, quite generally from above, 

Q x (P x Q) 
p = IP x QI ' 

7t =P __ x-,,(_P_x_Q~) 

IPx QI 
must be a cononical transformation, which reads, in 
terms of r and v, 

p = 1 (msr + S. ~ s) 
(m 2s2 + g2/e2)! c s ' 

1 
7t=-----

(m 2s2 + g2/e2)! 

(
m2s2 + g2/e2) g2 v • r g mv • r ) 

X v---r+---s 
s ell r2s e rs 

and now p and 7t show explicitly how rand mv can be 
recovered as canonical variables when g -+ O. The 
inverse transformation here is 

r = p
2
S' (p lp x 7t1 _ ~ p X 7t) 

(p X 7t)2 l C pSt ' 

V = 7t. pS' (7t Ip x 7t1 _ ~ p X 7t), 
m(p x 7t)2 p. 7t C pS' 

S' == [(p X 7t)2 _ g2/C2]!. 
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Returning to the simpler Q and P, it is easy to 
verify, as must be the case, that Q x Pis ms - gr/c, 
the conserved Lm , and that 

whence Hm(Q, P) is. 

p 2 f g2 1 
H =- +"'----. 

m 2m Q 2mc2Q2 

The motion in Q space is simply that of a point under 
Coulomb plus attractive inverse-cube forces, subject, 
however, to IQ x PI ~ g/c. 

Quite apart from Case'sll well-known treatment 
of the Schrodinger dynamics of singular I/Q2 poten
tials, the simplicity of Bohr-Sommerfeld quantization 
is noticeable. For / = 0 and circular orbits (the only 
closed ones) 

at energies 

{? g2 1 
m-=--, 

Q mc2 Q3 

mQQ = nli 

1 g2 1 
Em = tmQz - ---

2 me2Q2 

that are zero for all orbits. Thus we arrive at the 
Schwinger result painlessly: g/c = e1g2/c or e2g1/c = 
nIL This reckoning, of course, bypasses the funda
mental issue of the standing of canonical commutation 
rules in the Q, P language (which, besides being 
restricted by IQ x PI ~ g/c, is indeterminate up to 
arbitrary canonical transformation). It is only a bit 
of "quantum statics" (an evaluation of Lm and Em) 
and not dynamics (time evoiution of state vectors). 

Bohr-Sommerfeld statics with an attractive 
Coulomb potential//Q = -/o/Q, /0> 0 gives quan
tized orbital radii Qn, 

and energies 

2 

n2
fj2 = gz + fomQn, 

c 

1 mf~ 
E",(n) = - -2 2h2 2/ 2' n - g e 

n21i2 > g2jc2• So far as these orbits go, g is unre
stricted. 

When, therefore, the Biot-Savart force rules the 
motion, a Dirac-type condition g/lic = n is clearly 
in the offing. But let additional Coulomb forces (or 

11 K. M. Case, Phys. Rev. 80, 797 (1950). 

presumably other binding forces which-at least 
nonrelativistically-can be fitted into the above 
framework) act, and such a condition appears less 
than compelling. For particles which are electro
magnetically pure poles but which have nonelectro
magnetic interactions as well, the issue of a charge
pole quantization condition would then seem to 
hinge on the detailed nature of such interactions. 

The preceding results transfer over to the one
particle relativistic case, Eq. (3), without trouble now. 
In Eq. (13) just replace mv in U by mvj(l - v2jc2)f, 
with a corresponding adjustment in the evaluation of 
aUjov - aVjar that makes Eq. (15) yield r = v and 
Eq. (3) as Euler-Lagrange equations. The solution to 
Pfaff's problems and the representation of Q, P in 
Eq. (16) are as above with m replaced by m/(l -
V2/C2)~. Again Q2 = r2, but now 

2 m2v2 g2 ] 
P = +--

1 - V
2
/C

2 c2 
r2 

so that the fundamental conserved quantities are 

H' = L + (m 2c4 + C2p2 _ g2/Q2)!, 
Q 

L' = Q x P. (17) 

The equations of motion Q = oHjaP and j> = 
-oHlaQ are, for/= 0, 

P = QmQ, 
• g2_ 
p= - -a OQ, 

EoQ 

E == mc2 0 == (1 - g2/EgQ
2)!. 

o , 1 _ lj2fc2 

In Bohr-Sommerfeld statics, for circular orbits 

(Q = _Q2QjQ), we have 

mQ2/Q = g2/EoQ30 2
, 

mQQO = nli, 

glvmg glc = nli again, while H' = EoO remains 
unfixed. There is no classically apparent reason why 
Q may not exceed c and Q fall below glEo. 

Including the Coulomb potential - fo/Q and 
keeping the sign ambiguity in the square root in Eq. 
(17), for circular orbits one gets 

Q! = a~(n2 _ (32)(n 2 - 1X2 - (32), 

Qn nIX 
- = ± 2 R2' 

C n - I' 

H~2 = ± (1 - 2 1X2 (32)f, 
me n -
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where 0 0 is the Bohr-like radius 1i21mfo and (X and {3 
are Coulomb and Biot-Savart fine-structure constants 
ielel + glgll/lic and le~2 - e~llilic. There are two 
formally possible branches of motion: n:::;; {3 and 
n ~ «(X2 + (32)! == y, going with minus and plus signs 
above, with {3 < n < y forbidden by Q! ~ O. No 
basic restrictions on (X and {3 are in sight. The second 
"normal" branch can begin with Qn = 0 if Y is 
integral (n'), when central and orbital particles sit on 
top of one another at zero energy and orbital speed 
Q = cn'/oc that can exceed c; beyond that, the orbits 
expand and the energy approaches mc2

• The first 
::branch consists in a series of shrinking orbits and 
,sinking energies, including another null orbit at 
infinite speed Q and infinite negative energy if {3 is 
integral. Since IQ x PI is supposed to be ~ {31i, n ~ {3, 
this null orbit alone in the first branch is formally 
allowed. Under just the restriction Q~ ~ 0 (for
getting IQ x PI restrictions), the earlier members 
n < {3 (if any) of this first branch are also formally 
allowed. The fuller treatment, considering the extrac
tions of the square root in Eq. (17) and the possibly 
large value of (X and other matters, will be left for 
another paper. 

CONCLUSION 

Finally, let us turn to the N-particle nonrelativistic 
problem (1). 

From the action differential 

dcp = Vi' df i + Vi . dVi - H dt = dcp - H dt, 

Noether's theorem will give, for translationally and 
rotationally invariant U, V, and H, 

and from the treatment above of Eq. (2) the step 

V,. = _ "" gij rij 
£., 2 rij x Vij 

1*i C (ri1 x Vij) 

is visibly in place. The Euler-Lagrange equations that 
are to come out as Eq. (1) are 

Direct computation gives 

(
aUi)T auz giZrlix I 
arz - art = -; ----;::- , 1 =;!= i, 

(aUi)T _ (aVi)T = .z. gij rij : I , 
afi ari , *, c rij 

(aUi)T _ avz = mioill = _[(aVi)T _ auz], 
aVl ari arz aVi 

(aVi)T _ avz = 0 
aVl aVi 

(no sums on repeated indices here); this does make 
the expected equations of motion materialize correctly. 

Next, dcp can be written 

or, through v = (rv. f - t)/r2 as before, 

1 mimj Vij . f ij 
dm = Po' dQo + - ----- r·· . dr·· 

"t' 2 M 2 " " rij 

where 

Po == mlvl , Qo = mkrk/M, 
and thence to 

with 

The reduction is not quite complete as dcp contains 
all N(N - 1)/2 differentials of the "relative canonical 
coordinates" Qii' But Pii and Q;; are not all inde
pendent. If fa and Va are some selected coordinate
velocity pair, then Qay and Pay (y = 1,2,' .. ,0 - 1, 
a + 1, ... ,N) are a complete independent set of 
relative Q's and P's, and all others can be expressed 
in terms of them; i.e., 

rnm(Qnm' Pnm) = fam(Qam' Pam) - fan(Qan, Pan), 

vnm(Qnm' P nm) = vam(Qam' Pam) - van(Qan, Pan) 
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give reduction to a differential form Po .dQo + i\ . dQy 
must be effected. 
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It is known that there exist S + 1 equivalent covariant formulations of the theory of free massive 
particles with integer spin S and definite parity P. From these S + 1 equivalent theories one gets by 
putting m = 0 the description of S + 1 different massless particles, with helicities (k, -k), k = 0, 
1, ... , S. This property is already known in the case S = 1. In this paper we demonstrate explicitly how 
to obtain three kinds of massless particles, with different helicities, from three equivalent formulations of 
free massive theory with S = 2. Further, we outline the general argument for arbitrary integer value of S. 

1. INTRODUCTION ':lIlB(k,S) - ° 
U .. 'Il[va]'" - , (1.3d) 

It has been demonstrated by Fierz1 that the free 
massive particles with spin S can be described by the 
following set of S + 1 covariant tensors: 

a B(k,s) + ':l B (k,S) + :l B (/(,S) - ° 
II "'[va]'" ua "'[/Lv]'" U v '"[all]''' - , 

B(k,S) - B 
... a[llv] ... = a1' .. ak[Ilk+1 vk+ll' .. [IlSVS] , 

k = 0, 1, ... ,S, (1.1) 

where [,up] denotes an anti symmetric pair of indices. 
Furthermore, the tensor (1.1) is symmetric with 
respect to any permutation (O'i,O'j), i,j::;;; k, and 
([,uiPi], [,ujP j]). 

The notion of free particle with mass m implies that 

(1.2) 

The Lorentz tensor (1.1) satisfying (1.2) describes, 
therefore, a parity-doubled multiplet of free particles 
with spins S, S - 1, ... ,k for k < S. In order to 
separate a field operator describing the massive 
particle with definite parity and spin S, one should 
impose the following subsidiary conditions: 

B~~'~i:v]'" = 0, (1.3a) 

B~~'~~rva] ... = 0, (1.3b) 

B(k,S) + B Ck•S ) + B Ck,S) - 0 (1 3c) 
... Il[va]'" ... a[llv]'" ... vrall]' .. -, . 

1 M. Fierz, Helv. Phys. Acta 12, 1 (1939). 

k = 0, 1, ...• S, (1.3e) 

and, additionally, if k = 0, one should add the 
following condition: 

B(O'S) [IlV] - ° ... [Il V] -. (1.3f) 

It can be shown that the tensor B(k.S), satisfying the 
subsidiary conditions (1.3a)-(1.3f), has only 2S + 1 
independent components. Particularly, in the case 
S = 1, we have the following two possibilities2

: 

and 
(0 - m

2
)BIl = 0, ollBIl = 0, 

(0 - m2)B[IIV] = 0, 

0IlBrva ] + GaB[II'] + ovB[all] = 0 

or, introducing 

one can write (1.5) as follows: 

(0 - m2)G[pV] = 0, 

a"G[/V] = o. 

(1.4) 

(1.5a) 

(1.5b) 

(1.6) 

(1.7a) 

(1.7b) 

2 For the case S = 1 and S = 2 we shall omit the indices in the 
upper bracket, because the tensor indices are written explicitly. 
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give reduction to a differential form Po .dQo + i\ . dQy 
must be effected. 

and ACKNOWLEDGMENT 

P nm(Qam, Pam, Qan, Pan)· I have enjoyed conversations with Dr. R. N. Hill 
and the partial support of the National Science 

These can be introduced into dcp and then a final Foundation in this work. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 1 JANUARY 1970 

Field-Theoretic Description of Massless Particles with Higher Spin 
and Definite Parity. I. Integer Spin 

T. CUKIERDA AND J. LUKIERSKI 

Institute of Theoretical Physics, University of Wroclaw, Wroclaw 
Cybulskiego 36, Poland 

(Received 9 May 1969) 

It is known that there exist S + 1 equivalent covariant formulations of the theory of free massive 
particles with integer spin S and definite parity P. From these S + 1 equivalent theories one gets by 
putting m = 0 the description of S + 1 different massless particles, with helicities (k, -k), k = 0, 
1, ... , S. This property is already known in the case S = 1. In this paper we demonstrate explicitly how 
to obtain three kinds of massless particles, with different helicities, from three equivalent formulations of 
free massive theory with S = 2. Further, we outline the general argument for arbitrary integer value of S. 

1. INTRODUCTION ':lIlB(k,S) - ° 
U .. 'Il[va]'" - , (1.3d) 

It has been demonstrated by Fierz1 that the free 
massive particles with spin S can be described by the 
following set of S + 1 covariant tensors: 

a B(k,s) + ':l B (k,S) + :l B (/(,S) - ° 
II "'[va]'" ua "'[/Lv]'" U v '"[all]''' - , 

B(k,S) - B 
... a[llv] ... = a1' .. ak[Ilk+1 vk+ll' .. [IlSVS] , 

k = 0, 1, ... ,S, (1.1) 

where [,up] denotes an anti symmetric pair of indices. 
Furthermore, the tensor (1.1) is symmetric with 
respect to any permutation (O'i,O'j), i,j::;;; k, and 
([,uiPi], [,ujP j]). 

The notion of free particle with mass m implies that 

(1.2) 
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with spins S, S - 1, ... ,k for k < S. In order to 
separate a field operator describing the massive 
particle with definite parity and spin S, one should 
impose the following subsidiary conditions: 

B~~'~i:v]'" = 0, (1.3a) 

B~~'~~rva] ... = 0, (1.3b) 

B(k,S) + B Ck•S ) + B Ck,S) - 0 (1 3c) 
... Il[va]'" ... a[llv]'" ... vrall]' .. -, . 

1 M. Fierz, Helv. Phys. Acta 12, 1 (1939). 

k = 0, 1, ...• S, (1.3e) 

and, additionally, if k = 0, one should add the 
following condition: 

B(O'S) [IlV] - ° ... [Il V] -. (1.3f) 

It can be shown that the tensor B(k.S), satisfying the 
subsidiary conditions (1.3a)-(1.3f), has only 2S + 1 
independent components. Particularly, in the case 
S = 1, we have the following two possibilities2

: 

and 
(0 - m

2
)BIl = 0, ollBIl = 0, 

(0 - m2)B[IIV] = 0, 

0IlBrva ] + GaB[II'] + ovB[all] = 0 

or, introducing 

one can write (1.5) as follows: 

(0 - m2)G[pV] = 0, 

a"G[/V] = o. 

(1.4) 

(1.5a) 

(1.5b) 

(1.6) 

(1.7a) 

(1.7b) 

2 For the case S = 1 and S = 2 we shall omit the indices in the 
upper bracket, because the tensor indices are written explicitly. 
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If m ¢ 0, both theories (1.4) and (1.7) are equiva
lent.3- 6 If, however, m = 0, Eqs. (1.4) and (1.7) 
allow the introduction of different classes of gauge 
transformations, namely, 

(1.8) 

and 

G[I'V] ----+ G[I'V] = G[IIV] - {allAv - avAI'}' (1.9) 

where, in order to satisfy both conditions (1.7), one 
should assume 

DAI' = 0, allAI' = 0. (1.9') 

It can be easily seen6 that the gauge freedom (1.8) 
reduces the number of three independent components 
of BI' by one and the massless field B~ describes two 
degrees of freedom, orthogonal to the three-momen
tum vector P. One can impose, therefore, the condition 

aiBj=o, j= 1,2,3, (1.10) 

defining the "physical" radiation gauge in conven
tional QED. 

In the case when the theory of massless particles is 
described by the set of equations (1.7) with m = 0, 
invariant with respect to the gauge transformations 
(1.9'), one can reduce the number of three independent 
components by two.4 Indeed, if we assume that the 
four-momentum vector PI" characterizing our mass
less particle, is chosen as P

II 
= (0,0, IPI, JPI), con

dition (1.7) can be written in momentum space as 

(1.11) 

From (1.11) it follows that G[03](P) = ° and, choosing 

Ar(P) = IPI-1G[or](P), r = 1, 2, 

in our particular coordinate system, one gets finally 

(1.12) 

Finally, the only nonvanishing component is G(12](P), 
The condition (1.12) can be also treated as the result 
of the reduction of three components G[ii](P), 
i,j = 1,2,3, by means of the following two radiation 
gauge conditions: 

(1.13) 

Introducing 

(1.14) 

• N. Kemmer, HelY. Phys. Acta 33, 829 (\960). 
4 V. I. Ogieyeskil and I. V. Po1ubarinoY, Yad. Fiz. 4, 216 (1966) 

[SOY. J. Nucl. Phys. 4, 156 (1967)]. 
• T. Cukierda and J. Lukierski, Nucl. Phys. BS, 508 (1968). 
• This property is shown in any textbook on quantum electro

dynamics (QED). 

one can write the condition (1.13) as follows: 

v x F = 0, (1.15) 

and we get finally that 

F=VA. (1.16) 

We see, therefore, that the theory of massless 
particles described by the antisymmetric tensor 
G[I'V] is characterized by the three-dimensional scalar 
A, which has helicity equal to zero. Such a massless 
particle has been deduced from the field equations 
(1.7) in the limit m = ° by Ogievetskii and Polubar
inov,4 and was called a "notoph." 

The difference between the massless limits of 
massive equivalent theories is caused by the fact that 
the set of the equations (1.2), (1.3) allows k different 
classes of gauge transformations. The argument for 
S = 1 can be generalized. In Sec. 2 we present the 
derivation of three different kinds of massless particles 
(with helicities H = 2, H = 1, and H = 0) by 
putting m = ° in the equations and determining 
equivalent S = 2 fields. In Sec. 3 we discuss the 
general case. In both these sections we shall consider, 
instead of the Fierz tensor (Ll), the dual ones 

G(k,S) 
0'1'" O'k[lIk+lVk+l]'" [I's>s] 

= (!)S-kf. Pk+lTk+l ••• f. PSTS 
... Ilk+lVk+l IlSVS 

X B~~'~). O'k[Pk+1Tk+1] '" [PSvs] (1.17) 

satisfying, after putting m = 0, the following set of 
equations: 

OG(k,S) - ° G(k,S) [I'v] • " - ° 
"'O'[l'v]'" -, "'O'[l'v] - , 

G(k,S)O' - ° G(k,S)1' - ° ... O'[I'V]'" - , ... [IIV]'" - , 

aO'G(.k.'~~[I'V]'" = 0, aI'G~~'~j[IlV]'" = 0, (1.18) 

G(k,S) + G(k,S) + G(k.S) ° 
... O'[/tv] • . . . .. '[0'1')' . . . .. I'[vu]' .. = . 

It will be shown that the set of S + 1 tensors 
Glk,S), k = 0, ... , S, describes S + 1 different mass
less particles, with helicities H = 0, 1, ... ,S. One 
can say, therefore, that there is an infinite number of 
ways of expressing the field theory of massless 
particles with helicity H, because for every S;;:: H 
there exists one Fierz tensor (1.1) which describes 
such massless particles. 

2. THE S = 2 CASE 

A. k =0 

Let us recall briefly the conventional formulation 
of S = 2 particles, based on the symmetric tensor 
Bllv ' which leads, if we put m = 0, to the helicity 
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H = 2 massless particles (gravitations). The subsid
iary conditions are the following ones7 : 

B/=O, 
;ylBpv = 0. 

(2.1) 

(2.2) 

If we put m = 0, the following class of gauge trans
formation, preserving (2.1) and (2.2) and 0 BV/l = 0, 
is allowed: 

(2.3) 
where 

DAp = 0, oPAl' = 0. (2.4) 

Putting PI' = (0,0, IPI, IPI), one can choose All in 
such a way that 

B~i(P) = 0, i = 1,2,3. (2.5) 

From (2.2) and (2.5) it follows that 

B~i(P) = 0, B~o(P) = 0. (2.6) 

Using (2.1) and (2.6), one gets only two independent 
components B~l (P) = - B~z(P) and B~2(P) = B~l (P). 
Because every symmetric tensor index describing 
components perpendicular to the three-momentum 
increases the helicity by one, we get the result that 
H=2. 

B. k = 1 

One obtains another equivalent theory of massive 
S = 2 free particles by using the field G Il[vt,]' Besides 
the field equation 

DGIl[vO"] = 0, (2.7) 

one should assume the following subsidiary condi
tions: 

oilGI'[VO"] = 0, 

oVGI'[vO"] = 0, 

GI'[IlV ] = 0, 

GI'[vO"] + GO"[l'v] + GV[O"l'l = 0. 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

The set of equations (2.7), (2.8) is invariant under 
the following class of gauge transformations: 

GI'[V<7] -+ G;[vO"] = GI'[V<7] - {ovA Il<7 - oO"Al'v}, (2.9) 

where A/lv = Avl" and 

DAl'v = 0, oPAllv = 0, 

A/=O. 

(2. lOa) 

(2.10b) 

Let us consider now the coordinate system with 
P = (0, 0, IPI, IPD. From (2.8a), it follows that I' 

G3[V<7](P) = GO[VO"](P), (2.11) 

7 For k = 0, Gp , •. 'I's == Bp , . .. Ps [see Eq. (1.17)]. 

and, from (2.8b), 

GI'[3i](P) = GI'[Oi](P), i = 1,2, 

GI'[30](P) = 0. 

The relation (2.8c) implies that 

(2.12) 

(2.13) 

Gi[ik](P) = 0, i, j, k = 1,2. (2.14) 

The subsidiary condition (2.8d) for remammg 
nonvanishing components can be written as follows: 

G3[i;j(P) = Gi [3i!(P) - Gi [3i] (P). (2.15) 

We see, therefore, that the components Gi [3}] can 
be made symmetric with respect to the exchange 
i ~ j, because the antisymmetric part is given by 
G3[i}]' We are left with the following five components: 

G3[i}] ' G3[i3] ' Gi [i3]' (2.16) 

Four out of these five components can be eliminated 
by means of the gauge transformations (2.9), (2.10). 
In our particular coordinate system the following five 
components of Apv can be chosen as independent: 

Performing the gauge transformation (2.9), one can 
easily see that only the components G3[ii] are gauge 
invariant, and the other four, listed in (2.16), can be 
put equal to zero by a suitable choice of the gauge 
transformation. Indeed, we have 

G;[i3](P) = G3[i3](P) - IFI A 3/P), 

G;[j3](P) = Gi[i3iP) - IFI Ai;(P), (2.18) 

and we should choose 

A3;(P) = IPI-1G3[i3](P), 

Aii(P) = IPI-1Gi[i3](P), (2.19) 

The components G3[ii] define the massless field, 
described by the field equations (2.7), (2.8). Such a 
field is characterized fully by one component Ga[i}]' 

which describes a massless particle with helicity 
H=O. 

C. k = 2 

The third formulation of the theory of free massive 
S = 2 particles gives the following set of equations, 
after putting m = 0: 

o G[/lvl[<7r] = 0, 

where G[ll vHO"r] = G[<7TH!'v! and 

oI'G[IlV ][O"T] = 0, 

G[l'vll'v] = 0. 

(2.20) 

(2.21a) 

(2.21b) 



                                                                                                                                    

FIELD-THEORETIC DESCRIPTION OF MASSLESS PARTICLES. I 49 

The set of equations (2.20)-(2.21) is invariant under 
the following gauge transformation: 

G[/lv][aT] --+ G[/lV][ar] 

= G[/lV][ur] - {o)~rA"u + o"oaAvr 
- o/lorAvu - ovouA/lr}, (2.22) 

where A/l11 satisfies the. conditions (2.10a). 
Let us write the relations (2.21) in our particular 

coordinate frame with the momentum of the particle 
P/l = (0,0, IPI, WI). We get from (2.21a) that 

G[Si][ar](P) = G[Oi][ar](P), i = 1,2, (2.23) 
and 

(2.24) 

From the symmetry properties it also follows that 

G[3i)[SJ)(P) = G[3j)[SilP), (2.25) 

and from (2.21a) and (2.24-25) it follows that 

G[12)[12)(P) = o. (2.26) 

We see, therefore, that we have the five following 
independent components: 

G[12)[Si) , G[Si)[Si)' (2.27) 

It is easy to see that in our particular frame the 
components G[12)[Si) are gauge invariant, and 

G{Si][Si](P) = G[Si][3J](P) - IPI 2 AiJ(P). (2.28) 

From (2.28) it follows that the components G[3i)[Sn 
can be eliminated. We are left with two components 
G[12)[3i) describing massless particles with helicity 
H=l. 

3. GENERAL CASE: S POSITIVE INTEGER ~ 3 

Now we shall generalize our discussion to the case 
of arbitrary S. The method is analogous to the one 
presented in Sec. 2 for the case S = 2 theories. 

A. k =S 

The case when a massless particle is described by 
the symmetric tensor of rank S has been considered 
by Fierz in Ref. 1. Such a tensor field allows the 
introduction of gauge transformations, depending 
on some symmetric tensor A(8-l) of rank S - 1. This 
gauge transformation reduces the number of com
ponents in such a way that we are left only with two 
independent components (for example BI .. . 11 , 

BI ... 12, where there are S indices in each case) 
describing the massless particle with helicity S. 

B. 0 ~ k ~ S-1 

The free theory for k 2 1 is described by Eqs. (1.18). 
It can be shown that this set of equations is invariant 
under the following set of gauge transformations: 

G~(::~! ak[/lk+1Vk+1]'" [/lsvs] 

- G(k.S) 
- a 1" • ak[/lk+l Vk+l] ... [ "sv s] 

- I (-lto/lk+1 .. ·o"sA~) ... akVk+1"·Vs' (3.1) 
perm 

where Iperm denotes sum over all permutations of 
pairs Vtk+2, Yk+2) and n describes number of such 
permutations. Because G'(k,S) should also satisfy Eqs. 
(1.18), the field A(S) must satisfy the following 
conditions: 
DA(S) = 0, 

'" (l)n~ ••• 0 A(S)a1 - 0 k - U.uk+l }Js O'} 0"3"'O'kVk+l"'VS - , 
perm 

~/lk+1 '" (l)na ••• a A(S) - 0 u 4t - I'k+l I'S 0'1" • UkVk+l ••• VS - , 
perm 

~a1 '" (l)na .•• ~ NS) - 0 
u £. - ,uk+l uPS 0'1'" 0'k'Vk+l'" VS - • 

perm 

(3.2) 

Let us write now Eqs. (1.18) in momentum space, 
and choose PI' = (0,0, IPI, IPI). Using techniques 
analogous to the ones presented in Sec. 2, we can 
restrict the consideration of independent components 
to the following ones: 

G(k,S) 
a1' .. ak[iH13] ... [is3] , (3.3) 

where (Ii = 0, 1, 2, 3, i = 1,2, ... , k, and 
G(k,S) 

3' .. 3[12][ik+23]' .. [is3] , (3.4) 

where im = 1,2, m = k + 1, k + 2,' .. ,S. 
The components (3.3) and (3.4) are not all inde

pendent, and we should impose the conditions of 
vanishing traces. Using the property that the fields 
G(k,S) are determined up to the arbitrary gauge trans
formation (3.1), it can be shown that all the com
ponents (3.3) can be eliminated. Indeed, substituting 
in (3.1), we obtain 

A~~~ .. a ki k+1 ... ;/P) = [I P rl]S-kG ~~:~~ ak[ik+l3] ..• [is3](P); 

(3.5) 

we get the result that after the gauge transformation 
the symmetric part of (3.3), with respect to indices 
(Ii - im , (Ii = 1, 2, i = 1, ... , k, m = k + 1,' .. , S, 
vanishes. On the other hand, the antisymmetric part 
with respect to the above permutation can be ex
pressed by means of the components (3.4) [compare 
with (2.1S) for S = 2]. We are left, therefore, with 
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the components (3.4), and the condition of vanishing 
trace 

G(k.S) 
3' .. 3[12][ik+13] ... [is3] , (3.6) 

together with symmetry properties, implies that our 
massless object is described by a symmetric tensor 

H(k;S) - G(k.S) (3 7) 
ikH" • is - 3· •. 3[12][iHI3]· .. [is3] • 

with vanishing trace. Because, generally, symmetric 
tensors of nth order in (m + I)-dimensional space have 
(n;:) independent components, we get, after putting 
n = S - k - 2 and m = 1 that: 
I: (a) the symmetric tensor (3.7) has S - k - 1 
'components; 

(b) the trace condition eliminates S - k - 3 
components. 
We are left, therefore, with the following two com
ponents: 

(3.8) 

where again there are S - k - 1 indices in each com
ponent. These two components describe the massless 
particles with helicity H = S - k - I, k = 0, I, ... , 
S - 1. 

4. FINAL REMARKS 

In this paper it has been shown that, from S + 1 
equivalent theories of free massive field with spin S, 
one can obtain, by putting m = 0, S + 1 different 
theories of massless particles with the helicities H = 0, 
1, 2, ... , S. The essential role of gauge transforma
tions has been pointed out. We have used two different 
types of gauge transformations: For the theories with 
k = S, the gauge function was represented by a 
symmetric tensor A (S-O of rank S - 1, and for k < S 
we were performing the gauge transformation 
depending on the symmetric tensor A (S). Because of 
such a choice the relation between the number k of 

symmetric indices and the helicity value is described 
by a formula which treats the case k = S in an 
exceptional way, namely, 

k = S-+H= S, 

k<S-+H=S-k-l. 

In this paper we were considering only the field 
equations for massless particles and we introduced the 
gauge transformations as ones which leave these 
field equations invariant. It is possible, however, to 
introduce as a basis the gauge-invariant Lagrangians 
and to treat the field equations as a derived result. 

The main conclusion of this paper is the following: 
There are an infinite number of ways of introducing 
the free theory of massless particles with given 
helicity H by means of Lorentz-invariant tensors. 
Particularly, the massless particle with helicity H = 0 
can be described by any of these following fields: 

G, scalar, 

G[ItV] , "notoph," 

G"l"'ak[ltvl' generalized "notoph," 

where k = 1,2,···. 
If we consider quantized theory, characterized not 

only by the field equations, but also by the commu
tator functions, the limit m --.,.. 0 is much more 
complicated, because of the presence of the denomi
nators m-2k (see, for example, Ref. 8) in the Green's 
functions (commutator function, causal propagator). 
All these problems are here avoided, but in the process 
of obtaining a complete quantization theory they also 
should be faced. 
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The paper presents a study of stationary null electromagnetic fields coexisting with a dust distribution. 
Two exact solutions corresponding to pure radiation fields with the propagation vector as the Killing 
vector are presented. 

1. INTRODUCTION 

In the literature on general relativity, one finds 
rather few exact solutions corresponding to null 
electromagnetic fields. In recent years, however, a type 
of solutions for null electromagnetic fields has been 
discovered which is "stationary" in the sense that the 
space-time admits a group of motions with a timelike 
generator. In the solutions of this type given by Dutta 
and Raychaudhuri,1 the electromagnetic field tensor 
also is independent of this time variable, and thus the 
solutions could be interpreted by them as representing 
superposed static electric and magnetic fields which 
are orthogonal to each other. In the rotating universes 
discovered by Ozsvath,2 the electromagnetic field is, 
however, time dependent and is therefore naturally 
considered to be a radiation field. In Ozsvath's solu
tions, besides the electromagnetic radiation there is a 
distribution of electrically neutral dust. These 
solutions are homogeneous and possess the following 
interesting features: 

(I) Neither the velocity vector of the fluid nor the 
propagation vector for the null electromagnetic field is 
hypersurface orthogonal. Physically, these correspond 
to a vorticity of the fluid motion and a curling of the 
light rays. 

(2) The vorticity vector is orthogonal to both the 
electric and magnetic field vectors and is thus in the 
same direction as the Poynting vector, with all these 
vectors being orthogonal to the fluid velocity vector. 

(3) The electromagnetic field tensor has an espe
cially simple form. 

(4) There exists an additional motion of the space
time with a timelike generator which, unlike the fluid 
velocity, is hypersurface orthogonal. 

In Sec. 2 of the present paper, a general study of the 
stationary null fields is attempted, and some formulas 
emerge which allow a clearer understanding of some 
of the results of Ozsvath, and Dutta and Raychaud-

1 B. K. Dutta and A. K. Raychaudhuri. J. Math. Phys. 9, 1715 
(1968). 

2 I. Ozsvath, in Perspectives in Geometry and Relativity, B. Hoff
man. Ed. (Indiana University Press, Bloomington, Ind., 1966). 
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hurL In Sec. 3, we present two null-field solutions 
which we believe to be new. Both the solutions admit 
a nuil translation with the propagation vector of the 
field as th~ generator, while one of the solutions is also 
stationary. 

2. GENERAL STUDY OF STATIONARY NULL 
FIELDS 

Let the space-time be stationary; that is, it admits 
a motion with a timelike generator. Further, in case 
there is matter, let us assume that this generator is the 
velocity vector so that the Killing equation, 

(1) 

is satisfied and the motion of the matter is rigid. We 
can choose coordinates so that this motion is a trans
lation along the time axis. The g,.v's would then be 
independent of time, and the line element would 
assume the form 

ds2 = dt 2 + 2g0i dt dXi + gik dXi dxk, 

where the index "0" signifies the time coordinate. 
Now from (1) it follows that v7a = 0 and v~pvP = O. 
The field equation can be written in the form 

RaP;=:: -877PVaVp + (). + 477p)go:p + 2Fa/lF~, (2) 

where p and A stand for the density of matter (assumed 
to be in the form of pressureless dust) and the cosmo
logical constant, respectively. Fa,. represents the 
electromagnetic field tensor. The energy tensor for the 
null electromagnetic field (FapPP = 0, F:pPP = 0) 
may also be written in the form3 

TaP = -(477r1F .. ,.FjI 

= (47T)-lE2(2vavjj - gajj) - 4
1
77 (E"Ejj + H"Hjj) 

-(477)-l(VaSp + vjjSa), (3) 

where S, E, and H represent the Poynting vector, 
electric field, and magnetic field vectors, respectively, 

3 A. Lichnerowicz, Relativistic HydrodynamiCS and Magneto
hydrodynamics (W. A. Benjamin, Inc., New York, 1967). 
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defined in the following way: 

and 

Thus defined, all three vectors are orthogonal to the 
velocity vector of matter. Again, as the gl'v's and the 
vector Vo: are independent of time, it follows from Eq. 
(2) that p and the tensor F""F: are also independent of 
time. Hence, £Z = (F"I'F;)v«vP must also be inde
pendent of time so that E,~v« = O. Hence, from (3), it 
follows that 

(TpvP);" = - (47T)-lS~". (4) 

Writing the left-hand side in the form 

(T,vP);" = 1 T"Pv(p;(1.) + (T"P);"vp
, 

one finds that both the terms in the right-hand side 
vanish in view of the relation (1) and the assumption 
that electromagnetic field is source free. It now follows 
from (4) that 

s~ = O. (5) 

The divergence-free character of the Poynting vector 
leads to the conclusion that there is no net energy flux 
through any closed surface. 

Next, we show that under such circumstances the 
motion of the dust cannot be irrotational. 

From (2) and (3) we get 

(6) 
and 

RftvP = (A. - 47TP - 2E2)V" + 2S"'" (7) 

Now, using the definition of the Riemann-Christoffel 
tensor, 

one gets after contraction that 

(8) 
and thus, 

R"pv"vP = (v~,.),pvP - (v~pvP);" + v~vf". (9) 

Now defining the vorticity tensor in the usual way, 

wilp = !(vll;p - vp;,,), 

and remembering that the motion is expansionless 
and geodesic, it is not difficult to obtain from (9) the 
relation 

(10) 

where w"pw"P = +2w2• In view of (6), (7), and (to), 
we have 

(11) 

Let us now use the following identity [cf. Eq. (19) of 
Ref. 4J in our calculation: 

.a(v~) glTIt - R "vII 3" .P.cr P 

= <pf; + <ppavp + [Vfp - t(V~)2 - t(v~),,,v" + 2w2]v" 

+ fj/lVP"( w,..pvy - 2w/1vpvy), (12) 

where vP = vfpvll stands for the acceleration vector and 
<pP" represents the shear tensor defined in the usual 
manner. wI' represents the rotation vector defined by 
w/l = ~'YlI'''IJcr V V 

2'1 a;;p cr' 

Combining (11) and (12) and remembering that the 
motion is rigid, one gets the relation 

(13) 

The null field vanishes if the vector S vanishes. Hence, 
for a nontrivial null-field solution, we must have in 
view of (I3) a nonvanishing vorticity and, further, the 
curl of the vorticity must not also vanish. In deriving 
Eq. (13), which does not involve the dust density, use 
has been made of Eq. (3). When p ~ 0 and if space
time there admits a motion with a generator other 
than the velocity, this generator may be hypersurface 
orthogonal. Such cases actually occur in the Ozsvath 
solutions and are discussed later on. 

We show further that if there is a hypersurface
orthogonal Killing vector I,. for a pure (i.e., matter
free) radiation field, it will be the null propagation 
vector. 

From the Killing equation 

1/1;v + IY ;/1 = 0 (14) 

and from the condition that II' is hypersurface 
orthogonal, i.e., 

(/1';v - Iv;,,)la + (1.;« - I")l,, + (la;p - 1/1;,.)/. = 0, 
(15) 

one gets 
21/1}2 = ([2);vl/1 - (l?');,.lv> (16) 

which again, on further differentiation and using (14), 
yields 

2W.,.12 = -2lp ;.(12);/l - (12);~1.. (17) 

Again from (16), we have 

1/1;.(l2Y/1 = -!l-2(12);,.{12Yl'lv, 

which, after substitution in (17), finally gives 

Rv,,,lP = -lr..,. = !l-2[(12);~ - [-2(l2yl'(12);,.JI.. (18) 

Again, from (2) and (22) given below, we have 

RVl'l1' = -2(Kpll')K. + AI •• (19) 

4 S. Banerji. Progr. Theoret. Phys. (Kyoto) 39, 365 (1968). 
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Comparing (18) and (19), one has to conclude that 
Iv is a null vector of the form aKv' 

Now, as is well known, the null electromagnetic 
field tensor may be written in the form 

(20) 

where the null vector K/J is the propagation vector and 
~/J is a spacelike vector orthogonal to K/J' We can 
further choose ~/J' without loss of generality, to be a 
unit vector. In that case, 

E2 = -E/JE" = (KvVV)2, (21) 

and the electromagnetic energy-momentum tensor 
can be written in the form 

T. p = (47T)-lKaKp. (22) 

From Eqs. (3) and (22), we get 

(23) 
and 

(24) 

Let us now introduce the additional assumption that 
the energy density of the radiation field is constant 
which could mean, in view of (21), that KpvP is 
constant. Equation (24) then gives, using Eq. (5), 

K~a = O. (25) 

Also T~! = 0 owing to the charge--current vector 
being zero, so that from Eq. (22) using Eq. (25) we 
have 

K~pKP = O. (26) 

Thus, Eqs. (25) and (26) show that Ka constitutes 
a divergence-free null-geodesic congruence. Hence, 
from Robinson's5 theorem on null electromagnetic 
fields, it follows thatK(a;p) = O. Using this in(vpKP).a = 
o and remembering, in view of (22) and (2), that 
KP is an invariant vector for the transformation 
with the generator va such that 

(27) 
we get 

(28) 

Using now the definition of the vorticity vector wI', 
we have 

K p /1 <1_ 0 rJap/1<1 w v - . (29) 

In view of relations (24), Eq. (29) can be written as 

(30) 

Since SP and wI' are both orthogonal to v<1, the above 
shows that we must have a relation of the form 

• I. Robinson, "Reports on Royamount Conference, 1959." 

sP = aw~; in other words, the vectors Sand ware in 
the same direction. However, the vector S is orthog
onal to E and H. Hence, the vorticity, the electric, 
and magnetic field vectors form an orthogonal set of 
spacelike vectors if the motion of the fluid is rigid and 
the energy density of radiation is uniform. 

Again, since K~a = 0, K;apKP = 0, and K(a;P) = 0 
in this particular case, we have, using these in the 
identity (8) with va replaced by Ka, 

RapKa KP = K~pK~. 

From (2), substituting for RaP and remembering (23), 
it follows that 

(31) 
that is, 

K[a;p]Ka;P = 167Tp(Kava)2, (32) 

which implies that rays have a nonvanishing curl 
in presence of matter, and the magnitude of this curl 
is determined by the product of matter density and 
radiation density. 

Let us now proceed to discuss the form of the 
electromagnetic field tensor in these cases in the light 
of their behavior under "duality rotation." Since 
RaP' p, Va' and gaP are independent of time, so is the 
electromagnetic stress-energy tensor TaP in view of 
Eq. (2). Now TaP determines the electromagnetic field 
tensor Fap up to a "duality rotation." Hence, Fap is to 
be obtained from a time-independent FaP by a duality 
rotation. Writing the time-independent Fap as (Fap)o 
and wap for (Fap - i*Fap), we have wap = (waP)Oei6 

and the Maxwell equation w~! = 0 gives 

(33) 

Equation (27) shows that there must be a solution with 
(),p independent of time or () = at + b, where a is a 
constant and b is a function of the space coordinates 
but not of time. Further, as we shall see, the solution 
in this case is unique, so that 

FaP = (Fap)o cos () + (*Fap)o sin () 

= Aap cos (at + b), (34) 

which is the form obtained by Ozsvath. Here it may 
be noted that, while the coordinate system we have in 
mind is a comoving one so that the t lines are the 
world lines of matter, Ozsvath's coordinates are not 
comoving and the t lines are the paths of hypersur
face-orthogonal timelike translation. 

We now proceed to discuss the uniqueness of these 
electromagnetic fields. It has been pointed out by 
Witten6 that the electromagnetic field tensor for a 

• L. Witten, in Gravitation: An Introduction to Current Research, 
L. Witten, Ed. (John Wiley & Sons, Inc., New York, 1962). 
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given metric is, in general, not unique in the null 
case. However, in the solutions that we are considering, 
the field is unique. Let WIlV (== FIlV - i* FIlV) and W'IlV 

be two different solutions pertaining to the same Til V , 

both satisfying Maxwell's equation. They must be 
connected by a duality rotation so that W'll v = wIlVei «. 

Now the condition that w;:v = w~: = ° gives 

(35) 

Also, WIlV = KIl'v - KV'Il, where' is the complex 
vector ,« = ~« - irl" and ~ and 'fJ are unit spacelike 
vectors orthogonal to each other and to K. 

Thus 

(36) 

whence we get 

KVoc,v = ~voc,v = 'fJvoc,v = 0. (37) 

Remembering that K is a null vector, the above 
requires 

oc,V = CKv , (38) 

where C is a scalar. Equation (38) is integrable if and 
only if Kv is hypersurface orthogonal, which is, 
however, not the case in Ozsvath's solutions, so that 
there is only the trivial solution, oc = const. 

Lastly we consider the possibility of the existence of 
a timelike generator which is hypersurface orthogonal. 
If we write ul% for this timelike vector, then u«;p = ° 
and hence we get, remembering (8) and using (2) and 
(22), 

0= -87Tp(V«U«)vp + (A + 47Tp)Up - 2Kl%u«Kp, (39) 

which yields 

-87Tp(VI%U«)2 + (l + 47Tp)U2 - 2(K«u«)2 = 0, (40) 

(A + 47Tp)(V«U«) - 2(K«VIl)(KpuP) = 0, (41) 

-87Tp(V«ul%)(KPvp) + (l + 47Tp)(KPup) = 0, (42) 

after contraction with uP, vP, and KP, respectively. 
Solving the above equations, we get 

and 

A2 _ 167T2p2 = 167Tp(KPvp)2, 

(A2 - 167T2p2)u2 = 4A(KPup)2, 

[(A + 47Tp)2/167TpA]u2 = (vl%u~l. (43) 

It is clear from (43) that u'" can exist only if A > 
47Tp > 0. 

3. TWO SPECIAL NULL-FIELD SOLUTIONS 

In this part we present two null-field solutions. We 
shall start with the condition that the space-time 

admits a null translation with the propagation vector 
as the generator, so that the Killing equation 

(44) 

is satisfied. Let us choose a coordinate system such 
that this motion is a translation in the null direction 
xl, so that KIl = b't. We shall further specialize the 
line element to the comparatively simple form 

ds2 = j(dXO)2 + 2a dxo dx1 - m(dx2)2 - n(dx3)2, 

(45) 

wherej, m, n, and a are functions of X O and x2• Besides 
the null translation, the space-time of (45) admits a 
translation along x3

• 

We get the nonvanishing components of Rllv by 
straightforward calculation for the line-element (45): 

R _! n22 _ ! m2n2 _ ! (n2)2 + ! a2 . n2 
~- , 

2 m 4 (m)2 4 m . n 2 a m 

R __ ! a22 + ! a2m2 _ ! a2n2 
01 - , 

2 m 4 (m)2 4 m . n 

where the dot indicates differentiation with respect to 
XO and the subscript 2 denotes differentiation with 
respect to the x 2 coordinate. Assuming that we have a 
matter-free pure-radiation field and that A = 0, Eq. (2) 
gives 

Equations (32) and (44) together now give 

KIl;v = 0. 

(47) 

(48) 

From (47) it follows that Roo =-2a2 and R22 = R23 = 
Ro1 = 0. Relation (48) shows that a is at most a func
tion of X O alone. Without any loss of generality, we 
may, therefore, take a to be a constant. The second 
and third equations of (46) are actually equivalent and 
can be written as 

n22 _ !(~)2 _ ! m2 . n2 = 0, 
n 2n 2m n 

(49) 
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which gives the relation, with n2 ~ 0, 

n2/mtnt = p, (50) 

where P is a function of xO alone. The other independ
ent field equation is 

1 mIn 1 rh)2 1 (iz)2 1 /22 
2 m + 2 ~ - 4(m - 4 ~ - 2 m 

+ !/2m
2 _ ! 12"2 = _2a2. (51) 

4 (m)2 4 m' n 

Equations (50) and (51) provide only two relations 
between three unknown functions/, m, and n,and thus 
the system is undetermined. However, the electro
magnetic-field tensor is determined up to a duality 
rotation and is given by 

pI2 = m-t sin [!,8x3 + 1J!(xO)] 

and 
pI3 = n-t cos [!,8x3 + 1J!(xO)], (52) 

where 1J!(XO) is an arbitrary function of XO and P is given 
by Eq. (50). 

We shall give two specially simple solutions. In both 
of them, m = n. Further, in the first one the XO lines 
are also null lines so that/ = 0, and from (50) and (51) 
we then get 

ds2 = 2a dxo dxl 
- ell"'» cos2 (axO)[(dx2)2 + (dx3?]; 

(53) 

P is constant in this case. The electromagnetic field 
tensors are, from (53), 

pl2 = e-lll",a sec (axO) sin [t,8x3 + V'(XO)]. 

pl3 = e-lll",a sec (axO) cos [tIJx3 + 1J!(x°)]. (54) 

The second solution that we shall consider is one in 
which the space-time admits a further motion along 
the XO lines. The g". would then be a function of x2 

alone and, from (46) and (51), we find 

n2/m!n! = P 
and 

(55) 

_ !h2 + !/2m2 _! /2n2 = _2a2, (56) 
2 m 4 (m)2 4 m . n 

where P is now a constant. 
A particularly simple solution of the above is given 

by 
m = n = ell"'!, / = (4a 2/{32)efI"", (57) 

so that the line element can be written as 

ds2 = ell""[(dxO)2 - (dX2)2 - (dX3)2] + (3 dxo dx\ 

(58) 

and the corresponding electromagnetic field tensors 
are, from (52), 

pl2 = e-lll "" sin [t{3x3 + V'(XO)], 

pl3 = e-1llx' cos [t{3x3 + V'(XO)]. (59) 

Here again, 1J!(XO) is an arbitrary function of xu. The 
null solutions presented above illustrate beautifully 
the nonuniqueness of the electromagnetic field tensors. 
As in this case, the propagation vector is hypersurface 
orthogonal, any duality rotation through a. where 
a.,v = CKv is permissible [see Eq. (38)], and as in our 
case Kv = ab~ gives ex = V'(XO) where V'(XO) is an arbi
trary function of xu. The case of the second solution is 
particularly interesting. With V'(XO) = const, this 
corresponds to a static field, the XO coordinate being 
interpreted as the time coordinate; hence, the field 
is nonradiating, whereas with V'(XO) = xu, the electro
magnetic field is oscillatory and simulates a radiation 
field. 
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The expansion of any functionj(r) of the distance r between two points is given as a Fourier series. 
This is a generalization of results given earlier by Ashour for rn and log r. The Fourier-series expansion for 
the product rN eiM8 is also given, where now r = (r, 0) denotes the sum of r 1 and r,l. the coordinate 
vectors of the two points. This is further generalized for the product of a function f(r) of r and a circular 
harmonic. Expansions of similar products involving spherical harmonics have been given earlier by 
Sack. Special cases whenf(r) is a Bessel function or a modified Bessel function are considered. 

1. INTRODUCTION 

The expansions of arbitrary powers and functions of 
the distance between two points as series involving 
Legendre functions have been considered by Sack l 

and earlier by Chapman.2 Ashour3 followed Sack's 
method and obtained an expansion for the general 
power 

rn = (ri - 2r1r2 cos w + r2)!n 

as a Fourier series 

I Rn,!(rl , r 2)cos Iw, 

where r1 , 01 , rP1 and r2 , O2 , rP2 are the spherical polar 
coordinates of the two points and 

cos w = cos 01 cos O2 + sin 01 sin O2 cos (rP1 - rP2)' 

Ashour also gave the Fourier expansion for log r. 
Clearly, such expansions are appropriate in two
dimensional applications. In the present paper we 
give a generalization of Ashour's results to any 
function f(r) of r which can be expressed as a power 
series in r. This is given in Sec. 2, together with the 
treatment of certain special cases, namely when fer) 
is (i) a Bessel function of zero order, (ii) a modified 
Bessel function of zero order, and (iii) a Gaussian 
function. 

In a second paper, Sack4 derived an expansion for 
the product of a power rN of r and a surface spherical 
harmonic Yj!(O, rP), where r, 0, rP are the coordinates 
of the point whose position vector is r. Sack's ex
pansion was given in terms of the spherical harmonics 
of (01, rP1) and (0 2 , rP2), where now r = r1 + r2 and 
f1' f2 are the position vectors of the points (r1' 01, rP1) 
and (r2' O2 , rP2), respectively. In Sec. 3 of the present 
paper we give the corresponding Fourier expansion for 
the product of rN and a circular harmonic eiM8 where 

1 R. A. Sack, J. Math. Phys. 5, 245 (1964). 
2 S. Chapman, Quart. J. Pure Appl. Math. 185, 16 (1916). 
3 A. A. Ashour, 1. Math. Phys. 6, 492 (1965). 
• R. A. Sack, J. Math. Phys. 5, 252 (1964). 

the vector f = (r, 0) is the sum of the position vectors 
of the points (r1' ( 1) and (r2' ( 2), This is further 
generalized in Sec. 4 to products of a circular harmonic 
and any function fer) which is representable as a 
power series in r. Special cases, namely whenf(r) is a 
Bessel function of the first, second, or third kind, or 
a modified Bessel function of either the first or second 
kind, are considered in Sec. 5. 

For brevity, the notation of Refs. 1, 3, and 4 is 
followed here. 

56 

2. EXPANSION FOR f(r) 

A. Expansion for Arbitrary Functions f(r) 

Ashour3 gave the following expression for rn: 

rn = I Rnlrl' r2) cos lw, (1) 

where three different expressions were given for 
Rn!(r1 , r2), namely, 

Rnlr1' f 2) = [(2 - o~)/l!](-in)r~(r</r>/ 

x F(-in, I - in; 1+ 1; (r</r»2), (2a) 
R nl(r1 , r2) 

= [(2 - D~)/l!]( -in}z(rlf2Y(ri + ri)in-z 

x F'OI - in, il - in + i; l + 1; 4rir;/(r; + r~)2), 
(2b) 

and 

Rnl(r1, r2) = [(2 - o~)/I!]( -in)Z(r1r2y<r1 + r2)n-2I 

X F(l - in, 1 + t; 21 + 1; 4r1r2/(r1 + r2)2). 

(2c) 

Following the method adopted by Sack,! each of 
these expressions will be written in an operational 
form which, in turn, yields an expansion for any 
functionj(r) which can be expressed as a power series 
I enr'. Using the relation 

(-tn)s( -tn)z+sr~-2S 

= (-1)!r;! (~ ~)L[~ ~ (r ~) JS rn (3) 
21+28 r> or> r> or> > or> > , 
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Eq. (2a) transforms into 

(
r )1 <Xl ( -1 )lr 2&r III 

R (r r) - (2 - rl) -==- ~ < > 
nil, 2 - I ~ 21+28 '(I + )' r> 8-0 s. S . 

B. Expansion for Certain Functions fCr) 

The expansions (6), (7), and (8) factorize for certain 
functionsj(r) as follows. 

(l) Consider functions satisfying the differential 

x (1-~)I[..!.. ~(r ~)J'rn 
r> ar> r> or> > or> >. 

(4) equation 

..,2 1 d ( d) 2 

Hence, any function jCr) = I enr» can be expanded as 
v 1= -- r- /= -kl, 

r dr dr 
(9) 

ex; 

fer) = I Nrl' r2) cos Zo), 

i.e., j is a Bessel function of order zero of the first, 
(5) second, or third kind, 

1=0 
Jo(kr), Yo(kr), H~l)(kr), H~2)(kr). 

Using (B7.2.52) and (B7.2.53), we obtain from Eq. (6) 

o ex; (-lY(kr <Y+2S 
{" = (2 - b ) " w'(kr ) 
Jt Is~(2s)!!(21+2s)!! ! > 

= (2 - 6~)Jl(kr <)lV;(kr», (10) 

where W = J, Y, H(l), H(ll). Thus, 

Wo(kr) = }.; (2 - 6~)J!(kr <)W1(kr» cos /0), (11) 
1 

(6) which is exactly the addition theorem (B7.15.29). 
(2) Consider functions satisfying 

where n!! is defined as in Eq. (43) of Ref. 1, and II(Z) 
is the modified Bessel function of the first kind defined 
in Ref. 5, Sec. (B7.2.2). Similarly, (2b) and (2c) show 
that 

fl(rl, r2) 

o <Xl 1 (r1r2 () )1+2$ 
= (2 - OI\~O (2s)!! (21 + 2s)!! - -;; op f(p) 

where p = (r~ + r~)t, r+ = r1 + r2 , and <I> is the 
confluent hypergeometric function (B6). In both (7) 
and (8) the product rirZ is to be treated as a constant 
on differentiation. The equivalence of (7) and (8) 
follows from the connection of 4>(a; 2a; 2z) and Il(z), 
namely, 

In(z) = [(tz)n/r(n + l)]e-zc:t>O + n; 1 + 2n; 2z). 

• A. Erdelyi, Ed., Higher Transcendental Functions (McGraw-Hill 
Book Co., Inc., New York, 1953). Sections and formulas in this 
reference are prefixed by the letter B. All references (Bl.m.n.) are to 
equations unless otherwise specified. 

V'1 = ! ~(r ~)f = k"j, (12) 
r dr dr 

i.e.,f is a modified Bessel function of order zero of the 
first or second kind, lo(kr) or Ko(kr). Using 
(B7.11.19)-(B7.11.22) and Eq. (6), we find that 

00 

lo(kr) = I (-1)1(2 - O~)II(kr <)Il(kr» cos lw (13a) 
1=0 

and 
00 

Ko (kr) = I (2 - t5~)Il(kr <)KtCkr» cos [0), (13b) 
1=0 

which are special cases of (B7.lS.36) and (B7.1S.35), 
respectively. 

(3) Ifj(r) is a Gaussian function, i.e., 

fer) = e-kr2
, 

(! ~)f(r) = -2kf(r), (14) 
rdr 

then expansion (7) or (8) factorizes, yielding the result 

<Xl 

exp (_kr2) = 2: (2 - 6'DII(2krlrll) 
1=0 

x exp (-k(ri + r;)] cos lw. (15) 

If we divide by exp [-k(r; + rill, we get 

00 

exp (2krlr2 cos 0)) = ~ (2 - 6~)II(2krlr2) cos [0) (16) 
1=0 
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or, by replacing k by ik, 

00 

exp (2ikrlr2 cos w) = L jl(2 - r5~)Jl(2krlr2) cos lw, 
1=0 

(17) 
which is equivalent to (B7.2.27). 

3. EXPANSION OF rNei1118 

Here r = (', () is the sum of the vectors fl = 
('1' ()1) and rz = ('2, ()2), and we assume that '2 > '1' 
The expansion of V N lrI = r N ei1118 will be given in the 
form 

VNlIf = L R(N, M, ml, m 2 ; '1' '2)eim181im282. (18) 
ml,m2 

M is considered to be a positive integer; the case of 
negative M could be found by taking the complex 
conjugate of (18). In order to obtain such an ex~ 
pansion, we write V N M in the form 

VN111 = ,n(rei8)M, n = N - M. (19) 

We will give expansions of both ,n and (,eill)M in 
absolutely convergent series; hence, the two series can 
be multiplied to obtain the required expansion. 

The expansion of ,n = If 1 + f21n could be obtained 
from the expansion of If 1 - fzln given by (1) and (2) 
upon replacing O2 by 1T + ()2; hence, 

00 

,n = I (-1YR n1('I, '2) cos [1(01 - ()2») 
1=0 

(20) 

where 

R' ( ) - ( 1)1 n(~)'l/,,(-in)'(-in)S+PI(~)28 
nl\'l, '2 - - '2 ..::.. . 

'2 5! (5 + /II)! '2 
(21) 

The expansion of ,MeiM8 = ('lei8, + 'zei82)M is given, 
by use of the binomial theorem, as 

Multiplying (20) and (22) and rearranging terms, we 
obtain 

,N ei1l18 

- ~ ~ (M),l'rM-I'R' (r' )eim8'ei(M-m)8. 
- ..::....::.. 1 2 n,m-I' 1, 2 • 

m=-oc 1'=0 f1 
(23) 

Thus, in the expansion (18), the radial function 

R(N, M, ml , m2; '1, '2) is given by 

R(N, M, ml , m2; '1' r2) = 0, if ml + m2 ~ M, 
(24a) 

RN = R(N, M, ml' M - ml ; rl , r2) 

= i ~(M)(_1rl-1' 
8=01'=0 fl 

x (-in).( -in)8+lml-ll/ r~(~\28+1l+lml-I'/. 
5! (S + 1m} - fll)! rJ 

(24b) 

The upper limit in the fl series can be replaced by any 
number> M since (~) = ° for fl > M. This will be 
done frequently without being mentioned explicitly. 

In order to simplify (24b), we consider three cases, 
namely, ml ~ M, 0 < ml < M, and ml =:;;; O. 

(1) ml ~ M: In this case ml - fl > 0, and (24b) 
becomes 

RN = rf I (-1)'( -in)2(rl )m1+28 
8=0 s! r2 

X [mfS(M;fl)(in ; S + ml - fl)], (25) 
1'=0 fl! (s + ml - fl)! 

where 

(x;~) = x(x - 1)'" (x - 0( + 1) = (-1)"(-x)". 
(26) 

Using Vandermonde's theorem, namely, 

i(x; O()(y; m - O() = (x + y; m), (27) 
,,=0 O(! (m - O()! m! 

the fl series in (25) sums up to 

(-l)s+m(-in - M)s+mJ(s + ml)!. 
Hence, 

RN = (_l)ml,~(~)ml i( -tn)( -in - M)8+ml(~)28. 
r2 8=0 5! (s + m1) r2 

(28) 

(2) 0 < ml < M: In this case, Eq. (24b) can be 
written as 

00 ml 00 M 

RN = I L + L I = R~) + RW, (29) 
8=0/1=0 8=0)1=ml+l 

where the missing summands are the same as in (24b). 
Then 

(30) 

and 

R~) = r~(rl)mlI i (_l)s(M;t) 
'2 8=0I'=m,+1 fl· 

X (-in; s + m1 + fl)( _tn)S('l)2s+ZI'-Zm1
• 

(s+m1+fl)! s! r2 
(31) 
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Rearranging this double series, we obtain 

RW = r~(~)ml~ mI"i (-V (-~n); 
r 2 i=O I<=ml+l ] ! 

X (M; f-t)(!n;j + m1 - f-t)(~f. (32) 
f-t! (j + m1 - f-t)! r2J 

Adding (30) and (32), we obtain 

RN = r~(~)ml~(_1);(-~n)8(~)28 
r2 8-0 s. r2 

X mf8 (M; f-t)(in; s + ml - f-t). (33) 
1<=0 f-t! (s + m1 - f-t)! 

Applying Vandermonde's theorem to the f-t series, we 
obtain 

RN = (_l)mlr~(~)mli(-ln).(-tn - M)8+ml(r1)28, 
r2 8=0 s! (s + m1)! r2 

(34) 

which is the same as Eq. (28) which gives RN for 
m1 > M. Thus (34) gives RN for all positive m. 

(3) m1 ~ 0: In this case, (24) becomes 

RN = ~ ~(M;f-t)(in; s)(ln; s + f-t - m1) 

8=01<=0 f-t! s! (s + f-t - m1)! 

(
r )2s+21<-ml 

X r~ -l . 
r2 

(35) 

Rearranging the double series according to ascending 
powers of (r1/r2) and using Vandermonde's theorem, 
we obtain 

RN = (_1)mlrf(~rml 

4. AN EXPANSION FOR [(r)eim9 

In order to give an expansion for f(r)eMi8 , where 
f(r) is assumed to have a power series expansion 
L cnrn, the functions R+ and R_ given by (38) will be 
written in an operational form. We have 

(39) 

Thus, Eq. (38) can be written in the form 

(40) 

Hence, the expansion of[(r)eiMB is given by 

"" f(r)eiMB = 2, f+(N, M, m; r1 , r2)eim81ei(M-m)B2 
m=O 

"" + '" f (N Mm· r r )e-im81ei(M+m)82 .(., - , , '1, 2 , 
m=l 

(41) 
where 

/=-2, --1 r;"+28r~'F M (1 d)m 

± 2m • (2s)!! (2m + 2s)!! r2 dr2 

(42) 

X ~( -in)8-ml( -In - M)8(~)28. (36) Alternatively, the powers of (l/r2) d/dr2 can be put last, 
8=0 (s - m

1
)! s! r

2 
and we have the result 

Summing our results, we have 

"" + 2,R_(N,M,m;r
1
,r

2
)e-<m81ei(M+m)B2, (37) 

m=l 
where 

R± = (-1)mr~(~r 
x.i( -iN ± iM)8(-}N T iM)8+m(S)28 

8=0 S! (S + m) r2 

= (_1)m r~(~)m( -iN T lM)mF(-tN ± tM, 
m! r2 

-iN T tM + m; m + 1; -; . (38) r2) 
r2 

1 r;"+2" 
f± = 2m~(2s)!!(2m + 2s)!! 

X [~+! ~ _ (m T M)2J8 
dr~ r2 dr2 r~ 

(43) 

Special Cases 

As before, the expressions (42) and (43) factorize 
for special types of functions f 

(1) If f(r) satisfies the differential equation 

(44) 
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i.e.,f is a Bessel function in (kr) of order M ofthe first 
second, or third kind, then 

f(r)=WM(kr), WM=JM'YM,H~~,H<;j. (45) 

Using (B7.2.52, 53), we obtain from Eq. (42) 

(_ly+m/2=Fm/2(kr )m+2s 
f - "" 1 W (kr) ±-7 (2s)!!(2m+2s)!! M=Fm 2 

= J ±m(krl ) WM=Fm(kr2). (46) 

Hence, 
00 

W M(kr)eiM6 = I J m(krl ) W M_m(kr2)eim61ei(M-m)62, 
m=-CX/ 

(47) 

which is equivalent to the addition theorems (B7.6.6) 
and (B7.l5.33) and (B7.l5.34). 

(2) If f(r) satisfies the differential equation 

- + -- - - fer) = k'1(r), ( 
d2 1 d M2) 
dr2 r dr r2 

(48) 

(i) fer) = IM(kr): Using (B7.11.19) and (B7.11.20), 
we obtain from Eq. (42) 

Thus, 

(kr
1
)m+28 

f± = ~ (2s)!! (2m + 2s)!! I M=fm(kr2) 

= I±m(krl )IM=Fm(kr2). 

+00 

(50) 

I M(kr)eiM6 = I I m(kr!)I .ilI_m(kr2)eim61ei(M-m)6z, 
m=-oc> 

(51) 
which is equivalent to (B7.l5.36). 

(ii) fer) = KM(kr): Using (B7.11.21) and (B7.11.22), 
we obtain from Eq. (42) 

(krl)m+2S(_l)m 
f± = ~ (2s)!! (2m + 2s)!! K M=Fm(kr2) 

= (-l)mI±m(krl )KM:r:m(kr2)· 
Hence, 

KM(kr)eiM6 

+00 

(52) 

= L (_1)mlm(krl)KM_m(kr2)eim61eiCM-m)62, (53) 
m=-CX) 

which is equivalent to (B7.15.35). 
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In a previous paper we have shown, for S-waves, that the resulting integral equations of the f/f 
equations (equivalent to the N/D approach) can be obtained from the Marchenko formalism. The 
potential V(Il, r) reconstructed from the discontinuity 1lt:.(X) is -2(d/dr)[(d'.D/dr)/':D], where '.D(Il, r) is 
the Fredholm denominator of the Jost solution and '.Deu, 0) that of the resulting integral equation. For 
"regular discontinuities" we find different classes of V(Il, r). First, if '.D(Il, 0) = 0, then V(Il, r) is not 
"regular at the origin" [in general, we find that V(Il, r) becomes marginally singular: repulsive and 
singular like r-2]. Secondly, if '.D(Il, 0) '" 0, then V(Il, r) is "regular" at the origin and we obtain the 
following: (i) If I.ul is less than the smallest modulus root of '.D(Il, 0), then V(Il, r) has no poles for r ~ O. 
This range of 11l1-values where the iteration series of the resulting integral equations converge is limited 
by the smallest IIlI value where a real or complex ghost can appear or where a bound state can appear 
at zero energy. (ii) For 1IlIIarger than this smallest modulus root but It inside the interval given by the 
first positive and negative roots, V(Il, r) has no second-order poles for r ~ O. These results (i) and (ii) are 
obtained with the restriction that in the considered interval there do not exist (f.1, r)-values such that 
'.D(±f.1, r) = 0, and from our study we cannot conclude that this is always true. (iii) For Il outside the 
above interval, V(Il, r) has poles of the second order for r > 0, the "bound states" being, in general, 
real or complex ghosts, or "bound states" corresponding to badly behaved potentials. We find also that 
the Jost solutions for energy equal to zero are '.D( - Il, r)/'J)(Il, r). This gives the connection between ghosts 
and, in general, possible bound states appearing at zero energy; this gives also the relations between 
poles of V(f.1, r) corresponding to opposite Il values. These results for the Jost function correspond to a 
normalization at infinity, so we have considered the problem of subtractions with normalization at an 
arbitrary point. Then the new Fredholm determinant is the product of the old one by the value of the 
Jost function at the subtracted point. It follows that, if the first f.1-greater-than-zero and the first f.1-less
than-zero roots of '.D(Il, r) are not opposite (r ~ 0), the Lui interval of convergence of the iteration series 
is enlarged for the'subtracted equation. 

I. INTRODUCTION 

In a previous paper ,1 hereafter called I, we have 
shown that, in potential scattering for S waves, the 
resulting integral equation2 of the fl.fequations (equiv
alent to the NID approach3

) can also be obtained 
from the Marchenko formalism.4 This fact makes it 
possible to study the existence of the solutions of the 
resulting integral equation and to interpret their 
meaning in terms of potentials. In Sec. II we recall 
briefly the results obtained in I and also some basic 
relations obtained in Appendix A. Considering "regu
lar discontinuities" such that the resulting integral 
equation is of the Fredholm type, we study in the 
following sections the behavior of the potential re
constructed from the discontinuity, the interpretation 

* The results of this paper have been presented at the 1966 
International Conference on High Energy Physics at Berkeley, Calif. 

1 H. Cornille, J. Math. Phys. 8, 2268 (1967). Paper presented at 
the 1966 International Conference on High Energy Physics at 
Berkeley, Calif. 

2 (a) A. Martin, Progress in Elementary Particles and Cosmic 
Ray Physics (North-Holland Pub!. Co., Amsterdam, 1965); Nuovo 
Cimento 19, 1257 (1961). (b) V. de Alfaro and T. Regge, Nuovo 
Cimento 20, 956 (1961). 

3 (a) G. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960); 
see also other references quoted in Ref. 1. (b) E. H. Nyman, Nuovo 
Cimento 37, 429 (1965). 

4 Z. S. Agranovich and V. A. Marchenko, The Inverse Problem 
of Scattering Theory (Gordon & Breach, Science Publishers, Inc., 
New York, 1963). 
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of the corresponding states (bound states and ghosts), 
the lost solutions and lost functions, and the useful
ness of normalizations and subtractions. We illustrate 
some of these results by considering the simple case 
of discontinuities such that the kernels of the Mar
chenko equations or, equivalently, the kernel of fl.f 
equations are degenerate with only one or two eigen
values. 

II. BASIC RELATIONS 

We recall briefly the results (obtained in I), which 
give the connection between the Marchenko-inversion 
formalism4 ~nd dispersion relations in the III 
approach. 2 We consider the lost solutions 

f(k, r) ~ e- ikr 

for S waves. In the Marchenko formalism,4 for 
Yukawa types of potentials, we have 

V(r) = LXl e-arC(ex) drt., 

lC(ex)1 < const x ex1
-

q
, 'YJ > 0, 

Lao IC~:)I drY. < 00, (1) 

where V(r) is holomorphic for Re r > 0. 
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The scattering data -3'(r), defined as 

p 1 f+oo 
-3'(r) = !M~e-I"'iIr + - [1 - S(k)]eikr dk, 

;=1 21T -00 
(1') 

is the inverse Laplace transform of the discontinuity 
of the S matrix 

3'(r) = roo e-·u.l(u) du. (1") 
Jim 

We have called ~(x) the discontinuity. The M~, being 
greater than 0, are finite normalization constants 
corresponding to the bound states -lx;12 [the bound 
states, poles of S(k) in 1m k < 0, are roots of the 
Jost function, i.e., all the roots in 1m k < 0 are simple 
and are such that Re k = 0]. If we substitute (1") in the 
Marchenko formalism, we get for the Jost solutions 
an integral equation1: 

F(x, r) = f (k = -ix, r), 

F(x, r) = e-"" + y F(y, r) dy. (2a) f
OO ~( )e-r("'+tI1 

im x + y 

The important point is that, for r = 0, Eq. (2a) is 
the sa:me equation as the resulting integral equation 
of the III formalism. Equation (2a) is an off-the-mass
shell Nt D-type equation from which we get results 
for the on-the-mass-shell N/ D equations. 

Furthermore, if we consider the Laplace transform 

F(x, r) = 100 

4>(y, r)e-"'1I dy, 

we get from (2a) 

4>(y, r) = bey - r) + LOO 3'(y + t)4>(t, r) dr. (2b) 

If we put 4>(y, r) = £5(y - r) + G(y, r), we get the 
Marchenko fundamental equation giving the poten
tial from the scattering data: 

G(y, r) = 3'(r + y) + Loo 3'(t + y)G(t, r) dt, 

d 
VCr) = -2 - G(r, r). (2') 

dr 

We see that (2b) and (2') have exactly the same kernel. 
This is the main property which makes it possible to 
connect the III equations and the Marchenko formal
ism. For instance, the eigenvalues [such that non
trivial solutions of the homogeneous equation of 
(2a), (2b), or (2') exist] are the same and the Fredholm 
determinants of (2a), (2b), (2') are also the same,l 
Furthermore, the eigenfunctions are connected by a 
Laplace transform. We can use both kernels in order 
to study the eigenvalues or, equivalently, the roots of 
Fredholm determinants. 

In fact, for the Yukawa family,1 we know from the 
Marchenko results that the only solution of the 
homogeneous equation (2') is the trivial one and 
similarly for (2a) and (2b). Now we want to emphasize 
(always for the Yukawa family)1 that all these results 
can be obtained directly from dispersion techniques 
(without using the Marchenko formalism) by using 
the well-known analytical properties of the Jost 
solutions for r ~ 0 fixed and the method given by 
Martin2(al for the Jost functions. We define g(k, r) = 
f(k, r)eik.; then for Eq. (1), g(k, r) has the following 
spectral representation, for r ~ 0, 

(k) 1 .~oo R(y, r) d g ,r = -I -- y, 
im k - iy 

where R(y, r) is real. Now as has been shown by 
Martin,2(al fUx ± E, r) and fUx, r) are not linearly 
independent solutions of the SchrOdinger equation; 
thus we get 

1
. g(ix + E, r) - g(ix - E, r) 
1m 
£->0 g( -ix, r) 

2. A() -2zr - 2i1TR(x, r) 
= - I1TU X e = 

g( -ix, r) , 

where -~(x) is the discontinuity of the S matrix. If 
we substitute this last expression in the spectral 
representation, we get 

( 
. ) 1 ~00~(y)e-2~.g(-iy,r)d 

g -IX, r = + y. 
im X + y 

If we recall that g(-ix,r)=F(x,r)e+",r and sub
stitute in the spectral representation, we get the 
off-the-mass-shell equation (2a). So, finally, the 
Marchenko equation can be obtained directly from 
dispersion methods by taking the Laplace transform 
of (2a). 

We recall that we have assumed aYukawa-type 
family of potentials in order to get (2'). In this paper 
we are interested in the following problem: Find and 
interpret the solutions of the resulting integral 
equation of/If [or (2) for r = 0] considered as a linear 
integral equation. Then we write the discontinuity as 
.u~(x), where .u is a real linear parameter. Since 
.u~(x) is the input, the scattering data become 

.u roo e-'u~(u) du 
Jim 

and the S matrix as well as the potentials are .u 
dependent: That is, V(.u, r) and S(k,.u) are p 
dependent. We want to interpret the solutions of (2') 
but, of course, we cannot assume the conditions of 
finite moments for the potential (we recall that 
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Marchenko equations and the existence and unique
ness of the corresponding solutions have been 
established with these conditions of finite moments). 

Now we do not assume anything about fl6.(X) and 
we formally get a set of results from Eq. (2). 

The Fredholm determinant of Eqs. (2) and (2') is 

<.D(fl, r) = 1 + I (_,u)n 
1 n! 

x Ii: du1 " -fi:dUn('(I 6.(u/)e-
2'u,)Pn, 

1 1 

1 

<.D(fl, r) = exp ( _ ~ fln A:r)) , 

A (/") = (00 du ... (00 du 
n Jim 1 Jhn n 

n 
IT 6.( u/)e-2ru

; 

1 
2u n 

(3a) 

X 1 (3b) 
(Ul + U2)(U 2 + U3) ••• (Un + U1) , 

where An(r) is the nth trace of the kernels of (2). The 
potential V(,u, r) reconstructed from this discontinuity 
is linked in a very simple way to <.D(fl, r), as was shown 
in Ref. 1, 

V(,u, r) = -2 ~(a<.D(,u, r)j<.D(fl, r»). (4) 
ar ar 

The bound obtained by de Alfaro and Regge for 
r = ° can be generalized, for Re r ~ 0, to 

1<.D(f1, r)1 < exp II:'fl~~U)' e-2
(Rerlu du, 

1<.D(,u, r) - 11 < exp (Joo Ifl6.(u)1 e-2(Rerlu dU) - 1. 
im 2u 

(5) 

In Appendix A of the present paper, it is also shown 
that the Jost solution (2) for zero energy (x = 0) can 
be written 

F(O, r) = '1)( -,u, r)j'1)(ft, r). (6) 

In Appendix B it is shown that 

I.!L '1)(p;, r) I < (00 1f16.(u)1 e-2<Rer)u du 
dr Jim 

X exp (00 Ift6.(u)1 e-2<Rerlu du, 
Jim 2u 

Re r > 0. (7) 

In this paper we restrict our study to 
discontinuities" d(x)O(x - !m) such that 

"regular 

1
00 

Id(x)1 dx < 00, 

im x 

-- dxdy < 00. 1
00 100 ( 6.(y) )2 

im im x + y 
(8) 

Then Eq. (2) is of the Fredholm type for r =F 0, as well 
as for r = O. From Eq. (6), 

1'D(ft, r)1 -+ 1 
r--> 00 

and Eq. (4) can be written as 

exp ( -t 100 

dx LOO V(f1, t) dr) = <.D(f1, r), r ~ 0. 

(9) 

Because of Eq. (4), V(fl, r) can have poles of the 
second order, for r > 0, corresponding to roots of 
<.D(fl, r). If we write Vas a Laplace transform, 

V(fl, r) = Loo C(oc, ,u)e-lZr doc, 

or if we consider Vand C as a fl series, that is, 

V = I,unVn(r), C = I,unc,.(ot), 

we have also (see I) 

V (r) = ~ d2An(r) 
n n dr2 ' r > 0, 

! foo CnCot)e-
lZr 

d = A ( 
2 

2 0( n r), 
m oc 

r ~ 0, (10) 

1 foo -lXr C(oc,,u) d - e --2 - oc = -log 'D(fl, r) 
2 m oc 

__ ~ nn Air) , 
~r r~O. (11) 
1 n 

Now we assume that 6.(x) has a bad asymptotic 
behavior (as x -+ (0) such that Eq. (8) is not satisfied. 
We remark that, for such "singular discontinuities," 
most of the previous results are still valid for r > 0. 
We consider, for instance, 

6.(x) ,..., const, 

which is marginally singular, or the case when 
6.(x) ~ xn

, for n > 0, which is even more singular, 
but still with a good behavior of 6.(x) for x finite; 
then we see that Eq. (2) is still of the Fredholm type 
for r > 0 (but not for r = 0). Roughly speaking, we 
see from Eqs. (4) and (5) that the main difference for 
the case we consider, Eq. (8), is that the corresponding 
potentials V(fl, r) will be "singular" when r goes to 
zero for such "singular discontinuities." We do not 
study these "singular discontinuities" in this paper, 
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but Eqs. (2), (4), and (9) can be the basis for a further 
investigation in this field. 

In the following, we consider always "regular 
discontinuities" such that Eq. (8) is satisfied. 

III. BEHAVIOR OF THE RECONSTRUCTED 
POT,ENTIAL V(Il, r) 

It cannot be the object of the present paper to do a 
complete analysis of the solutions F(x, r) and V(I', r) 
when the conditions of finite moments for the poten
tials and uniq ueness of the solutions are not satisfied
or equivalently when the analytic structure of the 
S(k, ft) matrix corresponding to I'~(x), ft real, does 
not satisfy the usual conditions: e.g., thelocation and 
order of multiplicity of the poles in 1m k < 0 or 
conditions on the normalization constants M; of these 
poles [see (1 ')]. We want to give only some simple 
general features. For a V(I', r) of the Laplace trans
form type, we find four different families satisfying 
two different criteria: namely, (i) :D (ft, r = 0) rf ° 
or = 0, V(ft, r) "regular" or not regular at the origin, 
respectively; (ij) if :D(ft, r) ~ ° or = ° in Re r > 0, 
then V(ft, r) is holomorphic or not in Re r > 0, 
respectively. Moreover, if :D(ft, r) can vanish in 
Re r > 0, we also have two cases, depending on 
whether some roots are on the real axis or not. If 
V(I', r) has poles of the second order for r 2 0, then 
the conditions of finite moments are not satisfied. 

Then we have the following families: 
(1) :J) (ft, r == 0) = 0 and we find in general that 

V(ft, r) is singular and repulsive like r-2 at the origin. 
(2) :J) (ft, r = 0) ~ 0, but :J) (1', r) = 0 for some 

particular positive r values. Then V(I', r) has poles of 
the second order for r real and greater than zero. 

(3) :J) (1', r = 0) rf 0; :D«(..l, r) can have roots in 
Re r > 0 and V(I', r) can have 'poles for Re r > 0, 
but not for r real and greater than or equal to zero. 

(4) :D (1', r = 0) rf 0 and V(ft, r) holomorphic in 
Re r > 0 [Yukawa family (1)]. 

For families (2), (3), (4), :D (1', r = 0) ~ 0 and 
V(p" r) is "regular" at the origin (roughly speaking, 
less singular than the centrifugal potential). 

A. An Example: ll(x) = <5(x - b) 

In order to illustrate these different cases, we 
consider first the simple case where the discontinuity 
is replaced by a simple pole leading to the Jost-Berg
man potentials5 

V(ft, r) = 4bl'e-2bT (1 - (ft/2b)e-2bT]-2 
and 

:D(ft, r) = 1 - (ft/2b)e-2br. 

• See R. Jost, Helv. Phys. Acta 20, 256 (1947), and V. Bergman, 
Rev. Mod. Phys. 21, 488 (1949). 

For I' = 2b, we have family (1) and 

V r-J 2/r2. 
r-O 

For ft ~ 2b, we have families (2)-(4). For ft > 2b 
[family (2)], V has poles of the second order in 
Re r > 0 and, in particular, for r> 0: Re r = 
(l/2b) log 11'/2bl, 1m r = 2mrr/b, m = 0, 1, 2,···. 
For ft < -2b [family (3»), V has poles in Re r > 0, 
but not for r real and 2 0, that is, 

Re r = (1/2b) log 11'/2bl, 1m r = ±(2m + l)rr/2b. 

For 11'1 < 2b [family (4)], Vhas no poles in Re r > o. 
B. Some Simple Properties for the Roots of 

:D(Il, r) = 0 

If we assume ~/(x + y) to be a real polar kernel,S 
then [from Eq. (8)] (2a) is of Fredholm type with 
well-known properties for the roots. If we consider 
(2b), we shall get more information because :F(x + y) 
is not only real and nondegenerate, but also symmetric. 
From Eq. (8) we get 

fa) 1'1) [:F(x + y)]2 dx dy < 00, (8') 

for r > 0 or r > 0 going to zero. Then :F(x + y) is 
a Hilbert-Schmidt kernel6 defined in VCr, (0), and 
we can apply the properties of such kernels about the 
eigenvalues or roots of :D(I', r). The eigenvalues 
I'±j(r) are real and, for nondegenerate :F(x + y), 
infinite in number, namely 

l'+i(O) > 0, ,UI (0) < ft2(0) ... < ftj(O) ... ; 

l'-j(O) < 0, ftI(O) > ft-2(0) ... > ft-j(O). 

If ~ is always > 0 or < 0, then we have only 
I'+ir) > 0 in one case and I'-i(r) < 0 in the other case. 

For 11'1 < 1'0 where 

fto = log 2( roo I~(U)I)-l, 
J~m 2u 

we see from the bound (5) that :D(ft. r) has no roots 
for Re r ~ 0 and V has no second-order poles for 
Re r ~ O. 

On the other hand, the nth trace An(r) given by (3b) 
can also be written as 

An(r) = I'"' dUl .• -1a) dUn 

X :F(u! + U2) (U 2 + Ua) ••• :F(U n + Ul)' 

• See the references given by R. Courant and D. Hilbert, 
Methods of Mathematical Physics (Interscience Publishers, Inc., 
New York, 1953), Vol. I, p. 161. See also a summary of these 
properties and the references given by K. Meetz, J. Math. Phys. 3, 
690 (1962). 
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We see that 

IAnCr)1 --+ ° 
r-+ 00 

and 

r-+ 00 

following the expansion of ~(,u, r) given by (3b). 
For particular cases, we can get more information. 

For instance, if:F is always> 0, then An(r1) > A n(r2) 

if r 1 < r 2 • From (3b), we find that the smallest root is 
,ul(r) and ,ul(rl) < ,u1(r2) if r1 < r2. We get the same 
result for the smallest modulus root if :F is always 
le~s .than zero. [In this case, we can consider the 
corresponding expansion of (3b) for the Fredholm 
determinant of the first iterate kernel of :F(x + y); 
the roots are ,uL(r) and only A 2n(r) appears in the 
corresponding expansion.] 

Unfortunately, these ,u±i(r) roots of ~(,u, r) = ° 
(for r fixed) have an unknown order of multiplicity 
(with respect to ,u). But in our case, Eq. (6) gives us 
supplementary information about the order of 
multiplicity in ,u. We know6 •7 that the resolvant 
kernels corresponding to such polar kernels (2a) or 
symmetric kernels [(2b) and (2')] have only simple 
poles in ,u. The solutions7 

F (x = 0, r) = ~(-,u, r)/~(,u, r) 

also have simple poles. From this it follows that, if 
(,u, r) is a root of ~(,u, r) = ° (r ~ 0, fixed) but such 
that (-,u, r) is not also a root, ~(-,u, r) # 0, the 
multiplicity is unity, and o~(,u, r )/o,u # 0. In Re r > 0, 
~(,u, r) is analytic in r and is an entire function of ,u; 
in this case, ,u(r) is unique. Near such a root (,u real, 
and r real and> 0), we can apply the well-known 
theorems about implicit functions ,u(r) such that 
~(,u(r), r) = ° (for r = 0, we do not have analyticity 
in r, but only continuity when r > 0--+0). 

C. Are the Solutions of (2) Also Solutions of 
the Schrooinger Equation? 

We recall that in I the integral equation (2) was 
established with the restriction that the potentials 
were of the Yukawa type (1) (where V was of the 
Laplace transform type, holomorphic in Re r > 0, 
and "regular" at the origin). But ~(,u, r) can vanish in 
Re r > ° as well as for r = 0; consequently, some 
assumptions of Yukawa type potentials can be 
violated, and we must ask ourselves if the solutions 
of (2) always have a meaning in potential scattering. 
The study can be made, independently of Marchenko 
results, by using only the integral equation (2) and 

7 F. G. Tricomi, Integral Equations (Interscience Publishers, Inc., 
New York, 1958), p. 115. 

the definition (4) of the potential, but this requires a 
large amount of algebra; so, for simplicity, we shall 
use Marchenko results. 

We seek ,u-values such that V(,u, r) satisfies the 
conditions of finite moments. For 

l,ul < ,uo = log 2 -- du , (~ OO 1~(u)1 . )-1 
tm 2u 

we know that ~(,u, r) # ° for r ~ ° and 

I Loo e-~r C(:~ ,u) doc I < 00. 

We see that in this case V decreases exponentially, is 
regular at the origin, and has no poles of the second 
order for r ~ 0. But we have no information about 
I V(,u, r)1 which is sufficient to directly find the con
ditions of finite moments. Then, following Mar
chenko,4 we consider the quantity 

M = 100 

r 13"(r)1 dr. 

Marchenko has shown8 that, if M < 00 and if (2') has 
no homogeneous9 nontrivial solutions [,u-values 
different from ,u±i(r) for all r # ° and any j], then 

A = 100 

r I V(r)1 dr < 00. 

First, we consider l,ul < ,uo and we shall see that 
the two Marchenko conditions above are satisfied. 
On the one hand, we know that in this interval (2a) 
and (2b) or (2') have only the trivial (identically zero) 
solution for the homogeneous integral equations. On 
the other hand, we wish to determine if M < 00. 

For this we consider the condition (8) for ~(x) and 
the fact that :F(r) and ~(x) are Laplace transforms. 
For instance, in order to verify (8), we can assume 

~(u) ,...., const X u-~, 'YJ > 0, 
u-+ ro 

and we see that 1:F'(r) I decreases exponentially when 
r --+ 00 and is not more singular than r-2+~ when 
r --+ 0. In this case, M < 00, and we can apply the 
Marchenko results. More generally, using only the 
condition (8) for ~(x), it is shown in Appendix B 
that M < 00. Then, using the Marchenko results 
quoted above, A < 00 and (2) is the Jost solution of 
the Schrodinger equation (at least in this l,ul range). 
We will apply these results to F(O, r) and to the corre
sponding V(,u, r) given by Eqs. (4)-(6) and write 

8 See Ref. 4, Chap. II, p. 122. 
9 According to our .resuIts, this condition is equivalent to the 

condition that Eqs. (2a) and (2b) have no homogeneous solutions. 
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them as solutions of the Schrodinger equation: 

[ d22 _ V(,u, r)] F(O, r) == B(,u, r) 2 == 0, (12a) 
dr (~(,u, r» 

B(,u, r) == i5"~ + ~"~ - 2~1),~' == 0, 
for any r > 0. (12b) 

In the l,ul range considered, ~(,u, r) :;6 ° and we get 
(I2b), where :lJ = ~(-,u, r), ~ = ~Cu, r); here the 
derivatives are taken with respect to r. We substitute 
the expansions (3a) in ~, ~ and we get 

00 

B(,u, r) = 2,u2nB2n(r), 
1 

where 

B2n(r) = Ii: dU l •. -ii: dUn (1) ~(Ui)e-2rui) 
X hn(u1 ,···, U;,···, Un). 

hn is independent of r and ~ can be determined from 
(I2b) and (3a). In this l,ul interval, it follows that 
B2n == 0, for any r > 0, from Eqs. (12a) and (I2b). 
We shall use this result in order to show that, in fact, (2) 
[or (6) for x = 0] is really the Jost solution not only 
inside this restricted range. 

Secondly, we consider l,ul > ,uo. We still have 
Ban(r) == ° and, consequently, B(,u, r) :;6 0. The only 
difference with the previous case is that now ~(,L{, r) 
can have roots in r ~ 0, but we remark that, for ,u 
fixed, ~(,u, r) is not == 0, so that if we apply the 
differential operator (l2a) to F(O, r), we still find that 
F(O, r) satisfies the differential Schrodinger equation. 
Of course, now F(O, r) can have poles for r > 0. On 
the other hand, from (6) we see that F(O, r) ~ I as 
r ~ 00, so that F(O, r) is the Jost solution of the 
potentials (4). [A similar study can be made for the 
F(x, r) solution of (2) when x is > 0, using the fact that 
~(,u, r) is the Fredholm determinant of (2) for x > 0, 
as well as for x = 0.] 

The fact that Eqs. (2) are really the Jost solutions 
even when V(,u, r) given by (4) is badly behaved is of 
great theoretical importance. We emphasize the great 
power of the Marchenko formalism and its superiority 
over the usual techniques in order to get the resulting 
integral equation of Jif. Usually aYukawa-type 
family is required and we get only physically accept
able true bound states. From the Marchenko formal
ism, we see that other potentials lead also to Eq. (2). 
In particular, there exist badly behaved potentials 
for r ~ ° such that ghosts will appear. 

D. Behavior of V(ll, r) at the Origin when 
~(Il, 0) ~ 0 

We remark that ~(,u, r) is the Fredholm deter
minant of F(x, r). In this case, the Jost solution goes 

to a constant when r ~ ° (this constant, the Jost 
function, can of course be zero). For instance, 

F(O, r) ~ ~(-,u, O)/~(,u, 0). 
r .... O 

We recall that for S-waves, this means that the poten
tial is regular at the origin (the behavior near the 
origin of the solutions of the second-order differential 
SchrOdinger equation is in this case independent of 
the potential). This remark is the most straight
forward proof of the regularity of V(,u, r) at the origin, 
but we can obtain more information about the 
explicit behavior of the potential near the origin if we 
give more information than (8) about the asymptotic 
behavior of ~(x). For this we use the bounds on 
I~(,u, r)l, I~'(,u, r)1 given by (5) and (7) and a similar 
bound for 1~1I(,u, r)1 [see Eq. (B2)]. We consider 
V given by (4) and we have to investigate the be
havior when r ~ ° of Laplace integrals of the type 

Ii: e-2url~(u)1 (2u)m du, m = 0, ±l , 

where the asymptotic behavior of 1~(u)1 for u ~ 00 is 
given. For this we use the well-known behavior of 
conjugate variables in Laplace transforms (u ~ 00, 

r ~ 0). For instance, if we assume that ~(u) satisfies 
(8) and also 

1~(u)1 c:::' const X u-" E > 0, :;61, 

we get 

I~(,u, r)lr .... o < const + rE const, 
I V(,u, r)lr .... o < const1 X rE

-
2 + const2 X r2

(E-O, 

showing explicitly that the potential is less singular 
than ,-2. More generally, it is shown in Appendix B 
that, if ~ satisfies (8) and ~(,u, r) cannot vanish in a 
finite interval, E [0, b], then 

fr IV(r)1 dr < 00. 

For l,ul finite and fixed, it will be explained in Secs. 
IILE and HLF that ~(,u, r) has only a finite number 
of roots in r ~ ° and that such an interval always 
exists. Since V(,u, r) is regular near the origin, it 
follows that if 

then 

F(x, r) ~ 0, 

F(x, r) ,...., const X r. 

E. ~(Il, r) = o. The Order of Multiplicity in 
r ~ 0 of the Roots 

(1) We assume that i)(,u, ro) = 0 for ro > O. In 
Re r > 0, i)(,u, r) is analytic such that 

(r - ro)n (n) 
~(,u, r) ,-oJ ~ (,u, '0), 

r .... O n! 
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where n is an integer. Similarly, if ~(-ft, r) = 0, 
then the order of multiplicity also is an integer which 
we call m. We get (n, m) by a self-consistent method 
because (n, m) gives the singularity of V and from 
Fuchs theorem the singularities of F(O, r) which must 
be consistent with the singularities of F(O, r) are 
obtained directly from (6). We get: 

(i) If n = 0, then m = 0 or 1, and conversely if 
m = 0, then n = 0 or 1. We see that, if 'D(±ft, r) 
does not vanish for the same r value, then the root 
r is always simple. 

(ii) Both 'D(±ft, r) = O. Then the only (n, m) 
values are (1,3), (3,1) (3,6), (6,3)' .. (tp(p - 1), 
tp(p + 1», (tp(p + 1), tp(p - 1», where p is an 
integer. 

We remark that, if the possible singularities of the 
potentials are only poles of the second order, then 
we have poles of increasing order for the Jost solu
tions. We remark also that the potentials are repulsive 
near the poles. 

From (6) we see that the product of two F(O, ro) 
corresponding to ±ft values is unity, so that if one 
vanishes when r ---->- ro, then necessarily the other is 
infinite. 

(2) We consider now the more delicate case 
ro = 0, where 'D(ft, 0) = O. The difficulty comes 
from the fact that 'D(ft, r) is, in general, nonanalytic in 
r at the origin. 

First, we assume the simple case 

"0 

~(x) = ! (/.tt5(x - bi ), 
I 

where bi > 0, no arbitrary but finite. In this case, 
'D(ft, r) is analytic at r = 0 also. Then the previous 
analysis made for, :F 0 still holds for '0 = O. In this 
case we see that 

V(ft, r) ~ 2n/r2 
..... 0 

[where n is the order of multiplicity of the roots of 
'D(ft, r) for r = 0] is repulsive and singular like 
r-2. We can still determine the order of multiplicity 
as above, whether or not 'D( - ft, r) vanishes for r = O. 
It is amusing to remark that, for these special values 
where 'D(±ft, O) = 0, the reconstructed potential 
behaves near the origin like a centrifugal potential 
pep + 1)/r2. If'D(-ft, 0) ~ 0, thenp = 1 for V(ft, r), 
whereas if 'D(±ft, 0) = 0, then for V(±ft, r) we have 
p or p+l. One of the solutions F(O, r) (corresponding 
to ±ft, r) is regular at the origin and the other is 
singular. 

Secondly, we consider the general case where D. 
satisfies only (8) and, in particular, the case where 

'D(ft, 0) = 0, but 'D( - ft, 0) ~ O. From the condition 
that 'D( -ft, 0) :F 0 and by applying the above 
results, we see that V( -ft, r) is regular at the origin, 
and satisfies (13) so that for V( -ft, r) the Jost func
tion F(O, r) is 

'D(ft, r)/'D( - ft, r) ~ const X r, as r ---->- O. 

From this it follows that 'D(ft, r) ~ const r, as r ---->- 0, 
and for V(ft, r) the Jost function ~ const/r, as r ---->- O. 
From this behavior of the solution F(O, r) near the 
origin, it follows that necessarily V(ft, r) ~ 2/r2 , as 
r ---->- 0, and we see that near the origin the potential 
is like a centrifugal potential with I = 1. Finally, if 
both 'D(±ft, 0) = 0, we cannot draw any conclusions 
from our study. 

F. Behavior of V(tt, r) for tt Inside Different 
Intervals 

(1) Iftl < fto (see Sec. III. C). We recall that 
'D(±ft, r) :F 0 and 

I L"'C(o:' ~:)e-«' do: I < 00 

for r ~ O. The condition of finite moment is satisfied 
and the trace 

'" ft" A,,(r) , 
~ r ~O, 

n 

converges absolutely. 
(2) ft inside La_l(O), ftl(0)1· 
First, we consider the simple case where D. is always 

> 0 (or always < 0). For r ~ 0, we see that in this 
case 'D(ft, r) is always> 0 if ft is < 0 (or fl > 0) [see 
(3a)1. Then, in this case, V(ft, r) has no poles for 
r ~ 0 and ft < 0 (or ft > 0), but can have poles in 
Re r > 0 1m r ~ 0, as was shown in the example 
given in Sec. III.A, and, consequently, V(ft, r) is not 
always holomorphic in Re r > O. In this case, inside 
[-00,ft1(0)] or La-l(O), +00], 'D(ft,r) has no roots 
for r ~ O. 

Secondly, we consider the case where 'D(ft, r) has 
no roots corresponding to opposite ft-values. The 
multiplicity in ft and r is always unity. We want to 
show that when Iftl increases, the new roots appear 
from r = 0 and increase with r. When Iftl increases, 
the number of roots of 'D(ft, r) increases also. We 
consider fl(l) and fl(2); 0 < flU) < ft(2) such that 
'D(ft(1) , r) has N roots for r ~ 0 and 1)(ft(2) , r) has 
N + 1 roots for , ~ O. We call r(l), r(2) the smallest 
roots of 'D(ft(l), r) and 'D(ft(2) , r) [such that 'D(ft(ll, ,) 
or 'D(fl(2), r) has no roots for r < r(ll or r < r(2)1. We 
consider rIa) such that 0 < ,(3) < inf (r(1), r(2»). Be
cause 'D(ft, r) ---->- 1, as r ---->- 00 for ft finite, and the 
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roots fl±j(r) are simple, ~(fl(I), r(3» and ~(fl(2» r(3» 
have opposite signs. Because of the continuity of 
'])(fl, r) in (fl, r), we see that there exists a fl(3) such 
that fl(l) < fl(3) < fl(2) and ~(fl(3), r(3» = O. A similar 
proof for fl < 0 shows also that the root Ifl-i(r) I 
increases when r increases. In this case, ~(fl, r), inside 
[fl-1(0), fll(O)], has no roots for r Z 0, V has no 
poles, and, following what we have said above in 
Sec. ULe, V satisfies the condition of finite moments. 

Thirdly, we assume that, only for Ifll < sup x 
(lfl-1(0)1, Ifl1(0)1), ~(fl, r) has no opposite roots 
[~(±fl, r) = OJ. Let us assume that Ifl-1(0) I > fl1(0). 
Then the above type of proof can be used and we 
still have no roots fl±j(r) , r Z 0, inside [fl-1(0) , fl1(0)]. 

This comes from the fact that, on the one hand, 
~(fl, r) -+ 1, as r -+ 00, and '])(fl, r) -+ const > 0, as 
r -+ O. On the other hand, the multiplicities of the 
roots in fl and r are unity, so that :D(fl, r) will change 
sign when r crosses the root. Using the continuity in 
(fl, r) and the above properties, we can also eliminate 
more complicated cases where more than one root 
appears at r ¢ O. On the contrary, between ]fl1(0), 
-fl-l(O»), '])(fl,O) can have some roots fliO), j = 
1, 2, ... ,p: We see that the corresponding roots 
flk) first appear at r = 0 as fl increases and that 
fli(r) increases when r increases. 

But in the general case, where ~(±fl, r) can vanish 
and the multiplicity in r is not always unity, 10 we 
cannot say from our results that, when Lui increases, 
no new roots appear at r ~ 0 or that the Ifl±ir) I are 
always increasing when r increases. For instance, if 
Ifl-l(O) I > fll(O), from our above results, we do not 
know if V(fl, r) has no poles for r > 0 for fl inside 
[fl-l(O), fll(O)]. Nevertheless, we remark that in the 
explicit examples to be given later, we shall always 
find that inside ffl-l(O), fl1(0)] there are no roots of 
'])(fl, r) (r> 0) or that, if ~(±fl, r) = 0 exists, then 
fl is outside [P_l(O), (11 (0)]. [This will be shown 
explicitly if there are only one or two eigenvalues 
fl±i(r).] 

We remark also that, if there are no roots for r > 0 
inside [fl-1(0), fl1(0)], then (following the proof given 
above in ULC) we have 

So 00 r W( r)1 dr < 00. 

In this case it follows that the analytic structure of the 
S matrix in the physical sheet is the usual one [see 
(1')]. For instance, the roots of F(x, 0) = 0 for x > 0 

10 When we restrict d to have only a finite number of sign changes, 
we have a mathematical problem similar to one treated by K. Meetz 
[I. Math. Phys. 3, 690 (1962)]. [But see the counterexample given by 
M. Ruby and 1. R. Mines, I. Nuel. Phys. 54, 28 (l964).J 

are simple and correspond to true bound states. We 
have verified these features in our explicit examples. 

(3) For fl outside [fl-l(O) , fll(O)] , V(fl, r) has second
order poles for r Z 0, both for fl < ° and fl > 0. 

IV. GHOSTS AND BOUND STATES 

When V(fl, r) has second-order poles for r > 0, 
the corresponding F(x, r) solutions of (2) (solutions 
also of the Schrodinger equation), in general, have 
corresponding poles (at least of the first order) and 
are not normalizable near these poles U P(x, r) dr is 
not finite]. This remains true even if 

F(x, r) -+ 0 
r ... O 

(where the F(x,O) = ° are Jost functions) such that 
the corresponding "bound-state" wavefunctions are 
also, in general, nonnormalizable in these cases. 

But for Ipi small enough, V(,u, r) is regular and 
has no poles and we can calculate the normalization 
constant as usual: 

[N(fl)r1 = -(4ik2)-Y(fl, k) ;{ (fl, -k)!k=;"" 

where 

f (fl, k = -ix) = F(x, 0) = 0, x> O. (13) 

As long as V is a well-behaved potential, we know that 
N(fl) > O. When V(fl, r) behaves badly, we consider 
the continuation in fl of N(fl) given by (13), but now 
N can be greater or less than zero or even complex, 
which leads to real or complex ghosts. (We can get 
complex states like resonances, but localized in the 
k half-plane corresponding to the physical sheet.) 
We recall the usual results for well-behaved potentials 
(see Newtonl1): the Jost functions f(fl, -k) in 
Im k > ° have only simple roots localized on the 
imaginary axis and are interpreted as bound states; 
these results come from the fact that the states are 
normalizable, N> 0, and the potentials satisfy the 
condition of finite moments. When these necessary 
regularity conditions on V are violated, then the 
corresponding results for N > 0 and the location 
and order of the roots for the Jost functions do not, 
in general, remain true. We can even find different 
states for the same fl-value: some with N > ° and 
others with N < 0 so that it is difficult to consider 
such types of interaction as physically acceptable 
(an illustration of these results will be given in Sec. VI). 
We want to study how ghosts and bound states 
appear on the physical sheet when Ipi increases [see 
also Ref. 3b]. 

11 R. O. Newton, J. Math. Phys. 1, 319 (1960). 
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(1) We call ftc ;?: fto the largest Iftl value such that, 
for any Iftl < ftc, ~(ft, r) =F 0 for r ;?: O. We recall 
that, if there are no ~(±ft, r) roots for r > 0 and for 
ft E [ft-I(O), ftl(O)1, then 

ftc = inf (lft-I(O) I , ftl(O». 

By taking into account the fact that V is well behaved, 
we show in Appendix B that there are neither ghosts 
nor bound states for Iftl ~ ftc. 

(2) In the following section, we study the roots 
ft(x), x > 0, of F (x, r = 0) ~ (ft, r = 0) = 0 and we 
find two different cases. On the one hand, if a root 
ft±iO) is such that - ft±j(O) is not also a root of 
~ (ft, r = 0), then a root of F (x, r = 0) appears at 
x = 00 for that value ft±i(O). In this case, we have a 
real ghost appearing in the physical sheet at infinity. 
On the other hand, for roots ft±;(O) such that 
~(±ft±J(O), 0) = 0, roots do not necessarily appear 
for F (x, r = 0) at x = 00. (We can find complex 
ghosts.) In this last case, V is not well behaved for 
both ±ft, at least for r = 0. But from F (x = 0, r) = 
~(-ft, r)/~(ft, r), we see that, for one of the two 
±ft-values, the Jost function F (x = 0, r = 0) --+ 0, 
as r --+ 0, vanishes at x = 0. 

(a) First, we consider the case Ift-I(O)1 =F ftl(O); for 
example, Ift-l (0) I > ftl(O). While for ftl (r = 0) a 
real ghost appears at x = 00, corresponding to 
V ~ 2/r2 as r --+ 0, for - ftl (r = 0) we see from the 
relation F(x = 0, r) = ~(- ft, r)/~(ft, r) ~ const, as 
r --+ 0, that a bound state appears at x = 0. For ft 
inside [ftl(O), -ft-l(O)], other roots ft2(0), ... ,ftk(O) 
of ~(ft, 0) = 0 can exist. For the values ft2(0), ... , 
ftiO) , real ghosts appear at x = 00. For the values 
-ft2(0),'" , -ftk(O), on the other hand, the Jost func
tion vanishes at x = O. This corresponds to well
behaved V at r = 0; if ~(ft, r) has no ±ft-roots 
inside Iftl < Ift-l(O) I for r > 0, then V is also well 
behaved for r > 0 and the corresponding states for 
the -ftJ(O),j = 1,'" ,k, are true bound states. 

What can we say for ft outside [ft-l(O), ftl(O)]? 
On the one hand, for the values ft±j(O) [but where 
- ft±j(O) are not roots], real ghosts appear at 00, and 
for - ft±j(O) bound states appear at x = 0 corre
sponding to badly behaved V(ft, r) having second
order poles in r > O. On the other hand, for the 
fl±j (0) , such that ~(±fl±j(O), 0) = 0, real ghost 
states do not necessarily appear at x = 00, but com
plex ghosts can appear as well as bound states at 
x = 0, corresponding to badly behaved V(ft, r), both 
for r > 0 and r = O. Of course, the multiplicity in x 
of the roots F (x, r = 0) = 0 for the Jost functions 
is not necessarily unity, but can be 2, 3,"', and 
complex states can appear in the physical sheet. 

(b) Secondly, for the case ft-l(O) = -ftl(O), we 
do not necessarily have real ghosts appearing at 
infinity for the two values ±ftl(O) (we can have 
complex ghosts), but still a "bound state" corre
sponding to a singular repulsive potential at the origin 
appears at x = 0, for one of the two values 

F(x=O,r)---+O, as r--+O. 

Concerning the usual approximation where the 
discontinuity is reduced to its first Born term, let us 
consider, for instance, the potentiaUV of the Yukawa 
family and 6.(x, A) = L An6.n(X) , where 6.n is the 
nth Born discontinuity. For the whole discontinuity, 
the Fredholm determinant, r = O,equals 

-A (''' C<:) doc =F 0, 
Jtm oc 

and the states on the physical sheet are true bound 
states. On the contrary, ~(A) corresponding to the 
first Born term can vanish and we get ghosts as II.I 
increases. In this last case, instead of studying the 
problem with AV(r), we use, in fact, a virtual potential 
YeA, r) given by Eqs. (3) and (4) [where ft6.(x) is 
A,6. l (x) (first Born discontinuity)]. 

V. USEFULNESS OF SUBTRACTIONS 

The solution F (x, r = 0) by successive substitutions 
of Eq. (2) exists only for Iftl < inf(lft_l(O)/, ftl(O». 
This interval is limited by the smallest Iftl value for 
which a bound state of zero energy can appear. We 
consider the case Ift-l (0) I ¢ ftl(O). We remark that 
this result recalls another well-known result: The 
perturbative expansion (Born series) of the physical 
solution of the Schrodinger equation for S-waves, 
corresponding to well-behaved potentials AV(r) > 0, 
has its circle of convergence given by the smallest 
II.I value for which a bound state of zero energy can 
appear (but in that case the series for the Jost function 
given by the successive substitution exists for any A). 
In our case, F(x, 0) is also the Jost function, so we 
can hope to formulate the problem in such a way 
that the available Iftl interval can increase. In 
dispersion-relation theory, the subtraction method is 
generally considered as a tool in order to get a better 
convergence of the solution (3b) or a better asymptotic 
behavior. Here we have assumed (8) for 6.(x), so we 
are not interested in the asymptotic behavior, but 
only try to find a larger Iftl interval where the succes
sive substitution series converge. We write 

F(x, r = 0) = F(x). 
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The solution of (2),r = O,can be written that is, 

F(x) = 1 + (p Ii: N(x, y, p) dY) / '.D(p) , (14) 

where pN(x, y, p) and '.D(p) = '.D (p, r = 0) are the 
Fredholm numerator and denominator corresponding 
to the kernel ll(y)/(x + y). The validity of this 
formulation of the solution, if (8) is satisfied, follows 
from the bounds obtained by de Alfaro and Regge. 2b 

We subtract the equation for x = Xo > 0 from 
Eq. (2), with r = 0, and obtain 

F(x) = F(xo) + p Ii: Kzo(x, y)F(y) dy, 

Kzo(x, y) = (Xo - x)~(y)/(xo + y)(x + y). (15) 

We remark that F(xo) is a constant depending on p. 
We see that, if F(x) is such that F(xo) = 0, for 
particular p-values, then p and F(x) are eigenvalues 
and eigenfunctions of Kzo(x, y). 

The Fredholm solution of (15) is 

F(x) = F(Xo{ 1 + (p Ii: N zo(X' y, p) dY) / '.Ozo(p) 1 
(16) 

where Nzo(x, y, p) and '1\/p) are the Fredholm numer
ator and denominator corresponding to Kzo(x, y). 

In Appendix C it is shown that 

'.Ozo(P) = 'D(p)F(xo) = 'D(p) + ft Ii: N(xo, y, p) dy. 

(17) 

We see that the numerator and the denominator in 
(16) have the same factor F(xo). The smallest modulus 
root of 'J)zo(p) gives the Lui interval of convergence 
for the substitution series of the solution of (15). If 
we identify the two formulations of F(x) given by 
(14) and (16), we get 

f'" (N(x,y,p) - N(xo,y,p»dy 
1m 

=f'" Nzo(x, y,p) dy. (18) 
1m 

Conversely, (18) can be proved directly by investi
gating the Fredholm numerator of ll(y)/(x + y) and 
Kzo(x, y), so that (18) and (17) can be used to show 
explicitly that the solutions F(x) given by (2) and by 
the subtracted equation (IS) are identical and conse
quently independent of the subtraction point. Since 
the unknown F(xo) appears explicitly in the integral 
equation (15), any approximation will include this 
constant. But we remark that (2), for r = 0, is the 
Jost function normalized to unity when x -+ 00, 

F(x) -+ 1, as x -+ 00. 

Since the S matrix is the ratio of the two Jost func
tions, we are free to normalize to unity at an arbitrary 
point; we define g(x) = F(x)/F(xo), g(xo) = 1 and 

g(x) = 1 + pI'" Kzo(x, y)g(y) dy, (19) 
im 

g(x) = 1 + [p I1:.Nzo(X, y,p) dyJ/'.Ozo(p). (20) 

We study the Ipl interval where the substitution series 
of (19) converges. In order to do this, we study the 
roots of '.Dzo(p), 

First, we remark that '.Ozo(p) is also the Fredholm 
determinant of 

Gzo(x,y) = (xo - y)ll(y)/(xo + y)(x + y). 

This can be shown directly from the explicit form of 
the determinants corresponding to the kernels Gzo 
and Kzo ' or we can see that the homogeneous equations 
for the two kernels lead to the same ft-values. If 
1l/(x + y) is a polar kernel,5.s the same property 
holds for Gz . Then the roots il±;(xo), for Xo > 0 o 
fixed, are still real, with an infinite number of values 
greater and less than zero. 

Secondly, we remark that, when Xo -+ 00, 

Kxo(x,y)-+Il(y)/(x + y) such that il±j (xo = (0) = 
ft±i' r = O. This also follows from the fact that when 
Xo -+ 00, F(xo) -+ 1 and, according to (17), 

'.Ox/p) -+ '.O(p). 

Thirdly, from (17) and (6) (for r = 0) we get 
'.Oxo=o(ft) = '.0 ( -ft). Thus, we see that, for Xo = 0 or 
00, we have the same interval of convergence for the 
corresponding substitution series 

inf (lP-l (r = 0)1, PI (r = 0». 

For this reason we consider Xo > 0, fixed and 
different from both 0 and 00. The Ipl interval of 
convergence is now limited by inf lil±;(xo)/, for all j. 
Previously, we have seen that for 

Iftl < inf 1ft-leO), ftl(O) I , 

if 'D(ft, r) has no roots corresponding to ± ft-values 
for r > 0, then V is weII behaved and there are 
neither ghosts nor bound states. In this case, it follows 
that the I il±i(xo)I are outside this interval and, conse
quently, for Xo fixed, the interval of convergence 
Iftl < inf lil±i(xo)I , for all j, is larger than 

inf (1ft-leO) I , P1(0». 

This is true only if the il±;(xo) are really functions of 
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FIG. 1. Il(x) = O(x - hI)' 

X(}. In fact, it can happen that for special values of 
j, fi±i(X(}) is independent of Xu: F,jxu) == fi±J (xu = 00). 
For such a fi value, :D",o<,u) is identically zero, inde
pendent of Xu- We assume now that there exist such 
particular values. Then, because :D",o(,u) reduces to 
:D(±,u) when XQ -+ 00 or 0, we have that these 
particular values are roots of both :D(±,u) = 0 and 
we see that this can appear only for opposite roots 
of :D(,u). If this happens for the first root,ul (r = 0) = 
-It 1 (r = 0) = fil(XU)' for any xo, [or = fi-l(XO), for 
any xo], we see that the interval of convergence of the 
substitution series cannot change by a subtraction. 
(We remark that this is also the case where V(,u, r) 
cannot be well behaved outside inf {ft.l (r = 0), 
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FIG. 2. 6(x) = o(x - hI) + at5{x - b.), where 
o < b1 < b. and a > O. 
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FIG. 3. Il(x) = o(x - hi) + aO(x - ha), where 0 < b1 < b., 
a < 0, and !,u-l (r = 0)1 "¢ It) (r = 0). 

l,u-l (r = 0)1).] On the contrary, if this happens for 
j> 1, that is, j = 2,3, ... , a subtraction can still 
give a better interval of convergence for the substitu
tion series. 

In conclusion, for a given Xu ~ 0, the lltl interval of 
convergence of g(x), x > 0, is given by the smallest 
!fi±i(XO)! ghost or bound state which exists. 

VI. SOME SIMPLE EXAMPLES 

In order to illustrate the general results, we con
sider simple cases where ,u~(x) is such that (2) or (2') 
has only one or two eigenvalues ,u±i(r). In Figs. 
1-4, we represent the curves x(.u) and the roots of the 

X(p.) 
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FIG. 4. A(x) = d(x - b1) - (bslb1)O(x - b1), where 
o < b1 < b, and 1"'-1 (r = 0)1 = It. (r = 0). 
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Jost functions F(x) = 0 when x is real and Re x when 
x is complex. We recall that x(,u) real and greater than 
zero corresponds to bound states or real ghosts. We 
give the trajectories fl±1(XO), the roots of :0"'0 (,u) = 0, 
and the sign of N(fl). 

A. ~(x) = <'lex - bl)' bi > 0; fll(r) = 2bIe2b,r ;;:: {i1(0) 

One real ghost appears when ,u crosses ,u1(0) and 
one true bound state at -,ul (0). 

B. ~(x) = <'lex - bl ) + a<'l(x - b2), 0 < bl < b2 
:D(,u, r) = 1 - ,u(e-2blrj2bl + ae-2b2rj2b2) 

+ /12ae-2(bl+b2)r(bl - bJ2J4bl b2(bl + b2)2 

We have two roots ,u±i(r), both> ° if a > 0, but 
with different sign ,u±l (r) if a < 0. 

(i) For a > 0, A> 0, we get ,ul(r) > 0, ,u2(r) > 0, 
and ,ul (r) + ,u2(r) ¥:- 0; thus, the multiplicity in r of 
the roots is always unity and, for r > 0, ,u;(r) > ,u;(D). 
As in the one-pole case, because there is no ,u_;(r), the 
interval [,u-I(O), ,u1(O)] in which V is weB behaved is, 
in fact, [- 00, fll(O)]. The states are true bound states 
appearing at -,uI(O) and -,u2(0) for ,u < D, whereas 
for ,u 2,u1 we get real ghosts appearing at ,u1(0) 
and ,u2(D). 

(ii) For a < 0, a¥:- -b2/bl , ,ul(r) + ,u-l(r) can 
vanish (but not necessarily) for one r > 0 value. 
For such :O(±fl(I), r(1», the multiplicities in r of 
±,u(1), r(1) are I, 3 or 3, I, respectively, because 
a:o(,u, r)/ar has only one root and the multiplicity in 
,u is unity because a:o(,u, r)/o,u ¥:- 0 for (±,u(1), r(1». 
Then inside [,u-I(O), fll(D)] no such root can occur, 
because :0 --+ I, as r --+ 00, and :0 > 0, as r --+ D. V 
has no poles; however, outside this interval V has 
poles like 2/(r - ro)2, except perhaps for one excep
tional value where V ~ 6/(r - ro)2. In Fig. 3, where 
1,u-1(0)I < ,u1(0), we have a true bound state appearing 
at -fl-I(D) inside [fl-I(O), fll(D)]; for fl < ,u-I(D), we 
have both a ghost appearing at 00 and a bound state 
appearing at -flI(D) corresponding to a badly 
behaved V. For fl > fll(O), the situation is still more 
confused because we find a real ghost appearing first 
at 00 and we also find a complex state in the physical 
sheet of the S matrix. We find also second-order 
roots of the Jost functions or second-order poles for 
the S matrix. 

(iii) For a < 0, a = -b2/b l , fll(O) = -fl-I(D), 
where the previous (±flO ), r(1» roots exist for r = O. 
For fl-l(O), fll(O), the multiplicities in r are I, 3, 
respectively; thus, as r---O, V~2Ir2, for fl-l(O), 
and V ~ 6/r2, for ,u1(D). When ,u crosses fl-I(D), 
a real ghost appears at infinity as well as a bound 
state corresponding to this marginally singular poten
tial [that is, F(O, r) ~ canst x r2]. When ,u crosses 

flICO) , complex states appear on the physical sheet; 
when x(,u) = V(b1b2), they become real. 

We note also that this is the only case among the 
given examples where :O(±,ul (0), 0) = ° and, conse
quently, this is the only case where we find a fixed 
root fll(X) = fli (r = D) for the trajectories fl±.; (x > D). 
It follows that this is the only case where we cannot 
enlarge the Ifl/ interval of convergence for the sub
stitution series by using subtractions. 

c. ~ = <'l'(x - b) 

We get 

,u±I(r) = (2b2)e2br{l + 2br ± .J[(l + 2br)2 + I)} 

such that 
,u±.1 (r)/ fl±.1 (0) > O. 

Then V has no second-order pole inside Lu-I(D), ,uI(O)] 
for r > 0, and the bound state appearing for - ,u-l (0) 
is a true bound state. On the contrary, outside this 
interval V has a second-order pole like 2/(r - ro)2 only 
because ,u+l(r) + ,u-l(r) is always different from zero. 

D. :F(r + y) = ~ <Pi(r)<Pi(y) 
i /1i(O) 

In fact, the above examples [where, following (1'), 
we have :F(r) = r bir, e-blr + ae-b•r , -re-bTl are partic
ular examples of a more general case when :F(x + y) 
is a degenerate V(O, 00) kernel with a finite number 
of eigenvalues fli(O) and or tho normalized eigen
functions 1>;(y) such that 

100 

1>;(y)1>;(y) dy = bij . 

[Here ,ui(O) are positive or negative.] We consider two 
cases as follows: 

i = 1: 

:O(,u, r) = 1 _ ,ufoo 1>2(y) dy 
r ,u(O) 

such that 

fl(r) = [f.oo 1>2(y) dy]-I> 1. 
,u(0) r 

i = 2: This case is studied in Appendix D. First, if 
flI(O),u2(0) > 0, then the ,ui(r) always have the same 
sign and ,ul(r) + fl2(r) ¥:- D. We can apply the results 
of Sees. III and IV for V here as well as for the ghosts 
and bound states. 

Secondly, if flI (O),u2(0) < ° [or ,u±l (0) < 0], we 
find in all cases that the fli(r) for r > 0 are outside 
[fl-I(O), fll(D)]. This remains true if there exist roots of 
~(±,u, r) = 0, because these roots are not inside the 
above interval. Consequently, V is well behaved 
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inside LICI (0), ,ul (0)] but, in general, V has poles like 
2/(r - ro)2 outside this interval; only for exceptional 
values can the poles be like 6/(r - ro)2. If ,u-1(0) + 
,ul(O) ~ 0, then a true bound state appears inside the 
above interval; outside this interval, however, real or 
complex ghosts and bound states corresponding to 
badly behaved potentials appear in all cases, as in 
the examples quoted in VI.B and VI.c. 

E. f1 --->- I~±;(O) 

Tn this case, we must be careful, in general, about 
the validity of the location of the states obtained 
from lim x(,u), as ,u ---+ ,u±i(O). For ,u ~ ,u±;(0), 
V(,u, r) [see (6)] is well behaved at the origin and the 
corresponding F(x, 0) is really the Jost function. On 
the contrary, 

V(P±i(O), r) ,...", pep + 1)/r2 
r-+O 

and the corresponding F(x, 0) is such that its Fred
holm determinant vanishes. The true Jost function 
corresponding to V(,u±i(O) , r) is F(x, ,u±i(O» = 
lim rPF(x,r), as r ---+ 0, where F(x, r) is the solu
tion of (2a) for ,u = ,u±i(O) fixed and r > 0, and the 
true roots of the Jost function for V(,u±i(O), r)are 
the roots of F(x, ,u±;(0» = 0. Because these roots 
X(,u±i(O» (of F = 0) and lim x(,u), as ,u ---+ ,u±i(O), are 
obtained by different limiting processes, it does not 
follow that we shall always get the same values. For 
instance, in the previous cases VI.A and VI.B for 
a> 0 and a < 0, a ~ -b2/b1 , or in the previously 
considered case, a = -b2/b1 , ,u = ,u-l(O), we find the 
same roots; but for a = -b2/b1 , ,u = ,ul(O), if we 
investigate the true Jost solution, then it is easy to see 
that 

lim x(,u) = ±i(b1b2)! ':;!: X, 
1'~1'1(0) 

corresponding to V(,ul(O), r). Nevertheless, in the 
case of opposite roots 2)(±,ui(O), 0) = 0, because of 
the relation 

F (x = 0, r) = 2)( -,u, r)/2)(,u, r), 

we see that, for one of the two values ±,ui(O) such 
that F (x = 0, r) ---+ 0, as r ---+ ° (see Sec. III), x = ° 
is necessarily a root of the true Jost function corre
sponding to one of the two V(±,u/O), r). 

VII. CONCLUSION 

We have seen in this paper12 that, for "regular" dis
continuities ,uLl(x) , there always exists a restricted 

. 12 Note Added in Proof' We want to point out that many generaliza
tions of. the results presented in this paper are now published: 
H .. CornIlIe, Nucl. Phys. B3, 655 (1967); H. Cornille and G. Rubin
stem, J. Math. Phys. 9,1501 (1968); Nuovo Cimento 56, 867 (1968)' 
H. Cornille, J. Math. Phys. 11, 79 (1970). ' 

interval including ,u = ° [although one of the limits 
of this interval can be + 00 (or - (0) if the eigenvalues 
of the Marchenko equations or, equivalently, those of 
the resulting integral equation of III have always the 
same sign] such that the V(,u, r) are well behaved. 
We find a slight generalization of the Yukawa-type 
family (Laplace transform, regular at the origin, not 
always holomorphic in Re r > 0, but with no poles 
for r > 0, and I VI satisfying the condition of finite 
moments). Consequently, inside this interval the 
analytic structure of the S matrix (concerning order 
and location of the poles) is the usual one corre
sponding to well-behaved potentials. 

Also, there always exists an integral including the 
origin such that, if,u is outside this interval, V(,u,r) is 
badly behaved with second-order poles for r ~ 0. 
Consequently, some usual features of the S(k) matrix 
in the k half-plane corresponding to the physical 
sheet are not conserved. The Jost functions can have 
roots, not always of the first order, and these roots 
are not always located on the imaginary k axis. We 
find real or complex ghosts or real or complex bound 
states corresponding to these badly behaved potentials. 

In these papers we have not considered the case of 
singular Ll(x) or the case of regular Ll(x) with I':;!: 0, 
but we hope to be able to extend the present results to 
these cases. Concerning the problem I':;!: 0, we 
remark that our previous argument (see Ref. I, 
Introduction), which was at the origin of the investiga
tion of Fredholm determinant, is still valid. If we 
consider a Yukawa-type family AV(r), it is also true 
that the Jost function ft(k) = DI(k2) exists for all 
A, so that even if the Fredholm determinant still has 
an infinity of roots corresponding to singular values, 
it must also exhibit in a way (that we hope is simple) 
the property that it cannot vanish for any A. 

Perhaps the main result of these papers is the 
following: 

(1) In potential scattering, if we consider the 
interaction as given by a V(r) which is regular, 
marginally singular, or singular, then AV has, in 
general, the same feature. (For a rough analogy with 
Q.F.T., we can speak also of similar features for 
super-renormalizable, renormalizable, or nonre
normalizable interactions.) 

(2) On the contrary, in dispersion relations, if we 
consider the interaction as given by a regular dis
continuity Ll(x), then ,uLl(x) (interpreted in terms of 
a potential or interpreted by the corresponding states, 
bound states and ghosts) can give two types of 
different interactions: regular or marginally singular. 
But the ,u-intervals where we find the two types of 
different interactions are separated. 
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APPENDIX A 

We study the solution F(x, r) for x = ° of the 
integral equation 

F(x, r) = e-",r + p y F(y, r) dy. (AI) foo ~( )e-("'+<llr 

im (x + y) 

We want to show that the Fredholm solution F(O, r) 
of (AI) can be written 

F(O, r) = ~(-p, r)/'1)(p, r), (A2) 

where '1)(p, r) is the Fredholm denominator deter
minant of (AI) given by (3a). 

The Fredholm solution of (AI) is 

F(O, r) = I + X(p, r)/'1)(p, r), (A3) 
where 

00 pn( -Ir-l 
X(p, r) = t (n -1)! 

x foo dUI .. ·foo dUn (fr ~(Ui)e-2r"i) Bn, 
im 1-m I 

Bn(u I , ... , Un) 
1 1 I 

Un 
1 

= 

1 1 I 

UI + Un U2 + Un 2un 

Bn is the same determinant as Pn given in (3a), but 
the first row is replaced by 1 lUI, ... , Ilun . 

'1)(p, r) can be written 

00 (-pt 
'1)(p, r) = !--

on! 

x roo dUI .. , roo dun(fr ~(Ui)e-2r"i)An' (A4) 
Jim Jim I 

where 

AnCul , •.• , un) 

1 
1 1 I 

UI U2 Un 

0 
1 I 1 

2u I UI + U2 UI + Un 

0 
1 1 

UI + U2 U2 + Un . 

o 1 

We note that in An the minor corresponding to the 
element (An)ll is Pn . 

Now we consider Cn , given by 

° 
1 1 1 

ul Uk Un 

-1 
I 1 1 

2uI U I + Uk UI + Un 

-1 
1 

C = n 
UI + U2 

-1 
1 1 

UI + Un 2un 

In Cn , the minor corresponding to (Cn)ll is still P n' 

We develop Cn by following the elements of the first 
column, where we call Ck,n the minor corresponding 
to the (k + 1)th element of the first column. We 
remark that CI,n = Bn: We want to show that, for 
anyk=I,2,"',n, 

Ii: dUI ... Ii: dUn ( (I ~(u;)e-2rui) 
X [C.-,n(Ui) + (-llCI,n(ui)] = 0. (AS) 

For this, in Ck,n we make the following substitutions: 
column I -+ column 2, column 2 -+ column 3, ... , 
column k - I -+ column k, and column k -+ column 
1. The~ we get a new determinant Ck,n = (-I)k-ICk,n' 
If in Ck n we put UI = u2 ' u2 = Us, ••• , Uk_I = Uk' 

Uk = UI,' we remark that Ck•n becomes C1,n = Bn. 
Then, using the fact that the factor 

IT ~(u.) e-2rUi 
i 

is symmetric with respect to all the variables U i , we 
see that with the previous change of variables we get 
the relation (AS). From (AS) it follows that 

roo dUI .. , fOO dun(fr ~(Ui)e-2rui)(Cn - nBn) = O. 
Jim Jim I 

(A6) 
Taking (A6) into account in (A3), we get 

'1)(p, r) + X(p, r) = 1 (_p)n foo dU
I 

••. foo dUn 
o n! Jim Jim 

X (Il ~(u,)e-2rui)(An - Cn)· (A7) 

With some algebra, we get An - Cn = -(l)"P,,; so 
the right-hand side of (A7) is '1)( -p, r) and, finally, 
the result (A2) follows. 
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APPENDIX B 

We want to find a bound for d'D(ft, r)/dr when 
Re r > O. From (3a) we get 

- 'D(ft, r) = I -ft dU l . . . dUn d 00 ()nfoo 100 

dr 1 n! tm tm 

X [1) ~(Ui)e-2rU'JPn(Ul'···' Un)· 

But de Alfaro and Regge have obtained the bound 
II~ Ij2u i for P n. Then 

IP n I 2u i l < f [i=U,,}U irl

• 

Taking into account the fact that the factor 

n II ~(Ui)e-2 Re ffli 

1 

is symmetric with all the variables U i , we get 

and 

or 

I ~'D(ft, r) 1< i Iftl
n 

(00 1~(u)e-2Reul du 
dr 1 (n-l)!Jtm 

X [(00 1~(v)1 e-2Rev dvJn-1 
Jtm 2v 

I ~ 'D(ft, r) I < (00 Iftll~(u)e-2Rerul du 
dr Jtm 

x [expJOO Iftll~(u)1 e-2Reu duJ. 
tm 2u 

We want to find a bound for d2'D(ft, r)jdr 2 when 
Re r > O. From (3a) we get 

d
2 00 (-ft)nl°O 100 

-d 2 'D(ft, r) = I -_. dUl . . . dUn 
r 1 n! tm tm 

X [(r ~(Ui)e-2ru] P n ( f 2Ur (Bl) 

Using the same considerations for IPn I2ui l as we 
used above for 'D'(ft, r), we get 

I d2 I 00 Iftl
n fOO foo -d 2 'D(ft, r) < I dUl . . . dUn 

r 1 (n - I)! tm tm 

X [1) 1~(Ui)1 e-2Reru,] (I 2U i ) (IT _1 ). 
1 /(=1 2Uk 

We write 
n n-l 
I 2u i = 2un + I 2u i 

1 1 

and get two terms for the bounds. The first is 

~ Iftl
n 

((00 dUn 1~(un)1 e-2Rerun) 
1 (n - I)! Jtm 

X ((00 dUl ... (00 dU n_1 IT 1~(Ui)1 e-2Reru,). 
Jtm Jtm 1 2ui 

For the second term a factor 

appears. Using the symmetry properties of 

n-1 
II 1~(Ui)1 e-2Rerui , 

1 

we get the following bound for the second term: 

~ Iftl
n 

((00 dUn 1~(un)1 e-2Rerun) 
1 (n - 2)! Jtm 

X (It: dUn-11~(un_1)1 e-2Rerun-l) 

xi OO 
du .. ·fOO du nII-21~(ui)1 e-2Reuj 

1 1 n-2 . 
~m tm 2 2u i 

Finally, for I'D"I we get 

I'D"I < (exp (00 Iftll~(u)1 e-2Reru dU) 
Jtm 2u 

x [It:lftI2U 1~(u)1 e-2Reru du 

+ (It: 1,u11~(u)1 e-2Reru du )2J. (B2) 

We want to show that, if (8) is satisfied, that is, 

('Xl 1~(u)1 du < 00, 

Jim U 

then 

M = 100 
r 1.'F'(r)1 dr < 00, 

where .'F(r) is the scattering data (1"). For this we 
define 

M(E) = foo r 1.'F'(r)1 dr, 

where E is greater than zero and small. We remark 
that, if 0 < E2 < E1' then 0 < M(E1) < M(E2). We 
want to show that lim M(E), as E -+ O,exists and is 
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bounded. We have, for E finite, 

M(E) ~ ,,u,i oo 

dr(J!: e-ruu 1~(u)1 dU) dr. (B3) 

We integrate first in r and we get 

where 

and 

We have 

Thus 

M(E) ~ l,ul [~: M1(E) + M2(E)], 

M1(E) = IUIIi: e-
fU I ~~u) I du 

< 1,uII~: I ~~U) I du < 00 

M 2(E) < e-1Joo \ ~(u) I du < 00, 
im u 

as E ~ 0, and lim M(E) exists and is bounded. 
We want to show that, if (8) is satisfied and if 

2)(,u, r) does not vanish in a small interval r E [0, b] 
(b small but finite), then 

100 

r W(r)1 dr < 00. 

We recall that V = 2(2)'2 - 2)2)")/2)2, so that, with 
the bounds (Bl) for 2)' and (B2) for 2)", we get 

f r I V(r)1 dr < const l X f r(L~2u 1~(u)1 e-
2ur 

dU) dr 

+ const2 X f r (L~21~(U)1 e-
2ur 

dU)2 dr. 

But the first term on the right of the inequality is 
bounded by a constant because we have shown above 
that lim M(E) < const as E ~ ° [see (B3)]. For the 
second term we apply the Schwarz relation and we get 

fr IV(r)1 dr 

< const + const X lbr[fi:I~(U)1 e-
2ur

u du 

x roo I Mv) I e-2vr dV] dr < 00. 
Jim 2v 

We want to show that, if the 2)(±,u, r) have no 
roots for r ~ ° and Lui < ,uc , then F(x,O) for the 
same intervall,ul < ,uccannot vanish for x> 0, so that 
there are no bound states. For this we will show that, 
if F (x = 0, r) has no root for r ~ 0, then this is also 
true for x > ° [F(x, r) :;1= 0, x > 0, r ~ 0]. We recall 

that F(x, r) c::: e-"'T, as r ~ 00. In this l,ul range, V is 
well behaved, F(O, r) = 2)( -,u, r)/2)(,u, r) > ° for 
r ~ 0, and F(O, r) ~ 1 as r ~ 00. By the usual com
bination of the Schrodinger equation for F(O, r) and 
F(x, r), we get 

F(O, ro)F(x, ro) - F'(x, ro)F(O, ro) 

=Joo x2F(x, r)F(O, r) dr. 
ro 

We assume that ro ~ ° is the first root of F(x, r) for 
r E [ro, 00]. Then F'(x, ro) ~ ° and the left-hand side 
is less than zero. But the right-hand side is greater 
than zero and we get a contradiction. Thus F(x, r) :;1= ° 
for r ~.o. 

APPENDIX C 

We study -the Fredholm solutions (14)-(16). We 
have 

F(x) - F(xo) 

= [,u Ii: (N(x, y,,u) - N(xo, y, ,u» dyJ [2)(,u)r
l 

= [,u It: N ",o(X' y,,u) dyJ [2)",i,u)rIF(xo), 

where ,uN(x,y,,u) and 2)(,u) are the Fredholm numer
ator and denominator of (2a) corresponding to the 
kernel ~(y)/(x + y). Similarly ,uNxo and 2),,0 are the 
~redholm numerator and denominator of (15) corre
sponding to the kernel 

~(y)(xo - x)/(x + y)(xo + y). 
The three relations 

2)",/,u) = F(xo)2)(,u), (el) 

,u It: N ",o(Xo , y,,u) dy 

= ,u It: (N(x, y,,u) - N(xo, y, ,u» dy, (e2) 

:Dx,l,u) = :D(,u) + ,u I~: N(xo, y,,u) dy (e3) 

are equivalent. We now want to prove (e3). We have 

00 (_,u)nJoo JOO 
2)xO<,u) = I + L -- dU I . • • dUn 

In! ~m im 

where 

X (Il ~(Ui»)Dn, (e4) 

Dn(xO ' UI ,' ", un) 

1 1 1 1 

2u I Xo + UI 

= 

1 1 1 1 

UI + Un Xo + UI 
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The first term on the right-hand side of (C3) is 

~Cu) =! -fl 1 dUl'" dUn II ~(Ui) 00 (tf oo foo ( n ) 
on! lim tm 1 

where 

1 
1 1 --- 1 

Xo + U1 Xo + U2 

0 
1 1 

2UI UI + U2 

Ln = Pn = 

0 
1 1 

UI + Un 

The second term is 

where 
1 1 1 

Xo + UI Xo + U2 Xo + Un 

1 1 1 

UI + U2 2u2 U2 + Un 
En = 

1 1 

U 1 + Un 

Now we consider M n , given by 

0 
1 1 1 

Xo + U1 Xo + Uk 

-1 
1 1 1 

2u I UI + Uk 

M= -1 
n 

-1 
1 1 

(C7) 

Note that the minor corresponding to (Ln)u or 
(Mn)ll is Pn · We remark that Mn is the same deter-

minant as Cn given in Appendix A, except for the 
elements of the first row. We develop M n by following 
the elements of the first column, where we call M k •n 

the minor corresponding to the (k + l)th element 
of the first column. We remark that M l .n = En and 
also that M k •n is the same determinant as Ck •n , 

except for the elements of the first row. We want to 
show that 

f 00 dU I •• ·f 00 dUn (n ~(Ui») 
!m !m I 

X [Mk •n + (-l)kM I •n ] = O. (C8) 

We follow the same method as in Appendix A. In 
M k •n we make the following substitutions: column 1 -+ 

column 2, column 2 -+ column 3, ... ,column k - 1 -+ 

column k, column k -+ column 1. We get a new 
determinant Mk.n such that Mk.n = (-I)k-1M k.n ; 

Mk •n is the same determinant as Ck •n except for the 
elements of the first row. If in Mk •n we put UI = 
U2' U2 = U3 ,"', Uk- 1 = Uk' Uk = UI , we remark 
that Mk •n becomes M1•n = En. Then, taking into ac
count the fact that the factor II7 ~(Ui) is symmetric 
with respect to all the variables U i , we get the relation 
(C8). 
It follows that 

f
oo dUI .. ·foo dUn (ir ~(Ui»)(En - nMn) = 0 

!m !m 1 

and 

~(fl) + flJoo N(xo, y) dy 
'!m 

= !-- du l '" dUn IT~(Ui) (Ln - Mn)' 00 (-fl)nf
oo foo ( n ) 

on!!m ~m 1 

With some algebra, we get Ln - Mn = Dn, and so 
the relation (C3) follows. 

APPENDIX D 

We assume that the scattering data [see (1")] 

Ji'(y + r) = ± rPi(y)rP;(r) 
i~l fl;(O) 

kernel of (2b) has only two eigenvalues fl;(O) and two 
orthonormalized eigenfunctions 

for r = O. We call 

'YJi = i oo 
rP~(y) dy S 1 

and 
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Then 

where 

A (r) _ -.!h. ...!l!.. A () 1]{Y}2 - ,2 
1 - ,ul(O) + ,u2(0) , 2 r = ,ul(0),u2(0) ' 

and 1]11]2 - ,2 > 0 from the Schwarz inequality. We 
want to show that the ,uk) roots of1)(,u, r) are outside 
[,u-l (0), ,ul (0)]. 

1. We assume ,ul(0),u2(0) > O. Then 1)(,u, r) has no 
roots (,ul,u2 > 0) corresponding to ±,u values and we 
can apply the results of Sec. III. 

2. ,ul (0),u2(0) < O. Then ,ul (r) + ,u2(r) can vanish 
(we call ,u2 = ,u-l) if Al(r) = 0 for some r; value. If 
this happens for two values rl, r2 because Aa is 
reduced to 

LX) LX' (:F(y + r»2 dy dr, 

then the corresponding ,u-values are different. 
Further, because o1)(,u, r)/or = 0 has only one 

root ,u = -A~/A~, only one of ±,u(rj ) can be of 
multiplicity 3 in r, whereas the other is simple. 
Finally, such,u value cannot be inside [,u-l(O), ,ul(O)] 
because 1) -4- 1 (r -4- (0),1) > 0 (r -4- 0), and only one 
root with multiplicity odd is possible. 
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NI D-type equations satisfying crossing symmetry are established inside the relativistic wave-mechanics 
formalism (Klein-Gordon equations). We show that, for a superposition of exponential potentials with 
finite zeroth moment, the NID-type equations have unique solutions. Furthermore, for sufficiently weak 
couplings the solutions are physically available. 

I. INTRODUCTION 

One of the most interesting problems in the dy
namics of strong interactions is to understand the pos
sibility of reconstructing the partial waves from the 
corresponding left-hand cut discontinuities. Generally, 
one uses the Nt D method. The full problem presents 
many difficulties so that it appears convenient to 
consider models successively close to the actual case. 
In the most simple model, the nonrelativistic poten
tial, the existence and uniqueness of Nt D equations 
corresponding to Yukawa family are characterized by 
a reduction formula of the Fredholm determinant. I 

Other models are the Klein-Gordon formalism, the 
Bethe-Salpeter equation, or the elastic unitarity 
approximation. In this paper we consider relativistic 
potentials of the exponential type corresponding to 
Klein-Gordon2- s equations where the following 
important features prevent us from applying the 
procedure used in the nonrelativistic case: 

(i) The phase shift does not tend to zero when the 
energy E goes to infinity. As a consequence, besides 
the usual dynamical cuts due .to the potentials, there 
exist supplementary branch points in the k momentum 
plane [E = (k 2 + m2)1]. The Jost functions have cuts 
in both lower and upper half-k planes. There is no 
simple factorization that leads with only cuts in one 
half-plane. 

(ii) Due to the occurrence of the two-valued energy 
quantities E = ± (k2 + m2)! and the fact that energy 
and potentials appear like an EV product, the particle 

* Centre National de la Recherche Scientifique. 
1 H. Comille, J. Math. Phys. 8, 2268 (1967); 11, 61 (1970) (pre

ceding article). 
• For general properties see H. Feshbach and F. Villars, Rev. 

Mod. Phys. 30,24 (1958); E. Corinaldesi and F. Strocchi, Relativistic 
Wave Mechanics (North-Holland PubI. Co., Amsterdam, 1965). 

• For the inversion problem see E. Corinaldesi, Nuovo Cimento 
5,468 (1954); M. Verde, NucI. Phys. 9, 255 (1958); V. De Alfaro, 
Nuovo Cimento 4, 675 (1958). 

4 For the use of crossing relations see R. Oehme, Nuovo Cimento 
25, 183 (1962). 

6 For off-shell N/D method see M. Petras, NucI. Phys. 87, 141 
(1966). Note that in the present paper our aim is to get solutions 
with cuts in only one half-k plane. 
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and antiparticle scattering are related by a simple 
crossing relation.4 

(iii) We use property (ii) in order to solve the 
difficulty explained in (i). With the two discontinuities 
of the particle and antiparticle scattering, we get 
Nt D-type equations for two functions extracted from 
the Jost function, but which have only dynamical cuts 
in one half-plane. The advantage is that we have the 
possibility of reconstructing the partial wave for both 
particle and antiparticle scattering. 

We study first the on-the-mass-shell equations. We 
obtain the relations which give the possibility of 
reconstructing the discontinuities from the potentials 
(and conversely). We show that the eigenvalues of 
the Nt D equations must correspond to the particular 
values of the coupling strength for which the phase 
shift at infinity goes like (2m + 1)7Tt2. 

Secondly, we consider the off-the-mass-shell equa
tions (radial coordinate different from zero). For non
relativistic potentials we recaIIl that the Marchenko 
inversion formalism was used to understand Nt D 
formalism. In the Klein-Gordon case we get the 
extension of Marchenko equations with the possi
bility of reconstructing the potentials from the S
matrix discontinuities. We have also obtained integral 
equations for the Jost solutions with kernels propor
tional to the discontinuities; for these equations we 
have investigated the roots of the Fredholm deter
minants. From this off-the-mass-shell formalism we 
determine explicitly the reduction formula of the 
Fredholm determinant corresponding to the on-the
mass-shell equations: 

~(Al) = cos AlioolVl dr. 

So we are able to prove explicitly that there exists for 
S;' Al V dr finite a unique solution of the Nt D equa
tions which can be used in order to reconstruct 
the partial wave for both particle and antiparticle 
scattering. 
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Thirdly, contrary to the nonrelativistic case, regular 
properties of the coordinate behavior of the potentials 
are not sufficient to obtain only available physical 
states. Indeed, complex frequencies6 (zero-norm 
pathological states) can occur. We show that for 
sufficiently weak coupling constants (of the potentials), 
our unique N / D-type solutions do not lead to such 
difficulties. 

We consider only the S-wave Klein-Gordon equa
tion and we begin by a brief report of the properties 
for the nonrelativistic potential case. 

II. BASIC RESULTS FOR THE EXISTENCE OF 
N/D EQUATIONS IN NONRELATIVISTIC 

POTENTIAL THEORY 

We recall briefly the results for the S wave for 
Yukawa family: 

AV(r) = A rooe-··C(ex) dex, roo C(:) dex < 00. (1) 
J# J# ex 

The Jost functionf(k) satisfies the equation 

[F(x) = f (k = -ix)]; 

F(x) = 1 + roo ~(y, A)F(y) dy, (2) 
Jh x + y 

~(x, A) being the discontinuity of the S matrix 
corresponding to A V(r). The existence of the solutions 
of (2) corresponding to (1) can be shown in two ways: 

(i) The Fredholm determinant of (2) is 

~(A) = exp -Joo A C(ex) dex. 
m ex 2 

For this result the inversion formalism was useful. 
For the Jost solutions, 

f(k, r) = e-ik
• + 100 

K(r, t)e-ikt dt, 

we know that 

K(r, r) =JOO AV(r) dr. 
• 2 

Then F(x, r) satisfies off-the-mass-shell integral equa
tions corresponding to (2) and the Fredholm deter
minant ~(A, r) satisfies (a~/ar)/~ = K(r, r). Finally, 
~(A, 0) = ~(A). 

(ii) On the one hand, if we perform a subtraction 
in (2), 

where 

F(x) = F(xo) + rooK",o(x, y)F(y) dy, Jh 
K",o = [Llj(x + y)][(xo - x)j(xo + y)]. 

8 L. I. Schiff, H. Snyder, and J. Weunberg, Phys. Rev. IS, 315 
(1940); see also Ref. 3. 

If F(xo) = 0, then F(x) is an eigenfunction of K", . If 
this happens when Xo -+ ro, then 0 

F(x)~O; 
1"'1'" 00 

and since 

lim K",o = ~/(x + y), 
1"'01'" 00 

we see that the eigenvalues of (1) correspond to the 
Jost function vanishing at infinity. On the other hand, 
we know for family (1) that 

f(k)~1 
Ikl'" 00 

(in the k complex plane outside the cut) and so ~(A) 
cannot vanish for (1). Note that the converse is not 
true in general: If 

f(k)~1, 
Ikl'" 00 

the Fredholm determinant of (2) is different from zero 
but the reconstructed potentials from (2) are not 
always of type (1). It is necessary to analyze the states 
corresponding to the roots of the solutions of (2). 

III. ON-THE-MASS-SHELL N/D-TYPE 
EQUATIONS FOR RELATIVISTIC 

POTENTIAL THEORY 

We consider a slight generalization of the Klein
Gordon equation for S waves, 

1" + k"i = [AIEVI + A2 V2]f, (3) 

with real potentials V;(r): 

~(r) = 100 

e-"Ci(ex) drx, 

roo IC2~ex)1 dex < ro, 1 AICtCex) 1 < AIex-~t, 
J#2 ex 

(4) 

1 A2C2(ex) 1 < IA21 rxl-~2, 'YJi > O. 

For the true Klein-Gordon case 

(5) 

Roughly speaking, when r -+ 0, VI(r) must be less 
singular than const/r and V2(r) less than const/r2• 

Furthermore, we restrict Vier) to be a superposition of 
exponential-type potentials in order to have the usual 
location of the dynamical cuts in the k plane. The 
energy E = (k2 + m2)~ is a two-valued function of k. 
The positive branch E = + (k2 + m2)~ for k real 
corresponds to the particle scattering, and the 
negative one [E = - (k2 + m2)! for k real] to the 
antiparticle scattering. In a similar way we can con
sider VI -+ - VI in (3). The Jost solutions 

j.(k, r) !::::'. e-ikr (e = ±1, E = ±~r) 
• ... 00 
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satisfy 

Je(k, r) = e-ikr + roo sin k(s - r) 
J k 

X (Al€EVl + A2V2)Je(k, s) ds. (6a) 

The analytical properties of I.(k, r) in the k complex 
plane are easily studied with the help of the two 
current methods in potential scattering. From the 
radial integral equation (6a) we follow Regge7 and 
investigate first in a strip of the k complex plane; 
then we can rotate the strip using the analytical 
properties in Re r > const of the considered poten
tials (4). On the other hand, following Martin,S 
we take great advantage of the Laplace transform 
properties of (6a). We put 

eikrJe(k, r) = 1 + Loopk .• (ex)e-ar (t-t = inf(t-tl,t-t2»' 

and the problem is reduced to the study of the integral 
equation for Pk.e(ex): 

Pk,e(ex)ex(ex + 2ik) = e.(ex, k, AI, A2) 

+ (tXee(ex - fJ, k, AI, A2)Pk,.(fJ) dfJ, 
J11 

ee = €EAlCl(ex)e(ex - t-tl) + A2C2(ex)O(ex - t-t2)' (6b) 

From (6b) the singularities of I.(k, r)eikr in the k 
complex plane are apparent: the two branch points 
k = ± im coming from E and the dynamical cut 
k = i[t-t/2, 00] coming from Vier). In Appendix A 
Corinaldesi's result3 in 1m k ~ 0 is extended to the 
whole complex k plane outside the cuts 

J.(k,r) ,-..J exp -I r+I€-Al -- r . [
'k . E , foo Vl(r') d 'J 

Ikl--+oo k ,. 2 
(7) 

This result is very different from the nonrelativistic 
one because the asymptotic Ikl behavior depends 
always explicitly on the interaction. For instance, the 
phase shift 

(8) 

is not, in general, an integral multiple of 1T. The usual 
Levinson theorem is modified and consequently we 
have a supplementary branch point at k = -im in the 
lower half-plane. We define the lost functions and 
the S matrix: 

fE(k, E) = f.(k, 0), 

S (k E) = f.(k, E) 
E' J.( -k, E) 

(9) 

7 T. Regge, M. Bottino, and G. Langoni, Nuovo Cimento 23, 
954 (1962). 

8 A. Martin. Progress in Elementary Particles and Cosmic Ray 
Physics (North-Holland Publ. Co., Amsterdam, 1969). Vol. VIII. 

Similarly, I.(k, 0) has the dynamical cuts i[t-t/2, 00] 
and the supplementary branch points ±im for which 
we introduce the cuts ±i[m, 00]. In the full relativistic 
case the N/ D-type equations for the lost functions 
were first written by Omnes9 if there exist cuts in only 
one half-k plane. Ciulli et at.lO have considered the 
marginally singular left-hand cut case [15(00) not an 
integer multiple of 1T] where cuts are present in both 
half-planes. These authorsio try to write their lost 
functions as a product of two functions-one a 
simple factor having the two cuts and the other only 
one cut. 

Here we remark first that the ± im branch points are 
not connected with the use of too-singular interac
tions [marginally singular potentials like a pure 
Yukawa resulting from a vector meson interaction 
lead to r5( (0) = 00]. It is a general feature of the 
Klein-Gordon or Dirac formalism and so is due to 
the model. Secondly, if we write (like Ciulli et at.) 

fe(k, O) = (exp i€ ~ r5( (0») g.(k), 

it is easy to verify, from (6) for r = 0, that ge has 
still the two branch points ±im. No simple factoriza
tion of the lost functions leads to the cuts in only one 
half-plane. Therefore we must use another method. 

We can similarly (as Oehme did with the Coulomb 
potential4) define crossing relations for the family (4). 
From (3) VI --+ - Vl we get 

S_I(k, E) = S+I(k, -E). (10) 

In a simple way for the Klein-Gordon case (10) 
exhibits the link between S. for € = ± 1. However, 
in the following, we keep always the index € in order 
to emphasize that we investigate both particle and 
antiparticle scattering. From (6b) and the choice of 
the cuts for the branch points (P_k'(ex)*) = Pk(ex), 

[I. ( -k*, 0)]* = I.(k). (11) 

From Eqs. (10)-(11) for E and k real, 

S_I(k, E) = (S+I(-k, -E»*. (12) 

Our method is the following: From the two S. and the 
two I.(k, 0) we define two S± and two h even in E, and 
so, without the branch points k = ±im, we have 

2S+(k, E2) = S+1(k, E) + S_I(k, E), 

I.(k, E) = /l(k, E2) + €E/2(k, £2), (13) 

2S-(k, E) = (S+I(k, E) - S_I(k, E»/E. 

• T. Omnes, Nuovo Cimento 21, 524 (1961). 
10 S. Ciulli, G. Ghika, M. Stihi, and M. Visnescu, Phys. Rev. 154, 

1344 (1967). 
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Because j;(k, E2) has only the dynamical cut in the 
upper half-k plane, our problem is thus reduced to 
finding coupled integral equations for j;(k) with 
kernels related to the discontinuities of S± (or Sf)' In 
order to study j; we put 

il(k, E2) = 1 + r_oo Tl,k(OC) doc, 
JjJ1 

pf,k(a) = 1'1.ia) + eET2,ioc), (14) 

iz(k, E2) = r_oo T2,k(OC) doc, 
JjJz 

where Ti satisfies the coupled integral equation 

1 (Tl'k( oc») 
ocr oc + 2iK) 1'2,k( oc) 

= (A2CZ(OC)O(OC - P2») 
A1C1(OC)O(oc - PI) 

(

f:,-II'A2C2(OC - (3), E
2L:-"\Cl (OC - (3») 

+ la-Ill fa-I" 
_ A1Cl (OC - (3), A2C2(OC - (3) 

1'1 I'l 

X (Tl'k({3») d{3. (15) 
TZ,k({3) 

From (15) we see thath is analytic in the cut k-plane 
with a dynamical cut coming from Vier) along 
i[(fll)/2, 00] with #1 = inf (P2' 2Pl)' Similarly, 12 is 
analytic with a cut i[(#2)/2, 00], where #2 = Pl' 
Further, j;( -k*, E2*)* = j;(k). On the other hand, 
outside the cuts, 

\
Uk, E) - cos roo AIV1 dr \---+ 0 Jo 2 Ikl .... oo 

and 

sufficiently quickly so that the following spectral 
representations hold: 

il(k, E2) = cos ...L! dr - i ~ dy, foo ). V 100 R ( ) 

o 2 ii1 k - ly 

i2(k, E2) = -;foo Rly! dy. (16) 
~z k - Iy 

It remains now to find the link between the weight 
function R; and the discontinuities of S± in the upper 
half-k plane. We define 

A.{x) = lim S.(ix - e') 
('-0 

- S.(ix + e')/2i7T, 

L\±(x) = lim S±(ix - e', _x2 + m 2
) 

E'-+O 

(17) 

If in (l7) we substitute the j; given by (16), we get 

We now write 

Fi(x) = j;( -ix, _Xl + m2), (19) 

and from Eqs. (16)-(18) we get, finally, 

F;(x) = Fi ( 00) + t ioo(Ai,;(X, y»F;(y) dy, 

i,j=1,2, 
(x + y)Ai .; 

= (A+(Y)O(Y - P+), (m
2 

- l)A-(y)O(y - P_»), 
A-(y)O(y - p_), A+(y)O(y - P+) 

(20a) 

It is the aim of this paper to study the existence of 
the solutions of these coupled integral equations 
which for the Klein-Gordon formalism is equivalent 
to the resulting integral equation for D in an NI D 
formalism. Note that from a solution Fi(x), i = 1, 2, 
according to Eq. (13), we get both F.(k, 0); thus we 
can reconstruct both S.(k, E) for the particle and 
antiparticle scattering. 

First we consider (20a) as really a linear equation 
and study the Fredholm formulation. For this we 
substitute the kernel vex + y)Ai ,;, where v is the 
linear parameter. It is shown in Appendix B that the 
Fredholm determinant has the following boundll : 

ID(v)1 < exp [1'1'1100 IA+I dx ,,+ X 

Let us assume 

From the results of Appendix B, D(v) is an entire 
function of v and bounded. Furthermore,n D('II) has 

1l These results are the extension of those obtained by De Alfaro 
and Regge in nonrelativistic potential theory [Nuovo Cimento 20, 
956 (1961»). 
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no roots for 

This result being interesting for the existence of a 
perturbative solution, a similar analysis of the Fred
holm numerators can be made, but it requires tedious 
calculations. So we want to transform the equation 

Taking into account the bounds (20b) for ~±, and 
by a suitable choice of OCl , 1X2' OC l = OC 2 = 0 if 7J > 1', 
1X1 = t and OC 2 = t - 7J/2 if 0 < 7J :5: I, it follows 
that 

100 

dx L" dy Tr (~~iloa2)(x, y»T(~~i"a2)(x, y» < 00, 

and the free terms of (20d) are also square integrable. 
Finally, a Fredholm formulation of (20d) exists and 
we remark, that both the Fredholm determinants of 
(20a) and (20d) are the same. In fact, it is shown in 
Appendix B that if ~(v) :;6 0, the solution is unique, 
not only for (20d), but also for our original Eq. (20a). 

Secondly, we want to study the Fredholm solution 
of (20a) or (20d) for v = I and ~±, corresponding 
to the potentials AiCi(lX) considered in (4). Now ~± 

Because of (i), the right-hand side is well defined. 
(iii) for 2x + e' < oc < 2x + inf (,ul' ,u2) - e': 

These TjJz<OC) will be used for the discontinuities of the 
j.(k, r) along the 1m k > 0 axis. As for the Jost func
tions, let us separate in the Jost solutions the even 

in such a way that the free terms, as well as the four 
elements of the kernels, are square integrable without 
modifying the Fredholm determinant. We put 
Fl - Fl(oo) = gl(X)Xal and F2 = g2(X)/Xa2 , where 
11.1 , OC2 are positive; we get 

g;(x) = vFl(oo)gix) + t 10011~~~},a2)(X' y)gi(y) dy, 

(20d) 
with 

gix) = x-ali 00 ~+(y) dy, 
,,+x + y 

with 

depends on the linear parameters of the potentials 
Ai, but ~± as well as (20a) are, of course, not linear in 
these parameters. We must find the asymptotic 
behavior of ~±(x) and see if the bounds (20b) hold. 
For this we shall establish the link between the 
discontinuities ~± (or ~±) and the potentials AiC;(IX), 
as was done by MartinS in the nonrelativistic case. 

We want to evaluate explicitly the discontinuities 
across the cuts. From the solutions of (15) let us 
define for k = ix ± e'/2 two coupled spectral func
tions Tl'ix(OC), where j = 1, 2 and e' > 0 is arbitrarily 
small. From (15) we get the following: 

(i) for oc < 2x - e': 

Td,i.,(OC) = Tj,i"(IX), j = 1,2; 

Oi) for 2x - e' < IX < 2x + e': 

and odd E parts of the solutions of (6a): 

I.(k, r) = Il(k, E2, r) + eE/2(k, E2, r), 

li(k, E2, 0) = li(k, E2), i = 1,2, 

(21) 

Uk, E2, r) = e-
ikr

[ 1 + L~ Tl,k(oc)e-
ar doc l (22) 

12(k, E2, r) = e-ikr {_OO T 2,k(oc)e-ar doc. 
L2 
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The three functions [(10 fixed), lim/.(ix ± 10', r), and 
£'---+0 

/.( -ix, r)], being solutions of the same Schrodinger 
equation, are not independent. Due to their asymp
totic behavior when r -+ Cl) (lxl finite) and r -+ 0, it 
turns out that they satisfy 

lim [f.(ix + 10', r) - f.(ix - 10', r)] 
€' -+0 

= -2irrD..J.( -ix, r). (23a) 

The two relations (15) and (24) give the possibility of 
constructing the discontinuities D.±(x) [or D..(x)] from 
the knowledge of the potentials AiCi(rx) and inversely. 
Indeed, as was done by MartinS in the nonrelativistic 
case, it is easy to see that from (15) and (24) we can 
also reconstruct, step by step, the potentials Ci(rx) 
from the discontinuities D.±(x) [or D..(x)]. 

In principle, from (15) and (24) it is also possible to 
determine the Fredholm determinant of (20a) in 
terms of the Ci(rx). For instance, for the pure Klein
Gordon case 

C2(rx) = (a crCrx - (J)Cl«(J) d(J, 
Jill 

up to the fourth order in Al we get 

!D(Al) = 1 - Ai[ (00 Cl(IX)]2.-j- ;.f· . . . (25) 
2 Jill 21X 

Unfortunately, the method is very cumbersome and, 
as with nonrelativistic potentials,l it appears that the 
combined use of (IS) and (24) is not very practical to 
determine explicitly the Fredholm determinant of 
(20a). 

In Appendix A the behavior for large rx of Tj,i"'(rx), 
rx < 2x, is investigated; if we substitute it in (24), for 
D.±(x) and x large we get 

+ C+ ID. (x)1 < - O(x - fL+), 
x" 

where 'Y) = inf ('Y)l' 'Y)2) and C± are positive A;-depend
ent constants but finite for /Ai/ finite. Moreover, 
C± -- 0 when both /Ail -+ o. 

Furthermore, Ll± are entire functions of Ai and 

From this it follows that 

-2irrD..(x) = lim {e,,:r1im [f.(ix + 10', r) 
r-+ 00 .' -+0 } 

- J.(ix - 10', r)] . (23b) 

Now from the relations D.+ = i(D.+ + D._), D.- = 
(D.+ - D._)/2(m2 - x2)l, and the above results ob
tained for the spectral functions T±(rx),j = 1,2, finally, 
from (23), we get 

(24) 

satisfy the bounds (20a). So, from the results of 
Appendix B, the Fredholm determinant considered 
as a function of Ai' !D(Al , ,12) is also an entire function 
of Ai' Moreover, if both /Ai/ are sufficiently small 
[see (26)], we can always satisfy the bound (20c) (so 
that !D ¥: 0), and the Neumann series of (20d) exists. 
But we are interested in the existence of the solutions 
of (20a) and (20d), not only for small/Ail, but for any 
finite /Ail and so we must look at the roots of !D(Al' ,12). 

In order to understand the meaning of the eigen
values corresponding to the kernel D.ij , we make a 
subtraction in (20): 

F;(x) = F;Cxo) + !J(xo - X)Llij(X, y)Fj(y) dy. 
j Xo + y 

Let us assume that Flxo) = 0 (i = 1 and 2). Then, 
for the subtracted kernel, Fi(X) is an eigenfunction 
and the corresponding Fredholm determinant van
ishes. Let us assume now that this happens when 
Xo -- Cl) [Fi (xo = Cl) = 0, i = 1,2]; then the Fred
holm determinant corresponding to the kernel 

. (xo - x) D.ij(x, y) D.ij(x, y) 
hm = (27) 

"'0-+00 Xo + y x + y x + y 

vanishes. In fact, from (20) it was clear that the roots 
of 

cos Al ~ dr l oo v, 

o 2 

for which Fl (Cl) = 0 correspond to the homogeneous 
equations and so are roots of !D. Inversely, if Ai is not 
such a root, we expect that the Fredholm solution 
(24) of (20a) must exist. Finally, the Fredholm 
determinant 1) of (20a) , when the discontinuities 
D.±(x) are expressed by (15) and (24) in terms of 
Al and 1.2 , is a very complicated function of (AI' 1.2), 
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but we can expect that it has the form 

~(A1' A2) = cos Al (00 VI dri>(A1, A2), (28) 
Jo 2 

where from the bounds (26), <])(A1 , A2) is entire 10 

(AI' A2), well defined for 

Al - dr =F: (2m + 1}-Tr/2, 1
00 V 

o 2 

and cannot vanish for other Ai values. We cannot say 
more because we do not know anything about the 
order of multiplicity of the roots. Note that this kind 
of connection between the eigenvalues or the roots 
of the Fredholm determinant, on the one hand, and 
the asymptotic behavior, on the other hand, can be 
applied very generally in dispersion relation. By using 
the off-the-mass-shell N/ D-type equations, we shall 
explicitly investigate how this relation (28) arises. 

IV. OFF-THE-MASS-SHELL FORMALISM 

We recall that in nonrelativistic potential scatter
ing1.12 for I = 0 as well as for I =F: 0, the off-the
mass-shell N/ D-type equations were very useful in 
understanding many problems connected with the 
on-the-mass-shell equations (existence and uniqueness 
of the solutions, ghosts, threshold behavior, sub
tracted equations, self-damping, Regge poles or Regge 
cuts, etc.). 

The main reason is the foIlowing: The off-the-mass
sheIl equations are the solutions for the Jost solutions 
with kernels still proportional to the S-matrix dis
continuities, whereas the on-the-mass-shell equations 
are limits of the previous ones when r -;.. 0 (Jost 
functions). Furthermore, the Laplace transform of 
these off-the-mass-shell equations are indeed the 
Marchenko13 equations arising in the inversion 
problem for I = 0, giving the possibility of recon
structing the potential. In other words, from the 
spectrum (eigenvalues) of the off-the-mass-shell 
equations (connected with the reconstruction of the 
potential) we get information when r -;.. 0 about the 
spectrum (eigenvalues) of the resulting integral N/ D 
equations (which are connected with the reconstruc
tion of the partial waves). Also with these off-the
mass-shell equations we have the straightforward 
connection between the two formalisms: perturbation 
expansion and dispersion relation. Note that the con
nection between the inverse Laplace transform of the 

12 H. CorniIle and G. Rubinstein, J. Math. Phys. 9, 1501 (1968); 
Nuovo Cimento 56, 867 (1968). 

13 z. s. Agranovich and V. A. Marchenko, The Inverse Problem of 
Scattering Theory (Gordon and Breach, Science Publishers, Inc., 
New York, 1963). 

potentials and discontinuities made in the previous 
section was a first step in off-the-mass-shell formalism, 
but not sufficient-as we have said. 

Unfortunately, the extension of the inversion 
problem "a la Marchenko" has not been made (at 
least to the knowledge of the author) for Klein-Gordon 
or Dirac formalism. Nevertheless, it was realizedl 

that for exponential-type potentials, pure dispersive 
methods can give the same information as the 
Marchenko equation. So, without treating the com
plete relativistic inversion problem (this is not the 
object of the present paper), we shall establish only 
the sufficient part for our connection: namely, the 
link between the potentials and the eigenvalues of the 
on-the-mass-sheIl equations (20a) or (20d). 

A. Integral Equations for the Jost Solutions 

We define the corresponding off-the-mass-sheIl 
functions of the preceding section, 

SECk, E, r) = j.(k, E, r)/j.( -k, E, r), 

as well as the even associated energy functions 

2S±(k, E2, r) = S+l(k, E, r) ± S_l(k, E, r)j 

(l ± I + E(I =f I»). (29) 

The j;(k, £2, r), even E functions, deduced from 
j.(k, E, r), satisfy 

(
Uk, E:, r») = (e-i1CT

) +J.oo ds sin k(s - r) 
f2(k, E , r) 0 r k 

(
A2Vb), A1E2V1(S») (Uk, E2, S») 

x A1V1(S), A2V2(S) f2(k, E2, s) . 

(30) 

From (30) or from the Laplace transform equation 
(15), the analytical properties of j;(k, £2, r) in the k 
complex plane can be studied directly, but these 
properties foIlow also from the ones ofj.(k, r) and the 
asymptotic behavior (7) (see Appendix A). The foIlow
ing spectral representations hold: 

1"i(k, E2, r)eikr = fie 00, r) - i (00 R;(y, r) dy, (31) 
Jiii k - iy 

where 

U 00, r) = cos _1_ and f2( 00, r) = o. JOC; V dr 

r 2 

If we define the discontinuities 

Ll±(x, r) = _1_ [S±(ix - E', m 2 - x 2 , r) 
2i7T 

- S±(ix + E', m 2 
- x 2

, r)] 

and similarly, LlE(x, r) for SECk, E, r),it turns out that, 
owing to (23b), Ll±(x, r) = Ll±(x) and LlE(x, r) = 
Ll.(x). If we substitute in Ll±(x, r) the j;(k, E2, r) 
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given by (31), we get 

(
eO!rR1(X, r») = (A+(X), (m

2 
- X

2
)A-(X») 

eO!rRlx, r) , A-(x), A+(x) 

X (f1( -ix, m2 
- X2, r»). 

f2( -ix, m2 - X2, r) 

We put h( -ix, m2 - X2, r) = Fi(x, r) and finally 
obtain 
Fi(x, r) = F;( 00, r)e-O!r 

+ :~: LXlA;;(X, y)e-(O!+YJrF;(y, r) dy, (32) 

where Aij has been defined in (20a), 

F t ( 00, r) = cos _1_1_ , foo A V, dx 

r 2 
and F2( 00, r) = O. First, for r = 0 the off-the-mass
shell equations reduce to the on-the-mass-shell (20a). 
Secondly, for r > 0, because of the exponential 
damping factor e-(O!+YJr in (32), all the four terms of 
the kernel, as well as the free terms, are now square 
integrable. So if we linearize (32) and consider a 
kernel vAi;(x,y)e-(:>:+!lJr, the Fredholm formulation of 
the solution exists. If for r '" 0 we apply the same 
method as is done for r = 0 in Appendix B, then, 
for the Fredholm determinant ~(v, r), we get 

I~(v, r)1 

[ foo IA+(x)1 e-2:>:r 
< exp Ivl 

p.+ x 

21 00 foo IA-(x)A-(y)(m2 
- l)1 e-2(:>:+yJr ] + Ivl 2 dxdy . 

p.- p.- (x + y) 

It follows that if (20c) is satisfied, then ~(v, r) has no 
roots for r ~ O. Now we put v = I and consider that 
the Ai are the parameters. From the bounds for A± 
obtained in the previous section and the results of 
Appendix B for v '" 0, we see that the Fredholm 
determinants ~(Al> A2 , r) are entire functions of A1 
and A2 • Furthermore, if IAil are sufficiently small so 
that (20c) is satisfied, then ~(A1' A2 , r) =jC 0 for r ~ O. 

FinaIly, we note that from the solutions (32) 
(obtained from the discontinuities) the whole Jost 
solutions j.(k, r) can be reconstructed. 

B. Extensions of the Marchenko Equations 

Similarly to the nonrelativistic case, we put 

F 1(x, r) = e-""<I>(r) + Loo K 1(r, y)e- XY dy, 

F2(x, r) = Loo K 2(r, y)e-:>:' dy, (33) 

<I>(r) = cos Al roo V1 du . 
Jr 2 

From the integral equation (30) it is easy to see that 
such a representation is valid. If we substitute in (33) 
or take the Laplace transform, we get coupled 
integral equations for Ki(r, y): 

Kir, y) = K;(r, y) + ~ Joo :Fi,;Cy + t)K;(r, t) dt, (34) 
, r 

where 

:F1,1(Z) = :F2,2(Z) = L: A+(u)e-'u du, 

:F1 ,2(Z) = L:A-(U)e-ZU(m2 - u2) du, 

:F2,t(z) = i:A-(u)e-'u du, 

.. foo A 11,(u) Klr, y) = :Fi ,l(r + y) cos _1_1_ duo 
r 2 

In order to study (34) it is convenient to put 

/ 100 A V, 
K 1,l(r, y) = KtCr, y) cos r ~ du, 

K2,l(r, y) = K 2(r, y) / cos foo A1;1 du, (35) 

and to introduce two other components,14 solutions 
of (34) defined by new free terms, Ki.;(r, y) being now 
a 2 X 2 matrix solution of 

K;,;(r, y) = :Fi,;(r + y) 

+ !Joo ~dy + t)Kljr, t) dt. (36) 
I r 

Equation (36) is the extension to the Klein-Gordon 
formalism of the dispersive form1 of the Marchenko 
equation, which gives the possibility of reconstructing 
Ki.ir,y) [also the potentials Vier); see below] from 
the discontinuities A±(x). In Appendix C we linearize 
(36) by introducing a linear parameter :Fij -+ v:Fi ;, 

and the extension to (36) of the fundamental property1 

of the corresponding nonrelativistic equation is 
obtained: 

K ( ) - K ( ) _ ~(a/ar)~(v, r») 
11 r, r - 22 r, r - . (37) 

2 j)(v, r) 

~(v, r) is the Fredholm determinant of both (36) and 
(32). In order to get (37), putting for instance v = I, 
note that we use only:Fn = :F22 and do not take into 
account the other relations among :Fo , which come 
from. the fact that the :Fu are all obtained following 
(24) from A1C1 and A2C2 • 

10 Note that also for the extension of Gel'fand-Levitan formalism 
to the Klein-Gordon case it is convenient to use a 2 X 2 matrix 
formalism (Verde, Ref. 3, and De Alfaro, Ref. 3). 
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So (37) is an intrinsic property of (36), the corre
sponding Marchenko equation for the Klein-Gordon 
case. Note that ~(v, r) is also the Fredholm deter
minant of our otT-the-mass-shell N/ D-type equation 
(with ~± -+- v~±) for the Jost solution (32) and so for 
r -+- 0, ~(v, r) reduces to the Fredholm determinant 
of the on-the-mass-shell equations (20a) and (20d). 
Finally, 

~(v, r) = exp ( -2 f'" K l1(t, t) dt) 

( 
25."" K 1(t, t) dt ) 

= exp - r cos tAlL)') V
1
(u) du ' r ~ O. 

(38a) 

Coming back to the case v = 1 where Ai are the param
eters, we get 

~(A1' .1.2) = exp (-2 Sa"" K1(t, t, :1' .1.2) dt ), (38b) 

cos tAll V1(u) du 

where we have written K 1(t, t) as K 1(t, t, AI, .1.2) in 
order to recall that it is in fact a function of AI' .1. 2 ' 

It remains now to exhibit the relations between 
Ki(r, r) and the two potentials Ai Vi(r). 

C. Meaning of Kk, r) and Relations with AiV;(r) 

We recall that in nonrelativistic theory13 K(r, r) is 
the primitive of the potential and so is linear in the 
coupling strength of the potential. On the contrary, 
for the Klein-Gordon case we shall see that Ki(r, r) 
are given by series in Ai' even if (5) is satisfied. At 
the beginning let us assume only that Ai Vi satisfy 
sufficient conditions, such as that the integral equa
tions (6a) and (30) for ;;(k, £2, r) exist. In Appendix 
D it is shown that if we insert the representation (33) 
of;; into the integral equations (30) and eliminate the 
trigonometric functions, then we get for Ki(r, t) 
coupled integral equations from the Vier). These 
equations could be the starting point of a study of 
Ki(r, t). So, as in potential,13 it is possible to seek 
sufficient conditions for Vier) such as 4> and Ki(r, t) 
exist. But this is outside the scope of the present 
paper. We are mainly interested in Ki(r, r) and we find 
(see Appendix D) 

100 A V(u) 
4>(r) = cos r T du, 

K2(r, r) = sin _1_1 - du, 100 A V(u) 

r 2 

(39a) 

(39b) 

= t 100 

<l>(s) [ .1.2 V2(s) + A~:~ (S)] 

- t ft) Al drV1(s) 100 

(Vl(u)K1(u, U)A1 

+ A2V2(u)K 2(u, u)] duo (39c) 

First, we note that the dominant parts of the 
transforms of;; are given [(39a) and (39b)] only by 
the potentials Al VI (r). This is of course connected to 
the Corinaldesi's result3 that the asymptotic Ikl 
behavior is given entirely by A1V1. Only for K1(r, r) 
must both VI and V2 be taken into account. For the 
family of potentials (4) and (5) that we consider we 
must distinguish two cases: 

(1) Pure Klein-Gordon case: .1.2 V2 = H - AWD· 
From (39c) we get 

K () A1VI . ;'11 00 
V1(u) d (40) 

1 r r = - - sm - -- U. 
, 4 2 r 2 

The otT-the-mass-shell Fredholm determinant of both 
(32) and (36) is 

m ' 5. 00 

A1V1(U) 
.v(A1' r) = cos -- du, 

r 2 

(41) 

whereas the Fredholm determinant of our on-the
mass-shell (20a) reduced N/ D integral equation is 

~(A1) = cos ~ ("" VI du = F1( 00). (42) 
2Jo 

This confirms the results given in the previous section. 
The eigenvalues of (20a) must correspond to the 
special Al values such as 

Al (00 V1(u) du = (2m + 1)(rr/2), 
2Jo 

m = 0 ± 1, ±2, .. '. (43) 

(2) General case: AiVi satisfying the conditions (4), 
but without particular relation between Al VI and 
.1.2 V2 • I n this general case, from (39c) we see that Kl 
[and consequently ~(Al' .1.2)] has no special reduction, 
but in Appendix D the following results are obtained. 
Let us define 

K1(r, r) = - A.l~(r) (Sin ~1 100 

V1(u) dU) 
+ K1(r, r, AI, 1.2), 
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Then 

:00'1,1.2) = (COsAl100 ~1 dU) 

x exp (-1''' Kl(r~~, AI, ,12) dr). (44) 

cos i 2(,11 VI) du 

Both IK(r, 1')1 and IKI can be bounded by functions of 
the type Ce-ar/rb , where a> 0 and 0 < b < 1, C 
being a constant greater than 0, finite for 1,111 and 
1,121 finite. Furthermore, 

ioodr IK1(r, 1')1 dr and f" dr IK(r, 1')1 

are also bounded by finite constants for 1,111 and 1,121 
finite. If we look at (38) and (44), we see that the only 
singularity can come in the integration from the end 
point (if 

J
ooV du 

cos Ai _1_ 

r 2 

vanishes at I' = 0). Finally, in both cases 

A1loo - " (AI, ,12) = cos - VI du'D(A1, ... ·2) 
2 0 

where'D =;f= 0 if A1 J; VI du =;f= (2m + 1)7T/2. 
Note that if Al VI == 0, then K2 == 0 and 

K1(r, r) = ~2 Loo V2(r') dr', 

leading to 
'1)(' - 0 ') - f A2C2(oc)d ." Al - ,1\2 - exp 2 OC, 

OC 

which is, of course, the result of the nonrelativistic 
case.1 

D. Existence and Uniqueness of the Solution of 
(20) when 'DCA1 , A2) "" 0 

We consider (20d) with 'V = 1 and Ai being the 
parameters. The Fredholm formulation of the solution 
can be written 

( ) 
al N 1(x, AI' A2)FtCcx) 

g X X -
1 - 'D(Al' ,12) , 

g2(X) = N2(x, AI, A2)F2(00) 

xa2 (AI, ,12) 

and the solution is unique [:D(A1' ,12) =;f= 0], as we 
have seen, if F1 (00) =;f= O. Consequently, we can write 
the solution of (20a) as 

F (x) = F (00) + N 1(x, AI, A2)FtC (0) 
1 1 ""(' .) , 

.1J AI, A2 

F
2
(x) = N 2(x, AI' A2)F1(00) , 

'D( Al , ,12) (45) 

which is still unique if F1 ( (0) =;f= O. 

In the pure Klein-Gordon case (5), the solution 
(45) is reduced to a very simple form because, from 
(42), we know that 'D(A1) = F1(00) in this case and 
we get 

(45') 

where N1 and N2 are still obtained from the Fredholm 
numerators of (20d). 

On the other hand, we know from the analysis of 
Sec. III and Appendix A that F1 and F2 are entire 
functions of both Al and ,12' [See (14) and (15), where 
Fi are defined from Ti.k(OC), and Ti./c(OC) satisfy Volterra 
equations where Ai appears as the parameters.] Now 
we report this result in (45) and (45'). We recall that 
also both F1 (00) and 'D(A1' ,12) are integer functions 
of Al and ,12, and 'D(A1' ,12) factorizes the roots of 
F1(00). So, finally, Ni(x, AI, ,12) and N;{A1, x) in (45) 
and (45') (i = 1,2) are entire functions of AI, ,12' 

E. Pure Klein-Gordon Case when 

(A1/2) J; VI du = (2m + l)rr/2 

From (45') we get in this case 

F1(x) = N1(A1 , x), 

F2(x) = N2(A 2, x), 

where the right-hand sides coming from the Fredholm 
numerator of (20d) are well defined, not identically 
zero for any x, because the left-hand sides [see (14) 
and (15)] are not identically zero for these special Al 
values. Finally, the solution is still unique. In the gen
eral case (4), because we do not know the order of 
multiplicity of the roots of 'D(A1' ,12) = 0 for these 
special Al values, we cannot conclude with only the 
above results. 

V. WEAK COUPLINGS 

Up to now we have only discussed the problem of 
the existence and uniqueness for our NI D-type 
equations (20a). We are concerned now with a second 
problem: Do we know if the states corresponding to 
these equations [roots of F1(x) + €(m2 - x2)!F2(X)] 
are always physically available? In other words, can 
we show that complex binding energies or bad states 
like ghosts or antiresonances do not occur? We still 
consider this problem in the case where (20a) is not 
really a linear equation; we put 'V = 1 and the param
eters are Ai the coupling strengths of the potentials 
(4) and (5). 
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Note that for nonrelativistic potentials the corre
sponding answer is known because Yukawa family (1) 
leads only to true bound states on the physical sheet. 
This comes from the following results15 : The Jost 
function for regular interactions have in 1m k < 0 
only roots on the imaginary axis (no complex k 2 

roots). Furthermore, the roots are simple. We recall 
that these results hold !llso for the Dirac formalism,16 
for instance, if the potentials satisfy the same condi
tions as VI in (4). For the nonrelativistic case1.l2 the 
existence of bad states in NjD equations is not due 
to special A values of the potential AV(r), but to a bad 
r behavior-for instance, second-order poles in ro ~ O. 
So for these bad states the corresponding wavefunc
tions in general have poles at ro (at least of the first 
order and which are not square integrable). 

For the Klein-Gordon formalism real binding 
energies3 -m < E < m are usually required in order 
to imply the existence of antiparticles (E < 0) or 
particles (E > 0) bound states. Bu~ in that. case there 
exist6 simple examples of regular mteractlOns where 
complex states occur when the coupling strengt.hs 
become "too strong." If this happens for the famIly 
(4) that we consider, we can note the difference from 
the above-mentioned ghosts in nonrelativistic poten
tial because now the spatial behavior of the wave
functions is quite correct. This difficulty is not due 
to the dispersive approach. It is present in the pertur
bative approach [(3) or (6)]. So we investigate the 
properties of the roots of the Jost function directly 
from (3). We study the rootsj.C -k) = 0 in 1m k ~ O. 
For €AlVl(r) satisfying (4), we define 

IP.(k, r) ~ r, 
..---.0 

solutions of (3), and we get, as usual, 

IP.(k, r) = (1j2ik) [I. ( -k)j.(k, r) - I. (k)j. ( -k, r)]. 

(46) 

As in nonrelativistic potential, from (46), (11), ann 
the boundary condition of IP.(k,r), we see thatj.(k) 
cannot have roots for k real -:;6 0 [j.(k) = 0 implies 
1.( -k) = 0 and IP.(k, r) == 0]. We have the usual 
relation with the Wronskian 1.( -k) = W[j.( -k, r), 
IP.(k, r)]. As in nonrelativistic potential, if I. ( -k) = 0 
in 1m k > 0, then, from the Wronskian relation 
IP.(k, r) = Gj.(k, r) and from the boundary co~d.iti~ns 
for the solutions, G == 0 even for k = O. If k IS mSlde 
the analyticity domain ofj.(k), then G = -j.(k)/2ik. 
The great difference in 1m k > 0 is for the location as 
well as the multiplicity of the roots. From the usual 

15 R. G. Newton, J. Math. Phys. 1,319 (1960). 
16 M. C. Barthelemy, Ann. Inst. H. Poincare 7, 115 (1967). 

transformation we get 

(k2 _ k2*) 1"'IP., 2 dr = E[(m2 + k2)~ - (m2 + k2)!]* 

x [''''AlVl IIP.1 2 dr. (47) 
,0 

Here we do not necessarily have Re k = 0 in 1m k > 0 
[except in the case Al VI = 0 and V2 not linked to VI' 
where the right-hand side of (47) vanishes and we 
recover the nonrelativistic result]. The supplementary 
term on the right-hand side is a consequence of the 
quasi-orthogonality relation3 satisfie~ by the eige~
functions of the Klein-Gordon equatIOn (3), but thIS 
term, being linear in AI' is small with IAll small. We 
want to show, in the neighborhood of k = 0 (Ikl «m) 
in 1m k > 0, that the root is on the imaginary axis if 
IAll is sufficiently small. From (47), 

(k2 
- k2* {f", IP.1

2 
dr - ~lOO VI IIP.1 2 dr 

+ O(lk2 
- k2 *1 2)J = O. (48) 

Whereas the first term remains finite when IAll -+ 0, 
the second one vanishes; so we can find IAll suffi
ciently small such as the bracket is greater than O. The 
remainder factor (kZ - kZ*) = 4i 1m k Re k implies 
Re k = 0 for 1m k > O. 

The possibility of complex roots in 1m k > 0 [at 
k and -k* following (II)] is a consequence of the 
fact that the roots along the imaginary axis are not 
necessarily simple. But we shall show that the multi
plicity is one if k = 0 or if I}'ll.is su~ciently. small ~or 
k along a finite interval of the Imagmary aXIs. TakIng 
into accountj.(-k) = 0, we get 

aj./ak = GW[aj.jak,j.] + G-lW[IP., aIP./ak], 

and with the usual combination of the solutions of (3) 
for tj., aj.jak) and (IP., oIP.jak) we get 

oj. = G[-2/J"'j! dr + EkAl i r"'j;~ drJ. 
ak Jo (k 2 + m2

) Jo 
Whereas the first term does not vanish when Al -+ 0, 
the second does. So this second term for IAll small is 
negligible. We use this result for k = iX (0 < X < m). 

For family (4) we can write j.( -iX, r) = e-xr + 
g.(X, r), where Ig.1 < const exp [-Xr - const r]. Then 

oj. (-iX) = GX[ r"'j~ dr + "AI! {"'VIi; drJ 
OX Jo (m 2 

- X2) Jo 
(49) 

= G[ 1 + 2x 100 

[g; + 2e-xrg.] dr 

EXA! i "'j2 d ] + ! .v~ r . 
(m 2 

- X2) 0 

(49') 
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In (49) for 1,1.11 small the first term in the bracket is 
dominant. Furthermore, in (49') the second term 
vanishes if X --+ 0 and the third term vanishes if 
1,1.11 --+ 0 or X --+ O. So for 1,1.11 sufficiently small we can 
always choose XO such that, for 0 ~ X ~ XO, the sum 
of the modulus of the second and the third terms is 
less than one and that 8/.( -k)/8X does not vanish in 
the interval. Finally, we can take the limit X > 0 
going to zero in (49') because the integrals go to 
finite limits; we get (8/.( -iX)/8X)x=0 = G =;l= 0, with
out restriction about AI. 
" In conclusion, for 1,1.11 small there exists always a 
f].nite strip 0 ~ 1m k ~ XO where the roots of/. ( -k) = 
0, being simple and on the imaginary axis, can be 
associated with bound states. 

So, concerning the possibility of bound states for 
regular interactions, we note the difference between 
Schrodinger or Dirac formalism on the one hand and 
Klein-Gordon on the other. This possibility is clearly 
connected with the appearance of EV1 in (3), from 
which it follows that in the normalization, as well as 
the orthogonality relation, VI cannot disappear. Now 
the confluence of a pair of real E roots or the possi
bility of conjugate E pair of complex frequencies 
(studied in Ref. 6, where the difference with the Dirac 
case is emphasized) has been rejected by physicists 
because it leads to difficulties for the Hamiltonian. 
We can explain qualitatively how this happened.6 Let 
us assume that for Al < ,1.0 there exist two roots of 
/.(-k) = 0 (one for E = I and one for E = -1) 
along the 1m k > 0 axis (0 < 1m k < m). As Al 
increases, one of the two roots can go through the 
cut in the other sheet of the complex k plane where it 
meets the other root; subsequently they can go off 
the imaginary axis (k and -k*). If we compare (47) 
for the Klein-Gordon equation and the corresponding 
ones for Dirac16 and Schrodinger formalisms, we see 
that the difference concerning the location of the 
roots along the 1m k > 0 axis is due to the existence 
(or not) of positivity properties in the integration. We 
recall that the same kind of difference occurs for the 
fourth component of the associate currents. 

VI. CONCLUSION 

In this paper we have mainly tried to understand 
whether or not the N/ D equations corresponding to 
the Klein-Gordon formalism have a unique solution 
when the dependence of the potential is taken into 
account explicitly in the discontinuities. Because the 
Klein-Gordon formalism has not been as completely 
investigated as the Schrodinger one, we must extend 
some results of the nonrelativistic potential theory: 
analytical properties in the k plane, the Martin 

inversion relation, the dispersive Marchenko equation, 
the De Alfaro and Regge bound, etc. Because people 
working in the inversion problem use both phase 
shifts for positive and negative energies, we take into 
account both the corresponding discontinuities. 

Consequently, we get some complications in the 
N/ D equations, but we have the advantage of obtain
ing solutions for both positive and negative energies. 
The main difference with Schrodinger theory (besides 
the cuts in the two half-planes for the Jost functions) 
is the fact that the asymptotic behavior depends 
explicitly on the interaction. So the Fredholm deter
minant of the N/ D equations exhibits this result. 
This is the key for the problem of the existence of the 
solutions. On the other hand, the necessity of going 
to weak coupling limits in order to avoid complex 
frequencies is certainly a great restriction of the theory. 
With this restriction in mind, we note that the Klein
Gordon formalism is as convenient a model as the 
Schrodinger formalism for studying some aspects of 
strong interaction dynamics. We remark that many 
other aspects1.l1 of the N / D equations not considered 
in this paper can be investigated as well. Similarly, a 
complete formalism of the inversion problem "a la 
Marchenko" is certainly possible. The extension of 
these results to Dirac formalism might also be useful. 
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APPENDIX A 

We want to obtain some asymptotic properties for 
both the 'Jost solutions and the discontinuities d±(x) 
using the Laplace transform properties of the solu
tions. Then the properties are the extension to the 
Klein-Gordon case of results obtained by Martin8 

for the Schrodinger one. 
I. First, for k =;l= ±im and k outside the cuts 

k = ifJt/2, 00], we want to show that 

J.(k, r)eikr ~ exp (-iE ~ Al roo V1(u) dU), (Al) 
Ikl-+oo k J. 2 

where 

J.(k, r)eikr = 1 + %1 L'" pt!(IX)e-~r dlX, (A2) . 

ptj(ex) being the nth iterate term of the solution of(6b). 
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Using the Martin's bounds8 outside the cuts, 
loc + 2ikl > oc sin f.' and loc + 2ikl > 21kl sin f.', from 
(6b) we get 

al al 
I Pk,.(OC) I < l+q + -

oc oc 

X (ac-SIlP(I'I,I'S'( 1 + a2 ) 

J I' (oc - (3)ql (oc - (3)q2 

x I Pk,.(f3) I df3, (A3) and 

'fJ = inf ('fJl, 'fJ2) and where al and a2 are positive 
k-independent constants such that 

I 
e.(oc) I IAlllEI IA21 a l 

oc( oc + 2ik) < 2k sin f.' OC1+ql + OC1+q2 sin f.' < OClH ' 

< + . I 
e.(oc - (J) I al ala2 

oc(oc + 2ik) oc(oc - (3)ql oc(oc - (3)q2 

From (A3), IPk,.(oc)1 < B(oc), where 

B(oc) = F(OC>[ 1 + r-SUP(I't.I'B'M(OC, (3)B(f3)df3 ] (A4) 

and 
F(oc) = a l /oc1+'1, 

M(oc, (3) = ocQal[(oc - f3r" 1 + a2(oc - (3)-Q2j. 

Note that B(oc) is a majorant k independent. If we 
iterate (A4), we find 

L')IP~~l(oc)1 e-acr doc 

< {X)B(n'(OC)e-·r doc 

<f"dOCF(OC)e-CC
' :![r-SIlJl

(l'l'1'2'M(OC, (3)F(f3) df3 r 
< LX) docF( oc)e-ccr . exp const < const, 

because, as we shall see later, 

f
CC- BUP (1'101'2' 

M F df3 < const. 
I' 

So the series in (A2) are absolutely and uniformly 
convergent in the whole k complex plane for k outside 
the cuts. In order to get the limit Ikl --.. 00 in (A2), 
we can, for each term, take the limit Ikl ->- 00. But 

lim fooPk':2(oc)e-ccr doc =foo p(n'(oc)e-ccr doc, 
Ikl-oc " " 

where pen) is the nth iteration of 

() 1. [EA..lECl( oc) EA.lE 
P oc = 1m +-

Ikl-oo 2ikoc 2ikoc 

x L~-I'ICl(OC - (3)p(f3) d f3} 

lim f 00 pt:( oc)e-ar doc 
Ikl-oo JI' 

= lim (~)n 1.[5. 00 
AlEVl(U) dUJn. 

Ikl-oo Ik n! r 2 
The result (AI) follows. 

II. Secondly, we want to show that the solutions 
(15) for k = ix and oc < 2x - sup (#1' #2) satisfy 
the following bounds: 

(

X IA21 al ) 

(
b'l'i"(OC)I) oc'l+I(2x - oc) 

h,i.,(oc)1 < IAll a2 ' 

ocll+I(2x - oc) 
oc < 2x - sup (#1' /1'2)' (A5) 

al and a2 being positive constants, A;-dependent but 
finite for IA;I finite. Furthermore, ai are oc and x 
independent. Moreover, 'fJ = inf ('fJl' 'fJ2)' 

Using the bounds (4) for C;, from (15) we get, for 
k = ix, an inequality integral equation which we 
write in the following manner: 

T.,(OC) < F"(oc)[A +i CC

-Jl.SUPK",(OC,f3}T.,(f3)d f3], (A6) 
/lin! 

where 

( 
ITl,i.,(oc)I ) (I}'ll) 

T.,(OC) = , A = , 
IT2,i"( oc)1 IA21 

and 
K.,(oc, (J) 

o ) 
const 

, 

= (OCIII A21 (oc - (3)1-'12X-
l (m 2 

- x2
) IAII ocll(oc - f3rlll). 

IAll oc'l(oc - (3)-'11 IA21 (oc - (3)H·oc'l 

If we iterate (A6), we get 

~.,(oc) < F.,(oc) I- K.,(oc,{J)F"(f3) 'A, 00 1 [f."-,,suP J 
on! !Hn! 

(A7) 

where 
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Let us define 

[(rx, 'YJ, 1/i , 'YJj) = rx~iO:-b(rx - f3)-~if3-(1+~j) df3, 

where a and b are arbitrary constants > O. Then it is 
easy to find 

[ < const (for any 'YJi' 'YJ j)' 

using 2x - f3 > rx - f3, 

1m2 - x21 
Tl,2(X' rx) = I}.I 

x 

(A8) 

X JO:-brx~ ~: - f3)-n~_ df3 < IAII [ const, 
a f3 ~(2x - f3) 

using 

_1 1 (1 1) 1 (1 1) 
f3(2x - f3) = 2x P + 2x - f3 < 2x P + rx - f3 ' 

and 

lO:-b df3 
T2,l = I All rx~ a (rx _ f3)~1f31+~(2x _ f3) < I All [ const, 

using the same decomposition as T1,2' Also, 

lO:-b (rx - f3)1-~2 

T2,2 = IAI rx~ 1+ < IAII [ const, 
a f3 ~(2x - f3) 

using 2x - f3 > rx - f3. Finally, if we substitute in 
(A7), 

T.,(rx) < F",(rx) I 1-(Cll 1~21 CI2 IAII)nA, (A9) 
on! C21 IAII C22 1A21 

where Cij are positive constants independent of AI, A2 • 

Ill. Thirdly, if we substitute in (24) I Tj.i",(rx) I by the 
bounds (A9), we get bounds for 1~±(x)1 when x is 

large. From (24), 

1~+(x)1 < l&! const + IA21 [(2x, 'YJ, 'YJI, 'YJ) const (lAiD 
X~2 x~ 

Finally, 

C± being IAil-dependent constants but finite for IAII 
and IA21 finite. 

APPENDIX B 

1. We investigate the Fredholm determinant of 
V~ij given in (20a): 

V~i;(X, y) 

_ (_V_ ~+(y)O(y - ft+) ~ -(y)O(y - ft-») , 

x + y ~-(y)O(y - ft-) ~+(y)O(y - ft+) 

where we have written ~-(y)(m2 - y2) = ~ - (y). We 
have 

I ~il,i/YI, YI) ~iloi2(YI , Y2) ~il.in(YI' Yn) 

~i2.iJY2' Yn) ~i2,il(Y2' YI) ~i2,i2(h, h) 

i)(n)= . . I. (CXJdYI···ICXJdYn : (B1) 

''''2,' ",'n J 0 0 I 
~in,iJY n , Yl) 

First, using mainly the symmetry of the diagonal 
elements ~ll = ~22' we get 

Secondly, still using ~11 = ~22 and symmetry proper-

ties in the integration of Yi' it can be shown that i)(n) 

can be written as 

(B2) 

If n is odd, pmax = Hn - 1) and y~ = C~ = n!j 
p! (n - p)!. If n is even, pmax = tn, y~ = C~ for 
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P < P and ynl2 = CCnI2 )-1. max, n n-l 

} 

i 1 p n 

1 
~+(yj) ~ ~(yj) 

Yi + Yj Yi + Y; 
p , 

~-(y;) ~+(y;) 

Yi + Yj Yi + Y; 
n 

where for simplicity the O(y - f1±) have been omitted. 
This decomposition is trivial for n = 2 and easy to 

J 
i 

1 

P 

n 

where now only q columns with ~- exist. This decom
position is obtained in the following way: In the first 
column ~~n) we put all the elements ~+ equal to zero 
and after the elements with ~ - equal to zero. Making 
the same operation with both determinants in the 
second, ... , pth column, we get 21' determinants. 
Taking into account the symmetry properties, we 
group them following (B3). ~~~d can be calculated 
explicitly, taking into account the symmetries in the 
integrations. 

J 
i p-q+l 

p-q+ 1 
0 

p 
~-(Yi) 

Yi + Yi 
n 

We develop the determinant following the (n - p) 
elements =;6. 0 of the first row and remark (with sym
metry properties) that they give the same contribution. 
So we consider the minor corresponding to the 
element of the first row and last column (i = p - q + 1 

1 

P 

get from symmetry properties for n = 3: 
lffi,(2) _ ~(2) + ~(2) 1~(3) _ ~(3) + 3~(3) 
2"oU - 0 1 ,"2" - 0 1 • 

Note that ~il=l.in is either ~+IYl + Yn or ~-IYl + Yn 
accordingly as in = 1 or 2. For it ¢ in note also 
that ~. , corresponds to ~- (or ~-) and ~i i to 

11'.'" m' Z 

~- (or ~ -). Note also that ~ii the diagonal ele-
ments correspond to ~+. Assuming (B2) for n - 1, 
adding ~1.in ' and taking account of symmetry proper
ties, it can be shown true for n. Thirdly, for each ~~n), 
still taking into account symmetry properties, we get 

p-q 

~+(y;) 
0 

Yi + Yj 

0 
~-(Yi) 

Yi + Y; 

Q=1' 
i)(n) = ~ cq~(n) 

p £., p p,q' 
q=O 

P n 

~ ~ (y;) 

Yi + Yi 

~+(yj) 

Yi + Yi 

(B3) 

We give briefly the method. First we factorize 
~+(yj) in the first (p - q) columns and factorize 
(Yt + y;)-1 in the first p rows. Then the p first elements 
of the first column are equal to one. We subtract from 
all elements of the ith row (i = 2, p) the corresponding 
elements of the first row. We are thus led to a new 
determinant, where the first column and the first row 
of the first one are absent. We continue this operation 
up to a determinant where the (p - q) first rows and 
(p - q) first columns of the original one are absent: 

n 

~ -( ) P-Q 

Y; IT Cm - Yi) 
Yi + Yjm=l Ym + Y; 

~+(y;) 

Yi + Yj 

andj = n). Similarly, we develop this new determinant 
following the (n - p - 1) elements ¢ 0 of the first 
row which still give the same contribution. Still taking 
the minor corresponding to the first row and the 
last column, we continue the operation up to a 



                                                                                                                                    

94 H. CORNILLE 

determinant (where A- has disappeared) with n - p rows and columns: 

j 
p+l-q p n-q 

p+l A-(y;) A+(y;) 

Yi + Y; Yi + Y; 
n 

In this determinant we factorize A-(y;) and A+(y;); the remaining determinant with elements (Yi + y;)-l 
(i = p + 1, ... ,n;j = Ii + 1 - q, ... ,n - q) can be easily calculated: 

~~~~ = i:dYl .. 'I,:dYp_q i:dYp+l " J,,:dYn-l1i:dYp_q+l" J,,:dYp i:dYn-Hl" '1: dYnM~~~(Yl"'" Yn), 

M(n) = IT [A-(Yn-k+l)A-(YP-Hk) i=it (Yn-k+l - Yi) IT (YP-Hk - Yi)] (n - p)! 
p,q k=l (Yn-k+l + YP_I1+k)Z i=p+l (YP-Hk + Yi)i=k+P+l-q (Yn-k+l + Yi) (n - P - q)! 

i<; 

X IT A+(y;) IT [IT (Yi - y;) IT (Yi - Y;) IT (Yi - Y;)] IT A+(Yi) irr(Yi - y;)Z. 
1 2y; ;=1 1=i+l (Yi + Y;) ;=1+1 (Yi + Yi) ;=n-q+l (Yi + Y;) p+l 2Yi ~=P+l Yi + Y; 

We put 

and we get 

1~(n)1 < _1_ an-Zl1bl1 (n - p)! 
P,Il 2n- 2q (n _ p _ q)! 

From (BI)-(B4) we obtain finally 

1~(v)1 < exp [Ivl a + Ivl2 b], 

!~(v) - 11 < exp [Ivl a + Ivl2 b] - 1. 

(B4) 

II. For the kernel vAi;(x, y)e-(x+lI )r, (Bl) becomes 

:D(v, r) = 1 + 1 (-~t :D(n)(r), 
1 n. 

X 

Ain,in(Yn' Yn) 
(BS) 

The only change is the product IT e-2v,r, and finally 
we get the bound 

1:D(v, r)1 < exp [Ivli
oo 

e-Zzr IA+(x)1 dx 
1'+ x 

1=p+l 

III. For the kernel V3'i,l(Y + t) the same method 
as was used in Ref. 1 shows that it leads to the same 
Fredholm determinant :D(v, r) given in (BS). 

IV. We want to show that if :D(vo) ¢ 0, then (20d) 
has a unique solution in L2 and (20a) has also a 
unique solution in a well-defined space. We put 

F = (FiX») and FE 8 if (I Fl(X) I < Cste ) 
Fz(x) IFz(x) I < Cste/x 

for XE[C, 00], O<c<inf(,u+,fL ). 

We write Eq. (20a) as 

F=F(oo)+vA·F. (B6) 

Let us assume that FE Sand F is a solution of Eqs. 
(20a) or (B6); we define F = F - F( (0), FE S, and 
"& c 8. Because F = vA' F, if we use the bounds (20b), 

IA+I < const/x~, lA-I < const/xl+~, and 'YJ > 0, 

we get 

where 

(

I Fl(x) I < const!TJ', 0 < "I' < "I if 0 < 'YJ 5: 1,) 
IF1(x)1 < const/x if 'YJ > 1 . 

I Fz(x) I < const/x 

For each FEE [or FE 8 and a solution of (B6)] we 
define 

(

Fl(X) - F l ( 00) = Fl(X») G (x) 
G(aI,as) = X"I X"I = (G:(X») ' 

Fz(X)X"· = Fz(x)x"· 
(B7) 
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and we write Eq. (20d) as 

G(<%I,<%I) = G~al,1ll2)F1( 00) + V~(1ll1,1ll2)G(1ll101ll2). (BS) 

Note that 

If we choose OC1 = OC 2 = 0 for 11 > 1 and OC1 = t, 
OC2 = (1) - ('f}/2) for 0 < 'f} ~ I, then G("I,a.) as 
defined by (B7) belongs to V. With these choices of 
OC1 and OC2' and still using the bounds (20b) for ~±, 
it is easy to see that the two elements of the free terms 
of (20d) , as well as, the four terms of the kernel 
ll(a1,a2), are square integrable. So G(<%I,<%2) E L2 and 
6. ("'10<%2) E V. Finally, our problem is reduced to solving 
a Fredholm equation (BS) or (20d) in V. Note that 
the Fredholm determinants of (B6) and (BS) are the 
same formally and so are well defined for (BS) from 
the theory of integral equation in V. If for a special 
value Vo one has ~(vo) ~ 0, then there exists a unique 
solution G(alo <%2) of (BS) in V and the corresponding 
F. E 1; [or FEE and F a solution of (B6)] defined by 

o 
(B7) is the unique solution of (B6). 

APPENDIX C 

We study Eq. (36), the extension of Marchenko 
equation to the Klein-Gordon case. 

I. First17 we want to show that the diagonal ele
ments in the indices Kii and diagonal in the variables 
r = yare equal: 

Kn(r, r) = K22(r, r). (CI) 

Note that this is true for the free term because 
9'11(r, r) = 9'22(r, r). We write the kernel 

where S±, S are symmetric, whereas A is antisym
metric. We have only to verify that 9'11+1 has the same 
structure: 

:;(11+1) = ![.'F:;1I + :;11:;] 

= (AF12 - F12A)O'+ + (F21A - AF21)O'_ 

+ [SFn + FllS + t(5+F12 + F21S_ 

+ S_F21 + F12S+)] ® 11 

+ [AFll + FllA + (S+F12 + F21S_ 

- S_F21 - F12S+)] ® 0'3' 

We see that the factor of 11 is symmetric, whereas the 
factor of 0'3 is anti symmetric. 

II. Secondly, we introduce a linear parameter v in 
(36): 

Ki,lr, y) = v.'Fi,;{y + r) 
+ v t LX) :FdY + t)KI.lr, t) dt. (C2) 

We want to show that the trace of Ki,i is linked to 
the Fredholm determinant of (C2): 

K ( ) K ( ) 
_ (a/ar)~(v, r) 

11 r, r + 22 r, r - . (C3) 
, , ~(~" r) 

The Fredholm-type solution of (C2) for y = r can be 
written as 

= v~(v, r) L .'Fii 2r) 

(
.'Fn(y + t) 9'12(y + t») 
.'F21 (y + t) 9'u(y + t) where 

+ v21''' 6,N'i.lr, t).'F;,i(r + t) dt, (C4) 

of (36) in an abstract form: .'F = Fn ® 11 + F12 ® 
0'+ + F21 ® 0'_, where 11 and O'± are the identity and 
usual Pauli matrices acting on the indices (i,j), 
whereas Fn , F12 , and F21 are symmetric operators 
acting on the variables rand q. Now 

.'F2 = [F~l + t(F21F 12 + F12F21)] ® 11 

+ l(F12F21 - F21F12) ® 0'3 

+ (FUF12 + F12Fn) ® 0'+ 

+ (F11F21 + F21Fn) ® 0'_. 

If we consider the diagonal elements in the indices, we 
look at 11 and O's. Because the factor of 11 is symmetric 
in the variable space, whereas that of O's is antisym
metric, we see that the diagonal elements of .'F2 in 
both indices and variables space are equal. 

Let us assume for :;11 a structure similar to :;2: 

.'Fn = S ® 11 + s+ ® 0'+ + s_ ® 0'_ + AO'a, 

17 I thank R. Stora for this proof. 

~(v, r) = 1 + L (_v)1I ~(n)(r), 
n! 

~(> ( ) '" (_v)1I ~(>(11)( ) oJ, i,; r, t = "- -,- oJ, i,; r, t . 
n. 

(C5) 

In order to prove (C3), due to (C4) and (C5), we have 
only to show that 

_1_ ~ ~(n+2)(r) 
n + 20r 

= _~(n+1)(r) L :Fd2r) + (n + 1) 
i 

x .L f.oo .N':~!2(r, t1):;il,i.(r + t1) dt. (C6) 
llot2 r 

From Fredholm's theory we get 

~(n)(r) = 5. 00 

dt1 •• -ioo 
dtnEn(tl' t2 , ••• , t1l), 

.N't~.(r, t1) = 5. 00 

dt2 • •• 5. 00 

dtn+1H!;'!.(r, t1, ... , tn+1)' 
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where 

En(t1,t2,"',tn)= I 
il,i2,' . ·,in 

Hi~~~(r, t1, t2, ... , tn+!) = I 
ia,i4," ·,in+2 

We get 

H. CORNILLE 

.1"i,.iJ2t1) .1"i"i/ tl + t2) 

.1"i2.i,(t2 + t1) .1";2.i2(2t2) 

.1"i"i.(r + t1) 

.1"ia.i2( t2 + t1) 
.1"iloi3(r + t2) 
.1"ia.i3(2t2) 

.1"ihi n(tl + tn) 

.1"i2.i,,(t2 + tn) 

.1"in.in(2tn) 

.1"i";n+/r + tn+1) 

.1"ia.;,,+.(t2 + tn+1) 

_1_ ~ '1)(n+2)(r) = _ +12l2 (oo dt1··· (OOdt;_1 (oo dti+l'" ("'dt",+2En+2(tl,"" t;_I, r, t1+1"", tnH) 
n + 2 ur n 1=1 Jr Jr Jr Jr 

where we have used symmetry properties in the exchange of ti ~ t;: 

En+2(r, t1 , ••• , tn+1) = I 
il,i 2 ," ·,in+2 

.1"i,.i,(2r) 

.1"i2.i,(t1 + ,r) 
.1"i,.i2(r + t1) 
.1"i •• i2(2t1) 

We develop En+2 following the elements of the first column and we write 

EnH(r, t1, ... , tn+1) = L .1"i,.i,(2r)En+!(t1, t2, ... , tn+1) 
i, 

where 

and 

n+l 
+ I(-l); L .1"il+,.i,(t; + r)Mtt;:)(r, t1"", tn+1)' 

;=0 i;+loil 

M (n+1,l)(r t .,. t ) - H(n)(r t ... t' ) 
iloi2 ,1, 'n+l - ilti2 '. 1, 'n+l 

:F i,,;.(r + t1) 
.1"i2.i.(2f1 ) 

.1"i;.i.(t j - 1 + t1) 

.1"i;+2,i2(t1+1 + t1) 
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Similarly, as was done for the nonrelativistic case,I-12 it is easy to get the identity 

roo dti ... fOO dtn+l !. :1'il+1>i/t; + r)Mtt:;)(r, t1 , ••• , tn+l) J r tj+l,tl 

= roo dti ••. roo dtn+i -1)i-1,L. :1'i2.;1(t1 + r)M~~t:·l)(r, t1 , ••• , tn+1). Jr Jr ~2"ll 
Finally, we get 

which is the relation (C6) or (C3). 

APPENDIX D 

We want to find the relations between Ki , <I> trans
forms of/;: 

fl = e-ikr<l>(r) + 100 

KI(r, t)e-ikt dt, 
1m k < 0, (Dl) 

f2 = 100 

K 2(r, t)e-ikt dt, 

and the potentials }'i Vi using the fact that the /; 
satisfy the coupled integral equations (30). First, in 

2 lOO sin k(s - r) • 
J2Ck, E ,r) = [itAIV} + JaA2V2] ds, 

r k 
(D2) 

we insert the /; given by the representations (01). 
After eliminating the trigonometric functions, we get 

K2(r, t) = t roo AIVl(S)<I>(S) ds 
)1<l+r) 

+ t loo ds 1
00 

dU[ f Ai~(s)K;(s, U)] 

x [O( t + s - r - u) - 0 r ~ r - s) 
X O(t + r - s - U)l (03) 

Secondly, in the relation given by the first row in (30) 
we insert the expression (02) of the second row 

-ikr 100

• k(s - r) Jl = e + sm Adl V2 ds 
r k 

roo (k2 + rn2
) + J. ds sin k(s - r) k2 A1VI(S) 

X loodU sin k(u - S)[itA I VI + A2Vda]. (D4) 

Similarly in (04), we insert (01) and eliminate the 
trigonometric functions: 

(05) 

x [O(t + s - r - u) - 0 r ; r - s) O(t + r - s - U)] 

+ ~if.oo VI(s) [ -(VIr; r)) (<I>C; r)<I>C; r - s) - <I>(S)O(s - C; r))) 

+ VI C ~ r + s)<I> (s + r ~ r) ) ] 
-tiOO 

dsi 00 dUA1V1(S) [ f Ai~(U)( K;(u, t + U - r) - K;(u, t + 2s - u - r) 

( 
t - r ) (t + r ) ( x 0 s + -2- - u - 0 -2- - s K;(u, t + r + u - 2s) 

(06) 
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From (03)-(06) for t = r we get 

K2(r, r) = ~ 100 
Vl(S)<I>(S) ds = sin (~1

OO 

Viu) dU), 

Note that 1<1>1 < 1 and IK2(r, r)1 < 1. From the con
ditions (4) about Vi there exist positive constants 

ai' bi , and Ci such that 

C e-a1r C e-a2r 

I V1(r) I < _l-b-' IV21 < ~+l ' 0 < bi < 1. 
r 1 r I 

From (07) and (08) we get 

IK1(r, r)1 

< e~:T DI + D2100 ds f.00 e::u 
IK1(u, u)1 dU} 

IK-(r, r)1 

< e~:TD; + D; i OO 

ds f.00 e::
u 

IK- (u, u)1 du J. 
where a > 0 and 0 < b < 1 are IAil independent but 
Di and D; are constants greater than zero, lA.il 
dependent but finite for IAil finite. It follows that 

D e-ar i oo f.oo e-au D e-ar 

IK1(r,r)I<-1-b-expD2 ds -b dU<_1_b-D3 
r r sur 

and 

LooIK1(r, r)1 dr < D4 • 

We get also similar bounds for IK-I and J:'IK-I dr. 
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Diffraction of Waves by a Conducting Cylinder Coated with 
a Moving Plasma Sheath * 
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The scattering of plane electromagnetic waves by a perfectly conducting cylinder coated with a 
moving dielectdc or plasma sheath is investigated theoretically. The homogeneous sheath is assumed 
to be moving in the axial direction with a uniform velocity v. with respect to the conducting cylinder. 
Solutions of this problem are obtained by making use of the special theory of relativity, the covariance 
of Maxwell's equations, and the Lorentz transformations. Results are given in terms of the radiation 
patterns of the scattered fields. A rather unique feature concerning mode coupling between the incident 
wave and the scattered wave is found. Even at normal incidence for v. ¢ 0, an incident E wave or H 
wave will produce a scattered wave which contains both E and H waves. Detailed discussions are 
presented. 

I. INTRODUCTION 

In an attempt to understand the problem of the 
interaction of electromagnetic waves with moving 
penetrable medium, a great deal of work on the 
reflection and refraction of waves by various moving 
penetrable media has been carried out in recent 
years.1- 3 Many interesting and sometimes unexpected 
results are obtained. However, the problem of the 
diffraction of waves by a finite (resonant) size obstacle 
containing moving medium has not been considered. 
The purpose of this paper is to treat this problem. 
Specifically, the problem of the scattering of electro
magnetic waves by a conducting cylinder coated with 
a dielectric or plasma sheath which is moving axially 
with a uniform velocity v. is solved. This problem is 
not only of interest from a theoretical point of view 
but also has an important application, i.e., the 
understanding of the re-entry problem. It is well 
known that the plasma surrounding a re-entry vehicle 
streams pass the conducting core .and.that the vehicle 
is moving with respect to an observer. 

Solutions of this problem are obtained by making 
use of the special theory of relativity, the covariance 
of Maxwell's equations, and the Lorentz trans
formations.4 Several interesting features concerning 
the radiation patterns and the magnitude of the 
scattered waves as a function of the velocity of the 
moving medium are discussed. 

II. FORMULATION OF THE PROBLEM 

The geometry of this problem is shown in Fig. I. 
It is assumed that an infinite, perfectly conducting 

• Supported by the National Science Foundation. 
1 H. Fujioka, F. Nihei, and N. Kumagai, J. Appl. Phys. 39, 2161 

(1968). 
I C. Yeh, J. Appl. Phys. 38, 5194 (1967). 
• V. P. Pyati. J. Appl. Phys. 38, 652 (1967). 
• C. Meller, The Theory of Relativity (Oxford University Press, 

London, 1957). 

cylinder of radius a, surrounded by a homogeneous 
moving plasma sheath of thickness (b - a), is 
immersed in free-space (EO' Po). The plasma sheath is 
moving in the axial direction with respect to the con
conducting cylinder at a uniform velocity Vz • The 
incident wave in the free-space region is assumed to be 
plane with a harmonic time dependence. The case for 
an incident E wave is analyzed in detail. 

In the observer's system S, which is stationary with 
respect to the conducting cylinder, the axial com
ponents of the incident plane wave in free space 
takes the form 

99 

E~i) = Eo cos 00 exp (-iko cos OoY + iko sin Ooz) 

X exp (- iwt), (1) 

H~i) = 0, (2) 

where Eo and ware, respectively, the amplitude and 
the frequency of the incident wave and ko = W(pOEO)t. 
00 is the angle between the propagation vector and the 
positive y axis in the y-z plane. 

In the moving system Sf, which is stationary with 
respect to the uniformly moving plasma sheath, the 

S system 

Incident 

Perfectly 
Conducting Cylinder 

y 

--------~~~ ___ z 

Moving Plasma Sheath 

FIG. I. The geometry of the problem. 
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incident plane wave takes the form 

E~i)' = E~ cos 0' exp ( - ik~ cos 0' y' + ik~ sin 0' z') 

X exp ( - iw't') 

00 

= FE I (_l)nJ n(k~r' cos O')ein.', 
n=-co 

H(i)' = 0 .. , 

where 

w' = r .. w(1 - P .. sin ( 0), 

r. = (1 - P!)-i, P. = v.le, 
e = speed of light in vacuum, 

k~ cos 0' = ko cos 00 , 

sin 0' = (sin 00 - P.)/(l - P. sin ( 0), 

k~ = w'(flo€o)i = I' zko(1 - P. sin ( 0), 

Eo = I' .. Eo(l - P .. sin ( 0), 

FE = E~ cos 0' exp (ik~ sin 0' z' - iw't') 

= Eo cos 00 exp (iko sin Ooz - iwt). 

(3) 

(4) 

(Sa) 

(Sb) 

(Sc) 

(Sd) 

(Se) 

(Sf) 

The above expansions are obtained by making use of 
the principle of phase invariance of plane waves, the 
Lorentz transformations, and the covariance of Max
well's equations. In(p) is the Bessel function of order n 
and argument p. A polar coordinate system (r', cf/ , z') 
is introduced. The scattered wave and the penetrated 
wave in the sheath must have the formS 

00 

E~~)' = FE I (_l)n A~H~I)(kor' cos O')ein.', (6) 
n=-oo 

n=-oo 
(7) 

and 
00 

where (Ill, €J characterizes the electromagnetic prop
erty of the sheath in the S' system and H~I)(k~r' cos 0') 
is the Hankel function. A~ , B~, C~, and D~ are as yet 
unknown arbitrary constants to be determined accord
ing to the appropriate boundary conditions. 

m. FORMAL SOLUTIONS 

Satisfying the boundary conditions in the S' system, 
which requires the continuity of the tangential electric 
and magnetic fields at the boundary surface r' = b, 
gives the following equation from which the unknown 
coefficients A~, B~, C~, and D~ can be obtained: 

where 

all = H~)(k~b cos 0'), 

a12 = 0, 

a13 = -PnO·'b), 

a14 = 0, 

a21 = 0, 

a22 = H~)(kob cos 0'), 

a23 = 0, 

a24 = -Qn(J...'b), 

a31 = -n sin O'H~)(kob cos 0'), 

a32 = k~b cos O'H~I)'(kob cos 0'), 

a33 = (kMA,)2 cos2 O'nPnO.'b) sin 0', 

a34 = -(kMJ...')2 cos2 O'J...'bQnCJ...'b)(1l11Ilo), 

au = kob cos O'H~l)'(kob cos 8'), 

a42 = -sin O'nH~)(k~b cos 0'), 

a43 = -(kMJ...')2 cos2 ()'(€I/€o)J...'bP~(J...'b), 

a44 = (kMJ...,)2 cos2 0' sin O'nQn(J...'b), 

(13) 

(14) 

E~~)' = FE I (_1)nC~Pn(A'r')ein.', (8) and 
n=-oo 

H;~)' = FE i (-l)nD~i(€o/,uo)iQn(A'r')ein.', (9) 
n=-co 

respectively, with 

Pn(J...'r') = In(J...'r') - [In(J...'a)/Nn(J...'a)]Nn(J..., r'), (10) 

Q (J...'r') = J (J...'r') - (dJn(J..'a)/dNn(J...'a»)N (J...'r') 
n n d(J..'a) d(J...'a) n , 

(11) 

J...' = ko(lll€l/,uO€O - sin2 (n!, (12) 

6 J. R. Wait, Electromagnetic Radiationfrom Cylindrical Structures 
(Pergamon Press, Inc., New York, 1959). 

b1 = -J n(k~b cos 0'), 

b2 = 0, 

ba = sin ()'nJ n(k~b cos 0'), 

b4 = -kob cos O'J~(kob cos 0'). 

This is the formal solution for the problem of the 
scattering of a stationary dielectric coated cylinder 
by an obliquely incident plane E wave in the S' system. 
It is noted that the scattered wave as well as the 
penetrated wave contain both E and H waves, al
though only an E wave is incident upon the coated 
cylinder. If the incident wave is an H wave, the above 
results are still applicable provided that we replace 
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E' by H' and H' by -E', E by ft and ft by E, Qn by Pn 
and P n by Qn, throughout. 

In the observer's system S, the field components of 
the scattered wave are 

E~S) = E~~)', 

H(s) = H(s)' 
z z' , 

H (S) - (H(s') + E(s)') q, - Y. q,' VzEo r' , 

E(s) = y (E(s)' + V E H(s)') 
1: z r' z 0 ~' , 

H (s) = Y (H(s)' - V I/. E(s)') 
r z r' zrO "'. • 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Upon inspection of the above expressions, one 
notes that, even at normal incidence (eo = 0°) when 
v. ~ 0, an incident E or H wave will produce a 
scattered wave which contains both E and H waves. 
This is a rather unique feature concerning the coupling 
between the incident wave and the scattered wave, 
which is only present when the sheath is moving. It is 
also worthwhile to point out that the above results 
are equally valid when the perfectly conducting center 
core is moving with respect to the plasma sheath or 
when the perfectly conducting center core is stationary 
with respect to the plasma sheath. This is because the 
boundary conditions remain unchanged and time 
independent whether the perfectly conducting cylinder 
is moving or not, so long as the movement is parallel 
to the interface. 

At large distances from the cylinder, the asymptotic 

"-

I / \ 

FIG. 2. Radiation pat-
I ( ) I 
\ I 

terns of the scattered IJ \ / 

waves for an incident E '/ \~ wave with 00 = 0·. if , \ 

1 I 
I 

(a) I Ez I 
f'EJ E WAVE 

expression for the Hankel function 

H~)(kor cos eo) __ ( 2 )*eilkor cos oo-t(2n+lh,l 

7rkor cos eo 
is applicable provided that kor cos eo »1 and 
kor cos eo» n. Using the above equation, we obtain 
the following expressions for the far-zone scattered 
fields in the S system: 

for incident E wave, 

1 

E~s) 1 ,....., I ~ (_1)nA~ein("'-h) I, 
Eo E wave n=-(1) 

(21) 

1 

H~s) ! \ ,....., 1 ~ (-1)nB~in("'-h) I; 
Eo (EO/ftO) Ewave n=-(1) 

(22) 

for incident H wave, 

(23) 

(24) 

IV. DISCUSSION OF THE RESULTS 

To have a qualitative idea of how the scattered 
fields behave as a function of the velocity of the moving 
medium, numerical computations are carried out for 
the moving-plasma-sheath case. The permittivity and 
permeability of a cold plasma medium in the S' system 
are, respectively, 

koo = 2.0 
kob = 4.0 

~ =2.0 
w 
80 = o· 

cp 

El/EO = 1 - W;/W,2, 
ftt/fto = 1. 

( b) f-=--,-~-

(25) 
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koo = 2.0 
kob = 4.0 

~ =2.0 
w 
eo = 30· 
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--/" ... /--.... "\ /, .. 
( 

" .... t'\ , "J 

" ' .. 
---l-___ ~~,___+ _~:__--_+_-'-cp 

"" .-
'(I' ;' I 

" - ",,"'- I 

FIG. 3. Radiation patterns 
of the scattered waves for an 
incident E wave with 80 = 
30°. -> --\/ /' 

1 .... / " I 
I I \ 

I 
\ I 

I I 
I / 
\ / 
-"" 

, I , ...... 

(a) I Ez I 
~EWAVE 

In the S system, they are 

El/EO = 1 - (W;/W2)[y~(1 - f3. sin 00)2]-\ 

( b) 

ftl/ftO = 1, (26) 

respectively. Substituting these expressions into Eq. 
(12) gives 

A.' = ko(cos2 00 - W;/W2)!, (27) 

which is independent of the movement of the sheath. 
Radiation patterns of the scattered waves [i.e., Eqs. 
(21)-(24)] are obtained for various values of 00 and 
v./e with koa = 2.0, kob = 4.0, and wp/w = 2.0. In 
Figs. 2 and 3, the radiation patterns are plotted for 
various values of f3. and 00 , Two angles of incidence, 
00 = 0°, 30°, are considered. It is noted that only 
representative patterns were shown in these figures. 
As can be seen from Fig. 2(a), the forward main lobe 
for the radiation patterns of IE./EoIE wave remain 
relatively unchanged as 1f3.1 increases. On the other 
hand, IE./EoIE wave changes quite significantly in 
other directions; as P. increases from 0, nulls appear in 
the cp = 0° and 180° directions. The fact that the 
movement of the sheath introduces coupling between 
an incident E wave with the scattered H wave even at 
normal incidence can best be seen from Fig. 2(b). As 
f3. increases from 0, a multi lobe radiation pattern for 
I H./Eo(Eo/ftO)! I is produced; for higher values of P .. 
the radiation pattern becomes basically a two-lobe 
structure. For all values of P., there exist two nulls in 
the forward and backward directions for 

IH./Eo(Eo/fto)!IE wave' 

EWAVE 

while two main lobes exist for IE./EoIE wave in the 
forward and backward directions. Similar radiation 
patterns are obtained for the 00 = 30° case as shown 
in Fig. 3. The general behavior of these patterns as a 
function of {3 is very similar to that for the 00 = OO·case. 
The only major difference is that at P. = 0 the 
pattern for IH./Eo(Eo/fto)!IE wave is not zero. 

Not only are significant variations for the radiation 

I Ez I 
fEol E WAVE, cp =0· 
L I-Iz 

~.lfL.)I/2 E WAVE,cp =0. 
1.6 

k.a = 2.0 
ko b = 4.0 

~=20 w . 

' .... --""-\ .............. 

\ 
\ 

\ 

, 
'1.0 , 

\ 

\ 
\ 
\ 

0.6 \ 

\ 0.4 
\ 

\ 
\ 
\ 

\ 

I 
\ I 

\ I 

/ 

/'-8.=0· 

\ I I 
,I t 
1' _ _ . ../"8. ~30· _" , ... 

I ..'-, .-

·1.0 ·0.8 -0.6 -0.4 -02 0 0.2 0.4 0.6 O.B 1.0 
Vz 
C 

FIG. 4. Magnitude of the scattered waves as a function of the 
velocity of the plasma sheath for an incident E wave. 



                                                                                                                                    

FIG. 5. Radiation pat
terns of the scattered 
waves for an incident H 
wave with 80 = 00

• 

FIG.6. Radiation patterns 
of the scattered waves for an 
incident H wave with 80 = 
300

• 

DIFFRACTION OF WAVES 

(0) z ~ Ho H WAVE 

(o) z ~ Ho H WAVE 

koo = 2.0 
kob = 4.0 
wp 
-;:;;-=0.5 

80 = 0° 

koo .: 2.0 
ko b = 4.0 

~ =2.0 
w 
Bo = 30° 
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( b) 
HWAVE 

( b) 
H WAVE 
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IHZI 
~ H WAVE,r/> =0 0 

2.4 

2.0 

eo=oo~" , 
\ , 

, \':_l_ 
, " 

koo ~ 2.0 
kob = 4.0 
wp 
W =2.0 

-\.o '0.8 '0.6 ·0.4 '0.2 0 0.2 0.4 0.6 0.8 1.0 
Vz 
C 

FIG. 7. Magnitude of the scattered waves as a function of the 
velocity of the plasma sheath for an incident H wave. 

patterns observed for the scattered wave as {3z and 00 

vary, but also for the magnitude of the scattered 
wave. Figure 4 is introduced to indicate the variation 
of IEz/EoIE wave and IHz/Eo(€o/f-lo)!IE wave at cf> = 0° as 

a function of the velocity of the moving sheath. As 
IVzl -+ c, the magnitude of the scattered E wave at 
cf> = 0° approaches zero and the magnitude of the 
scattered H wave at cf> = 0° approaches a certain 
constant value. So the mode-coupling phenomenon 
appears to be most prominent at cf> = 0° as l{3zl -+ 1. 
As expected, the magnitude as well as the radiation 
patterns for the scattered wave are not symmetric with 
respect to {3z for 00 ¥: 0°. 

Similar computations were carried out for an 
incident H wave. Results are shown in Figs. 5-7. It 
appears that the radiation patterns for an incident 
H wave are affected more dominantly by the movement 
of the sheath than those for an incident E wave. Again, 
coupling exists between an incident H wave with the 
scattered E wave at normal incidence. Computations 
were also carried out for wp/w = 0.5, the under-dense 
case. Similar results as those discussed above were 
obtained. Since the plasma medium at wp/w = 0.5 is 
rather transparent to the incident wave, the scattered 
fields IEz/EoIE wave or IHzlHolH wave are not very 
sensitive to the movement of the plasma medium. 
Hence, the results for the wp/w = 0.5 case are not 
included here. 
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For Weyl symmetrized tensors, the inner product structure has previously been proven to be identical 
within equivalent multiplets. Here the inner product structure between a set of equivalent multiplets is 
proven to be essentially the same as that within the equivalent multiplets. This property is important 
because it separates the problem of orthogonalization within equivalent multiplets from the problem 
of orthogonalization between equivalent multiplets. Thus, full orthogonalization can be achieved by, first, 
identically orthogonalizing each of a set of equivalent multiplets and, then, recoupling the equivalent 
multiplets with coefficients which do not depend on individual vectors within the multiplets. These state
ments apply to symmetrized tensor muItiplets of both the permutation group and an underlying group 
(such as Un). 

1. INTRODUCTION 

The invariant subspaces (e.g., invariant under Un) 
of a symmetrized tensor are composed of a direct sum 
of multiplets (of the index permutation group Sr for 
a tensor of rank r) belonging to distinct sets of index 
values. If the underlying space is orthogonal, then 
multiplets belonging to distinct sets of index values 
are mutually orthogonal. However, if Young sym
metrizers1 are used (Weyl symmetrization2), then not 
only are the vectors within each multiplet of Sr non
orthogonal, hut also the bases of equivalent representa
tions, belonging to a common set of index values, are 
not mutually orthogonal. This has long been consid
ered to be a fundamental defect of Weyl symmetrized 
tensors.3 Recently, it was shown that the inner 
product structures (IPS) within bases of equivalent 
representations obtained by Weyl symmetrization 
were identical, and it was asserted that the IPS between 
independent bases of equivalent representations were 
essentially the same (except for a constant factor) as 
those common to the bases themselves.' The author 
has recently discovered the proof of this last asser
tion to be circular, and the purpose here is to present 
an actual proof. To make this paper self-contained, 
a few results in Ref. 4 are repeated. 

2. INNER-PRODUCT STRUCTURES 

Bases of equivalent representations of Sr can be 
written4 as 

{Af == (PQ)fSi17;, .. 'i
T 

= SiiPQ):SalJ:1 •• .d, 
{Bf == (PQ)fSi2J:""i

T 
= S;a(PQ):Sa2J:, ... ;.), 

(1) 

where PQ denotes a Young symmetrizer and 

(PQ)f = SiiPQ)~Ski' 

At present we will restrict our attention to a set of 
symmetrized Cartesian tensors with distinct index 
values. Young symmetrization will be assumed for all 
bases of Sr' and we shall use {A} and {B} as models for 
a typical pair of bases of equivalent representations. 
The full Cartesian tensor space (not restricted to 
distinct index values) is assumed to have an inner 
product for which it is orthonormal, i.e., 

(J:I • .. ir I Til'" i) = bi ,;. •.. birir • 

Lemma 1: All bases of equivalent representations of 
Sr have identical IPS. 

Proof: The right column of Eqs. (1) shows that 
bases of equivalent representations differ only by a 
common permutation of indices as a function of 
symmetrized tensor position. Since all index positions 
in a Cartesian tensor are similar, then the bases of 
equivalent representations are structurally similar and 
thus have identical IPS. 

Lemma 2: For any pair of bases of equivalent 
representations, 

Proof: Define 

(Ai I Bi ) = (Bi I Aj ). (2) 

ct.i == Ai + Bi , 

Pi == Ai - Bi · 

1 (a) For a discussion of tensor spaces and Young tableau lemmas, 
see H. Boerner, Representations o[Groups (North-Holland Pub!. Co., 
Amsterdam, 1963). (b) For a general discussion of representations of 
the permutation group, see D. E. Rutherford, Substitutional Analysis 
(Edinburgh University Press, Edinburgh, Scotland, 1948). 

• H. Weyl, The Classical Groups (Princeton University Press, 
Princeton, N.J., 1946). 

3 G. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963). 
'D. R. Tompkins, J. Math. Phys. 8, 1502 (1967). 
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Since {a} and {P} are identical linear forms in 

respectively,5 and are mutually orthogonal, then for 
all i andj, 

Thus, 

(ai + Pi I ai - Pi) = (ai I aj ) - (Pi I Pj), 

which becomes 

Lemma 3: For any pair of equivalent representation 
bases, 

2(Ai I B) + 2(Bi I Bi ) = (ai I a) (3) 
and 

-2(Bi I Ai) + 2(Ai I Ai) = (Pi I Pi)' (4) 

Proof" Simply write out 

(a i I a j - Pi) = (ex. i I ex.) 
and 

and use Lemma 1. 

Lemma 4: The matrices (ex. i I ai ) and (Pi I Pi.) can be 
diagonalized simultaneously by transforming {A} and 
{B} identically. 

Proof: By their construction, if (a i I ai) and (Pi I P;) 
are diagonalized by a single transformation, then the 
transformation must transform {A} and {B} identically. 
Because the Young symmetrizers are real and the 
underlying basis is orthogonal, then (Ai I A;) and 
(Bi I Bj ) are real symmetric forms. By Lemma 2, 
(Ai I B;) is also (real) symmetric and, hence, (a i I a;) 
and ({Ji I (Jj) are real symmetric. Writing 

P' - A' B' i = i - i' 

where {A'} and {B'} are obtained by identical diag
onalizations (to unit matrices) of {A} and {B}, 
respectively, we have 

(ex.; I ex.;> = 2(A; I B;> + 2(B; I B;>, 

({J; I (Ji) = -2(A; I Bi) + 2(A; I Ai), 

where Lemmas 1 and 2 were used. (Clearly these 
lemmas apply, as the diagonalizations of {A} and 
{B} were identical.) Now, we need only to ask if 
matrices (ex.; I a;> and ({J; I P;> commute, i.e., 

~ (ex.; I ex.i)({J; I (J~) ;;, ~ ({J; I (J;)(ex.; I a~). 
j ; 

• :J'Til' . 'i r = Tip," ·i .. where ~ is the permutation of indices (as a 
function of position) relating equivalent bases. . 

Using Lemmas 1 and 2, this becomes the question 

L [(A; I B;) + (B; I Bim -(Ai I B~) + (Ai I A~)] 
j 

,;, L [-(A; I Bi) + (A; I Aim(Ai I B~) + (B; I B~)]. 
j 

Canceling obviously identical terms gives 

2 (A; I Bi)(Ai I A~) - L (B; I B;)(A; I B~) 
j j 

,;, - L (A; I Bi)(Bi I B~) + L (A; I Ai)(A; I BD· 
j i 

By Lemma 1, the left side of this question can be 
written as 

2 (A; I Bi)(Bi I B~) - 2 (A; I Ai)(Aj I B~), 
j j 

which becomes 

(A; I B~) - (A; I B~) == 0, 
because 

L IB;)(B; I B~) = IB~) 
j 

and 

L (A; I Aj)(Ajl = (A;I 
j 

when bases {A'} arid {B'} are simultaneously normal
ized. The right side of the above question similarly 
vanishes to establish commutation. Since commutation 
is a sufficient condition for simultaneous diagonaliza
tion of real symmetric matrices, the lemma is proven. 

Lemma 5: All vectors of equivalent representation 
bases are of equal length. 

Proof: The left column of Eqs. (1) shows that for 
each vector of a basis, the relationship between index 
values in the Young pattern and in the Cartesian 
tensor is the same. Since all Cartesian tensor index 
positions are similar, the vectors do not differ in a 
way affecting length. Since equivalent representation 
bas.es have identical IPS (Lemma 1), then in fact all 
vectors in Eqs. (I) have equal lengths. 

Lemma 6: All vectors of {a} are of equal length as 
also are all vectors of {P}. 

Proof: For i = 1, 2, ... , m, the quantities 

(Ai I Bi) = (SiiPQ):Sal1i, .. 'ir I Sia(PQ)~Sa21il" . i.) 

do not differ in the relationship between tableau and 
Cartesian tensor index values (i.e., index values are 
only rearranged in a. fixed tableau-tensor mosaic). 
Thus, the values of these quantities are independent 
of i. This plus Lemma 5 completes the proof. 

Lemma 7: The IPS of {ex.} is essentially the same 
(i.e., it differs by, at most, a common factor) as that 
of {{J}. 
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Proof: The matrices (cx, I cx,) and (Pi I pj) can be 
diagonalized to yield (cx; I cx;) and (P~ I P;), respec
tively. Using the orthogonality of the diagonal form 
bases, and considering only diagonal entries of 
(cxi I cx;) and (Pi I Pi)' we have6 

(5) 

(Pi I Pi) = ~ R'f/P; I p/)Rii , (6) 
; 

where RT denotes the transpose of R. 
These equations are linear in the diagonal matrix 

elements, but because the elements of R appear 
quadratically, we may not get an independent 
equation for each value of i. Because the relationship 
between {(cx i I cxi)} and {(cx; I cx;)} is identical to that 
between {(Pi I Pi)} and {(P; I P;)}, we need only show 
that there always exists a simultaneous diagonalization 
for which the amplitudes {(cxi I cxi)}({(Pi I Pi)}) are 
independent functions of {(cx; I cx)}({(P; I p;m. We 
call this the nondegenerate case. Degeneracy occurs 
between,for example, (cxa I cxa ) and (cxb I cxb) when, for 
allj, 

R;;R;a = R~jRib' 
and is due to the equality of angles squared, i.e., 

(Loci, OCa)2 = (Loci, oco)2. 

In an m-dimensional space, for.(oca I oca ) and (ocb I ocb) to 
be degenerate, it is necessary that the orthogonal 
basis vectors loca ) and lOCh) lie in the(m-l}dimensional 
"symmetric" hyperplanes generated by the inter
sections among the family of all pairs of identical 
intersecting hypercones centered about OCa and OCb ' 

- OCa and CXb ' OCa and - OCb ' and - OCa and -lXb , and 
having apexes at the origin. 7 Considering all pairs of 
nonorthogonal basis vectors, it is seen that there is at 
most 2[(m - 1) + (m - 2) + ... + 1] distinct such 
hyperplanes. For an m-dimensional space, there does 
not exist any finite set of (m - I)-dimensional hyper
planes having the property that no orthogonal basis 
cannot lie completely outside of them.8 Thus, there 

• G. D. Mostow, J. H. Sampson, and J. P. Meyer, Fundamental 
Structures of Algebra (McGraw·HilI Book Co., New York, 1963), 
p.449. 

7 An equivalent viewpoint is that, for degeneracy, it is necessary 
that all vectors of the orthogonal bases lie in the m - I dimensional 
subspaces orthogonal to -CXa + cx. and CXa + CX •• 

8 The (m - I)-dimensional hyperplanes orthogonal to each 
vector of an orthogonal basis define a set of m orthogonal basis 
hyperplanes. There exists an infinite number of orientations of any 
initial orthogonal basis yielding an infinite number of sets of m or
thogonal basis hyperplanes. Because the set of "symmetric" hyper
planes is finite, there exist infinitely many sets of m orthogonal 
basis hyperplanes not containing any "symmetric" hyperplane. 
Suppose now we are in an orthogonal coordinate system whose set 
of m orthogonal basis hyperplanes contains no "symmetric" hyper
planes but that some vectors of the orthogonal basis lie in "sym
metric" hyperplanes. Because the set of "symmetric" planes is 

exist orthogonal basis vectors whose amplitude ex
pressions are not degenerate relative to any pair of 
initial basis vectors. Hence, there exist simultaneous 
diagonalizations in which the amplitudes 

{(lXi IlXi )}({ (Pi I Pi)}) 

are all independent functions of diagonal basis ampli-
tudes. • 

We now select a simultaneous diagonalization for 
which {(lXi lOCi)} and {(Pi I Pi)} appear as independent 
functions of diagonal basis amplitudes. With R given 
and (by Lemma 6) 

(lXi lOCi) = A, 

(Pi I Pi) = fl, 

then Eqs. (5) and (6) present m linearly independent 
equations for the m matrix elements {(IX; I IX;) } and m 
similar equations for the m matrix elements {(P; I P;)}. 
The elements {(cx; I cx;)} and {(P; I P;>} are then uniquely 
determined, so we must have 

Then, using the inverse transformation to recover 
(lXi I ocj ) and (Pi I Pi) proves the lemma. 

Corollary: The bases {IX'} and {P'} can be simulta
neously brought to the forms 

loc;) (lXil = A6ij 
and 

IP;) (Pil = fl6ii . 

Theorem 1: The IPS of (Ai I B;) is essentially the 
same as that of (Ai I Ai)«Bi I B;». 

Proof: Adding (subtracting) Eqs. (3) and (4) shows 
that (Ai I Aj) and (Bi I Bj)«A j I Bj ) and (Bi I Ai» have 
essentially the same IPS as that essentially common 
(by Lemma 7) to {oc} and fP}. [It is assumed that 
equivalent representation bases are constructed with 
the state correspondence displayed in Eq. (1).] 

We now consider the situation for tensors carrying 
a set of index values with repeated entries. With 
repeated index values, the basis {A} becomes what is 
denoted as basis {.it}, etc. Let C denote an operation 
which yields symmetric subsets of indices by com
bining states of {A}. As far as inner-product structure 
is concerned, such symmetric subsets of indices act 

finite and distinct from the orthogonal basis hyperplanes of this 
selected basis, we can perform an infinitesimal re-orientation to an 
orthogonal coordinate system for which no basis vectors lie in 
"symmetric" hyperplanes. This follows because the vectors lying in 
a finite set of (m - I)-dimensional hyperplanes are not dense on an 
m-dimensional space. 
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the same as repeated indices, so inner product results 
derived with such states will also apply to correspond
ing repeated index-value states. Because some states 
of {A} may become identical or vanish under such an 
operation, C is generally rectangular. 9 If an operation 
F makes the same indices of {B} symmetric, then 
because {B} and {A} carry identical representations of 
Sp we see F = C. Writing matrix (Ai 1 Aj) as (A 1 A), 
etc., we have 

and because 

we see that 

CT(A 1 A)C = (.it 1 .it), 

CT(B / B)C = ($/ $), 

CT(A 1 B)C = (.it 1 $), 

CT(B 1 A)C = ($1 .it), 

(A 1 A) = (B I B), 

which shows that Lemma 1 remains valid with re
peated indices. 

If 
(A 1 B) = J.(A 1 A), 

then 

and 

so that 

(.it 1 $) = A(.it 1 .it) = 1.($1 $) = ($1 .it), 

which shows that Theorem 1 remains valid with 
repeated indices,lO and also shows that the value of J. 
does not depend on the index complexion. l1 Equiv-

9 To illustrate the operation C, we consider 

{A} == {(PQ)ab"Tabc ' (PQ)a',bTacb} 

and 
C{A) == A1 + A2 

= (Tab, + T. cb) + (T •• , + T,ab) 

- (Tcba + T bca) - (T'.b + T •• ,). 

Here C = [I I), and for the inner-product structure, the state 
Al + A2 acts essentially the same as the state [(PQ)ab.cT.bclb~C' 

10 If {A} and {B} are equivalent distinct index-value bases of Sr 
obtained with unitary representation Wigner symmetrizers (i.e., 
Wigner "projection" operators based on unitary representations of 
Sr> see Footnote 10 of Ref. 4), and {A} and {.'B} are the corre
sponding bases belonging to a set of index values with symmetric 
entries (simulating repeated entries), then the Wigner operator 
algebra imposes that 

(Ai 1 A;) = (Bi 1 B I ) = 6ii , 

(Aa lAb) = (.'B a l.'Bb) = ba., 

and that (Ai 1 BI ) and (A. I.'B.> are diagonal. If IA) C = 1.4:) and 
IB) F = I.'B), then 

CT(A 1 A)C = (A 1 A), 
FT (B 1 B)F = (.'B I .'B). 

alent representation bases of Sr belonging to different 
sets of index values are mutually orthogonal. Thus, we 
have proved the following: 

Theorem 2: The IPS is identical for independent 
bases of equivalent symmetrized tensor representa
tions of Un' and the IPS between independent bases 
of equivalent symmetrized tensor representatives of 
Un is essentially the same as that common to the 
equivalent representations themselves. [It is assumed 
that the equivalent multiplets of Un are constructed 
with the state correspondence shown in Eqs. (1) and 
also with identical ordering of index-value set entries.] 

Bases {A'}, {A"},'" constructed on Cartesian 
tensors T,~ ... , , T" ... " " ... either coincide or else do 

1 .. r 1} r 

not intersect. If {A'} and {A"} (each of dimension m) 
intersect but do not coincide, then {A', A"} would 
span an invariant subspace of dimension greater than 
m but less than 2m, which is impossible, because only 
equivalent representations of Sr can appear. With this 
start we can proceed, as shown in the note added in 
the proof in Ref. 4, to extend Theorem 2 to symme
trized non-Cartesian tensors. 

3. DISCUSSION 

Theorem 2 is useful because it shows that with a 
single transformation acting on each maximum multi
plicity multiplet of Sr plus the "derived" transforma
tions12 acting on all lesser multiplicity multiplets, one 
can identically diagonalize all equivalent (equivalences 
due to Sr) symmetrized tensor multiplets of Un' and 
such a set of transformations diagonalizes the IPS 
between the bases of equivalent representations with 
all resulting diagonals among equivalent representation 
bases having essentially the same structure. This shows 
that equivalent symmetrized tensor multiplets of Un can 
be made mutually orthogonal by being recoupled with 
state-independent coefficients (hence recoupled with
out disturbing the IPS within each of the equivalent 
multiplets). This shows how to decouple the inner 
(interior to each multiplet) and outer (between equiv
alent muItiplets) orthogonality problems. 

If the underlying space is orthogonal, then 

(A I B) = 0, 
and thus 

CT(A I B)F = (A I.'B) = O. 

This easily gained result,plus the note added in proof of D. R. 
Tompkins, J. Math. Phys. 9, 1 (1968),establishes the full orthog
onality displayed in Eq. (3.2) of Ref. 4. 

11 By complexion we mean the essential partition of index values; 
e.g., aabb, abab, and aacc are all the same complexion. 

12 The derived transformations are what the transformation for 
distinct index-value multiplets become when repeated index values 
are entered. 
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A variational principle is formulated which yields the balance laws and constitutive equations of a 
nonconducting, charge-free elastic solid interacting with electromagnetic fields. It is found that the form 
of the total energy-momentum tensor and the constitutive equations that follow from a Lagrangian 
action which depends arbitrarily on the inverse deformation gradients and the electromagnetic field 
tensor are identical to those obtained by formulating a constitutive theory of a nondissipative material 
based on the basic mechanical, thermodynamical, and electromagnetic balance laws of a continuum. 

1. INTRODUCTION 

In a recent series of articles Grot and Eringen1.2 
have proposed a continuum theory of the interaction 
of electromagnetic fields with a deformable body. 
Their basic approach was to formulate the funda
mental balance laws of a continuum in a relativistically 
invariant manner and to construct relativistically in
variant constitutive equations. For the case of a 
nondissipative solid, one would expect that these 
equations are the result of a variational principle. 
In this article we present a slightly modified form of the 
theory presented by Grot and Eringen and then 
show that these equations follow from a variational 
principle. By a Legendre transformation we produce 
a Lagrangian action that is a relativistic general
ization of the Lagrangian introduced by Toupin.3 .4 

Throughout this article gravitational effects are 
neglected; thus, we restrict our considerations to the 
special theory of relativity. The signature of the 
Lorentz metric yap is chosen to be (+ + + -), i.e., 
yll = y22 = y33 = 1, y44 = - 1 , and all other yap = O. 
The Greek subscripts and superscripts assume the 
values 1, 2, 3, 4, and are raised and lowered by the 
metric y~p. The small italic subscripts and superscripts 
assume the values 1, 2, 3, and will always denote the 
spatial coordinates of the space-time of events. 
The large italic subscripts or superscripts assume the 
values 1, 2, 3, and denote the coordinates of the 
reference state. For convenience we also set the speed 
of light equal to unity, i.e., c = 1, and choose the 
dielectric constant of free space EO = 1; thus, the 
permeability of free space Ito = 1. Parentheses around 
a set of indices denote symmetrization and brackets 

* This work was supported by the Advanced Research Project 
Agency of the Department of Defense through the Northwestern 
University Materials Research Center. 

t Present address: Department of Aerospace and Mechanical 
Sciences, Princeton University, Princeton, N.J. 

denote alternation. We define 

where eapyl! is the permutation symbol and define 

2. BASIC BALANCE LAWS 

The basic continuum balance laws of a material 
body in the context of special relativity1.2 consist of the 
conservation of particle number, balance of energy
momentum, balance of moment of energy-momentum, 
conservation of charge, conservation of magnetic flux, 
and Ampere's and Gauss's laws. We briefly list the 
differential form of these equations. 

Conservation oj Particle Number: 

na
•a = 0, 

where nee has the form 

and 

(2.1) 

(2.2) 

(2.3) 

Here u" denotes the world velocity, n the density of 
particles, and v the velocity vector. 

Balance of Energy-Momentum: 

T"P = l1.PY..I.. a + aP..I.." +1" (2.4) ,p 'f' y,p 'f' P , 

where raP is the energy-momentum tensor of the body, 
1TP" the polarization-magnetization tensor, o/ay the 
magnetic flux tensor, and r the body-force four
vector. 

Balance of Moment of Energy-Momentum: 

T[ap] = 1T/ac/>(J]Y. (2.5) 

Conservation of Charge: 

(2.6) 
1 R. A. Grot and A. C. Eringen, Intern. J. Engr. Sci. 4, 611 (1966). 
2 R. A. Grot and A. C. Eringen, Intern. J. Engr. Sci. 4, 638 (1966). 
3 R. A. Toupin, J. Ratl. Mech. Anal. 5, 849 (1956). 
• R. A. Toupin, Arch. Ratl. Mech. Anal. 5, 440 (1960). where a" is the charge-current four-vector. 
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Conservation of Magnetic Flux: 

Ampere's and Gauss' Law: 

where 

r.>ap _ (1a r.>ap _ _ f'lPIZ 
l::I ,p - , l::I - l::I, 

~ap = cPaP _ TraP. 

In terms of the classical electromagnetic fields. 

cPlZP = [dual B, E], 

~ap = [dual H, -D], 

Trap = [dual (M + v x P), Pl. 

(2.8) 

(2.9) 

(2.10) 

where E is the electric field, B the magnetic flux density, 
H the magnetic field, D the electric displacement, P 
the polarization, and M the magnetization. The forms 
(2.10) will not be needed in this article; they are listed 
for concreteness. 

One can writeI.2 Tap A.. ~ap and Trap in the form , 'fJap, , 

TaP = noeuauP + uaqP + paup _ tap, (2.11) 

cPap = &pua - &aup + €apY69~/u6, (2.12) 

~ap = ~pua _ ~aup + EaPY6:IeyUO, (2.13) 

Trap = ;rauP - ;rPua + €aPY°..A{,yU6, (2.14) 

where 
- TaP noe - uaup , (2.15) 

qP = -SPyTayua , (2.16) 

pa = _sa TYPu y p, (2.17) 

tap = _sa sP Ty6 yo' (2.18) 

Gp = cPpaua, (2.19) 

93a - l.EapY6cP U - 2 py 0' (2.20) 

~P = ~PaUa, (2.21) 

:Ie - 1 ~PY ° a - 2Eapy6 U, (2.22) 

~a = &a + ;ra, (2.23) 

;re1Z = 931Z _ .A(,IZ. (2.24) 

We have defined sap as 

S"p = b"p + u"up. (2.25) 

To complete the above system of equations, one must 
formulate constitutive equations which are invariant 
under the proper orthochronous Lorentz group and 
which satisfy the Clausius-Duhem inequality, 

(
qP) ho 

noD'YJoo + e + 7i ~ 0, 
,p 

(2.26) 

where 'YJoo is the entropy density, () the temperature, 
and ho is given by 

(2.27) 

and D'f}oo = 'Y/OO,IZUIZ. 
The choice of constitutive variables is, in a certain 

sense, arbitrary. In our previous publication,2 we 
considered e, 'f}oo,plZ, qa, tap, ;ra, and..A{,1Z as functions 
of (), XK a' &", $IZ, () IZ' where XK (xa) is the inverse 
deformation. For the purpose of this article, we con
sider e, (), plZ, taP, ;r1Z, and ..A{,IZ as functions of 'f}oo, XK IZ' 
&IZ, $1%. We will neglect dissipation and consider' a 
nonconducting. charge-free material (qa = 0, (1a = 0). 
Repeating the reasoning of Ref. 2, we obtain 

where 

p __ ~ K 
ta - no K X a. 

() _ oe 
- O'f}oo' 

oX ' ,p 
(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

The balance of energy-momentum (2.4) can be ex
pressed as 

tap =fa ,p , (2.34) 

where tap is the total energy-momentum tensor5 

tap = Tap - cPay~yp + tcP°YcPyoyap, 

traP] = O. 

By using (2.28)-(2.31), Tap can be written as 

A/J_ p /J ~XK 
TIZ - noeuau + PaU + no oXK ,a 

./J 

(2.35) 

(2.36) 

- cPay~Y/J + tcP°YcPyiJ/, (2.37) 

where e has the functional form (2.33). By using the 
invariance of e( fJoo, XK,a, &a, $a) under the proper 
orthochronous Lorentz group, it is not difficult to 
show that T[a/J] = 0 is satisfied. 

3. A VARIATION PRINCIPLE FOR ELECTRO
MAGNETIC SOLIDS 

In this section we show that the equations [(2.29), 
(2.30), and (2.37)] proposed in Ref. 2 for the total 

5 There is an error of a minus sign in Eq. (5.28) of Ref. 2. 
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energy-momentum tensor and the constitutive equa
tions of a nonconducting, charge-free solid follow 
from a variational principle. We consider the La
grangian action J of a material tube6 T: 

J = -Jnoe(1)oo, XK,a' 1>ap) dv4 + t ( 1>ap1>Pa dv4, 
T JV4 

(3.1) 

where dv4 is the four-dimensional volume element of 
space-time and V4 is all space-time. 

The form (3.1) of the Lagrangian action is very 
general. Within the material tube we have assumed 
only that the Lagrangian density is a function of 1]00 , 
XK,a' 1>ap (that is, a function of the entropy, deforma
tion gradients, the velocity Vi = -Xi ,KXK,4' and the 
electric and magnetic fields). Since no -::;6 0, we can also 
assume that the Lagrangian density has the form 
nol!o There is no loss of generality in subtracting off 
the free-space Lagrangian density of the electro
magnetic fields. 

The physical interpretation of the terms appearing 
in (3.1) is the following: By using (2.3) and an ex
pansion in v2 in the first term of (3.1), one obtains the 
usual Lagrangian of a deformable-body kinetic energy 
minus the stored internal energy, with the mass, as 
expected in a relativistic theory, depending on the 
internal energy of the material. The second term is the 
usual Lagrangian action of the electromagnetic field 
in free space. 

The function e(1]oo, XK,a' 1>ap) is related to the 
function e( 1)00' X K,a' &a' $a) by 

e(1]oo, XK,a, ea, $a) = e(1)oo, XK,a, 1>aP), (3.2) 

where the decomposition (2.12) is used. (The world 
velocity ua can be expressed as a function of XK,a') 

We introduce the variations bxa of the space-time 
coordinates, 

(3.3) 

and the partial variations of the magnetic-flux tensor 
1>~p, of the inverse deformation X'K, and of the 
entropy 1)~0: 

1>aixY) = 1>aixY) + e1>~p(xY), 
XK(XY) = XK(XY) + eX'K(xY), (3.4) 

17oo(xY) = 1]oo(xY
) + (1)~o(xY), 

where e is a small parameter. The complete variations 
b1>afJ' bXK, and 01]01; are defined as 

1>afJCe) = CPl1.fJ(XY) + e6CPaP(xY), 
XK( .. e) = XK(xY) + e6XK(xY), (3.5) 

iioo(:e) = "loo(xY) + e(1)oo(xY). 

6 A material tube is the four-dimensional volume swept out by 
the material body as it undergoes deformation. See Ref. 1. 

The total variation oJ of the Lagrangian action J is 
given by 

J = J + eoJ, (3.6) 
where 

J = - (Jioe(iioo, XK,a' q;ap) dv4 + t (_ q;ayq;ya dv4
• Jr Jv. 

(3.7) 

The variational principle for a conducting, charge
free solid (qa = 0, (Ja = 0) is 

oJ = -ffi'Jxa dv4 + ( T/)xa ds3 (3.8) 
T Jar 

under the conditions 

IJXK=o inT, 

br;oo = 0 in T, 

lJi CPaP dx" A dxP = b1 All. dx", 
s as 

(3.9) 

(3.10) 

(3.11) 

where S is an arbitrary two-dimensional surface. In 
Eq. (3.8),/" is the applied body-force four-vector and 
Ta is the applied surface-traction four-vector. The 
restriction (3.9) preserves the identity of the material 
particles. This condition is equivalent to the variation 
usually used in classical elasticity theories, 

.l: k d kC·X K ")1 uX = d)' x , t, A ).=0' 

Condition (3.10) holds the entropy of the material 
particles constant. The restriction (3.11) preserves the 
conservation of magnetic flux (2.7). The four-vector 
Aa can be interpreted as the four-potential. This 
procedure is equivalent to the gauge-invariant varia
tions of Weiss7 when the Lagrangian action is con
sidered a function of the four-potential All.' 

Th'e restriction (3.9) implies that 

X'/( + XK,,,(jxa = O. 

Thus we obtain 

By performing the variation (3.11), we see that 

Is 6cpap dx" A dxP + Is CPaP d(oxa) A dxP 

+ L cPap dxll. A d(OxP) 

(3.12) 

=1 6Aa dxll. +1 All. d(bxll.). 
as as 

7 P. Weiss, Proc. Roy. Soc. (London) A169, 119 (1939). 
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This implies 

fS[bCPa p + CPyp(bxY),a - CPyibxY),p] dxa 
A dxP 

=1 JAa dxa;, (3.13) 
~s 

where we have used the theorem of Stokes and intro
duced the variation 

JAa = bAa - Ay,abxY = A~ + (Aa,y - Ay,a)bxY. 

(3.14) 

JAa is the gauge-invariant variation of Weiss. 7 

Since (3.13) is valid for an arbitrary two-dimensional 
surface S, we obtain 

bCPaP = (JAP),a - (JAa),p - cpyp(bxY),a + cpyibxY),p' 

(3.15) 
From the kinematical relations, 1 

it can be shown that 

(3.16) 

where sap is given by (2.25). 
Using (3.10), (3.12), (3.15), and (3.16), the variation 

bJ can be expressed ass 

bJ = i [t/(bxa),1l + §ap(JAa),p] dv4 

+ iv.}t/(bxa),p + §aP(JAa),p] dv4
, (3.17) 

where we have defined the energy-momentum tensor 
~ p Ta , 

and §ap is defined by 

§ap = cpap + no oe 
ocpap 

§aP = cpap 

(3.18) 

in T, 

in V4 - T. (3.19) 

Integrating (3.17) by parts and setting the surface 
integrals at infinity equal to zero, the variational 

8 The independent variables are .pap (IX < fl>; however, it is found 
convenient to sum over all IX, fl. This is the reason for the presence 
of various factors of 2 in Eq. (3.17) and others that follow. 

principle (3.8) reduces to 

f ( -t/,pbxa - §ap,pJAa) dv4 

+J' (-t/,pbxa - §aP,pJAa) 
V,-T 

-j' ([t/]Npbxa + [§XP]NpJAa) ds3 

~1" 

Here Np is the outward normal of aT and by [h] we 
denote h+ - h_, where h .. is the value on the positive 
side of aT of the function hand h_ its value on the 
negative side of aT. 

Since (3.20) is valid for all variations bxa, JAa;, we 
obtain 

~ p 
Til ,p = f. in T, (3.21) 

§aP,p = 0 In T, (3.22) 

t P = 0 a ,p in V4 - T, (3.23) 

§aP,p = 0 in V4 - T, (3.24) 
~ p 

[Ta ]Np = -Til on aT, (3.25) . 
[§!]Np = 0 on aT. (3.26) 

It is not difficult to show that (2.7) and (3.24) imply 
that (3.23) is identically satisfied. Equations (2.7) and 
(3.24) are Maxwell's equations in free space. From 
(2.9) and (3.19) we see that Trap is given by 

ap oe Tr = -no--
oCPaP 

(3.27) 

This is the constitutive relation for the polarization
magnetization tensor in T. Equations (2.7) and (3.22) 
are Maxwell's equations in the material body. Equa
tion (3.21) is the balance of energy-momentum in the 
material. 

To demonstrate that the form of the total energy
momentum tensor given by (3.18) and the electro
magnetic constitutive equations (3.27) is equivalent 
to Eqs. (2.29), (2.30), and (2.37), we use the identifi
cation (3.2) along with (2.12) and9 

where 

x a K = sa,Xi,K' 

X"KXK,P = S"'p, 

xa;Lx K .a = bK
L . 

• This follows from the relation listed after (3.15). 

(3.28) 
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From (3.2), (2.12), and (3.27) we have 

oe ~ oe 01>~(1 1. ~(I(~y ~ y ) no- = 2nO---- = -27T U (Iu" - u" up 
o&y 01>,,(1 o&y 

= -7T"YU" = -~y, (3.29) 

where we have employed (2.14). Similarly, 

~ _ 1 oe 01>~(1 __ ~ ~(1 y 0 __ "y 
no - 2nO - 27T €~(1 oU - .Jf\). 

o$y 01>,,(1 o$y 

Also from (3.27) and (3.28), 

oe 
nOoXK 

.p 

(3.30) 

(3.31) 

where we have used (2.31). Thus, t/ can be written as 

~ p {J oe K {J 
T~ = noeu"u + no oXK X .~ + p"U 

• fI 

- 1>,,/JYfl + !c/>Oy1>YO~/ in 7', (3.32) 

which is identical to (2.37). 
The requirement that e is a scalar invariant under 

the proper orthochronous Lorentz group yields2 

(3.33) 
where 

(3.34) 

Using (3.29) and (3.30), we obtain 

... oe XK 
~,,=-nOo&K .~, 

oe K 
.M,~ = - no O$K X .'" (3.35) 

and from (3.32) we have 

~ oe K L fI ,n (' 
T~/J = noeu"u fI + 2no ac-1KL X ."X .fI + p~u - ~ "I.>p 

- .M,~$1l - 1>,,/-~JYp + HOy1>yoY~Il' (3.36) 

where e has the functional form (3.33). 

4. AN ALTERNATE FORMULATION 

The theory presented in the previous sections treated 
&~ and $" as the independent electromagnetic consti-

tutive variables. At times it is convenient to consider 
another set. In this section we shall show how this can 
be done when ~ ~ and .M,,, are chosen as the independent 
electromagnetic variables. Thus, we consider e, e, 
p", taP, &", and $" functions of 1]00 , XK." , ~", and .M,". 
By using Eq. (5.24) of Ref. 2 in the second law (2.26) 
and repeating the reasoning of Ref. 2, it is not difficult 
to demonstrate that 

t P = -n ~ XK - (~Y& + .M,y$)S (I (4.1) 
a 0 axK .a y y '" 

.P 

(4.2) 

(4.3) 

(4.4) 

~ ~a&a .M,"$a 
e=e+-+--. (4.5) 

no no 

Here e has the functional form 

, '( XK (j'a "~) e = e 1]00' .a,...,.Jf\) • (4.6) 

The nonmechanical momentum Pa is still given by 
(2.31). The total energy-momentum tensor has the 
form 

• (J 'fl fI ae XK 1 oy..J. ~ fI Ta = noeu~u + p~u + no axK .a - 27T 't'yoU~ 
.Il 

- 1>"yfJ
y

/1 + !c/>yo1>°Y(5/. (4.7) 

The Lagrangian action J* that yields the above theory 
follows from (3.1) by a Legendre transformation, 

J* = - inoe(1]oo, XK.~, 7T~/1) dv4 

+ t ( 1>aAY~ dv 4 
- tJ7T~/11>pa dv4

• (4.8) Jv. T 

The function e( 1]00 , XK.~ , 7T ~p) is related to the function 
€(1]00, XK ~, ~a' .M,~) by 

€(1]00, XK,~, ~~, .M,a) = e(1]oo, XK.~, 7T~Il)' (4.9) 

where the decomposition (2.14) is used. If one neglects 
the magnetization, the Lagrangian J* is the relativistic 
generalization of the Lagrangian employed by Tou
pin3.4 for a static elastic dielectric. By introducing the 
independent variations t'J7T~/1 and using restrictions 
(3.9)-(3.11), it is not difficult to show that (3.21)
(3.27) follow from (4.8) with &", B", and t/ given by 
(4.2), (4.3), and (4.7). 
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The expansio~ ~f a class of hyp~rgeometric functions in a series of Legendre polynomials is derived. 
The range of valIdity and the meanmg to be attached to the sums is investigated. Several applications to 
the problem of the scattering of charged particles are presented. 

1. INTRODUCTION 

Occasionally one encounters in a scattering situation 
the problem of solving a Schrodinger (or Dirac) 
equation which contains a potential Ar-n in the 
presence of an (1.,-1 (point Coulomb) potential. A 
standard technique is to treat the point Coulomb 
potential exactly and the potential Ar-n in the Born 
(or distorted wave Born) approximation (BA). The 
scattering amplitude can be expressed as a sum of the 
Coulomb amplitude and a residual amplitude. To 
first order in the parameter A, this residual amplitude 
contains a sum over the BA phase shifts times the 
Legendre polynomials weighted by the Coulomb 
S-matrix elements. When the BA phase shifts can be 
expressed as a certain ratio of gamma functions, the 
expansions we shall give are helpful. 

2. THE EXPANSIONS 

The notation we will use for the hypergeometric 
function (HF) is standard and all properties of these 
functions needed in the following discussion can be 
found in Ref. I, Chap. 2. We expand the function 
2Fl(a, b; c; HI + x» as 

2Fl(a, b; c; t(1 + x» = .~>IPI(X), (2.1) 
1 

where P tCx) is the Legendre polynomial. The expansion 
coefficients (1.1 are given by 

(1.1 = (I + i) fI2F1(a, b; c; t(l + X»PI(X) dx, (2.2) 

provided Re (a + b - c) < 1, although the existence 
of Eq. (2.2) merely requires Re (a + b - c) < 1. 

If we carry out the indicated integration (using 
either the integral representation of the HF or the 
series representation and integrating term by term), we 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

t Part of this work was done while the author was at Case 
Institute of Technology. 

:I: Present address: Department of Physics, Michigan State 
University, East Lansing, Mich. 48823. 

1 A. Erdelyi, Ed., Higher Transcendental Functions (McGraw
Hill Book Co., Inc., New York, 1953), Vol. 1. 

find 

(1.1 = (21 + l)(a}z(b)l/! F [a + I, b + I, 1 + I; 1J 
(c)I1'(21 + 2) a 2 C + I, 21 + 2 ' 

(2.3) 

where aF2[ ] is a generalized hypergeometric series 
(GHS) of unit argument. For the special case c = I, 
the GHS reduces to an HF and can be expressed in 
terms of gamma functions 

aF2[a + I, b + I, 1 + I; 1J 
c + I, 21 + 2 c=1 

= 2Fl(a + I, b + 1,21 + 2; I) 

r(21 + 2)1'(2 - a - b) 

1'(1 + 2 - a )1'(1 + 2 - b) 

Inserting Eq. (2.4) into Eq. (2.3) yields 

(2.4) 

(I. = 1'(2 - a _ b) (21 + l)(a>t(b)1 (2.5) 
1 r(2 - a + I)r(2 - b + I) , 

where 

(a)1 = a(a + 1) ... (a + 1 - 1) = rca + I)/r(a). 

(2.6) 

We note that (l.t/1'(2 - a - b) is an analytic function 
of a and b for all a and b. Our principal result is then 

~(21 + 1) (a)1 (b), P( ) 
1-:0 r(l + 2 - a) r(1 + 2 _ b) 1 X 

1 
-----==----2Fl(a, b; 1; i(l + x», (2.7) 
r(2 - a - b) 

where for the moment we have the restriction that 
Re (a + b) < i. If, in addition, Re (a + b) < 1, the 
series on the left of Eq. (2.7) converges uniformly to 
the function on the right in the closed interval [-1, 1]. 
For the case b = 1, Eq. (2.7) becomes 

<Xl (a)/ 1 (1 - x)-a 
I(21 + 1) Pz(x) = -- . 

1-0 1'(1 + 2 - aJ 1'(1 - a) 2 

(2.8) 

This is our second result. Differentiating Eq. (2.7) and 

114 
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using the relation 

P~(x) = (1 - x2)! .E.- PI(X), (2.9) 
dx 

where Pl(x) is the first associated Legendre poly
nomial, we have 

i (21 + 1) (a)z f(l + b) pI X 

1=1 f(l + 2 - a) f(l + 2 - b) I() 

= ~ reb + 1) (1 _ x2)! 
2 f(2 - a - b) 

X 2F1(a + 1, b + 1; 2; t(1 + x». (2.10) 

For Re (a + b) < 0, the series on the left ofEq. (2.10) 
converges uniformly to the function on the right in the 
closed interval [-1, 1]. If we now set b = 0 in Eq. 
(2.10) and continue the resulting HF analytically, we 
find our third result 

~ 21 + 1 (a)z 1 
~ _-0...-'-'--_ P I(X) 
/=11(1 + 1) f(l + 2 - a) 

1 (1 - X)![(1 - x)-a ] 
= f(2 - a) 1 + x -2 - - 1 . 

(2.11) 

The restrictions placed on the parameter a and b 
in the course of these derivations are such as to exclude 
the application of Eqs. (2.7), (2.8), and (2.11) to some 
interesting physical problems. We have already implied 
that it is possible to loosen these restrictions but this 
will require a reinterpretation of the sums in the 
equations. We note that the integral defining IXI [Eq. 
(2.2)] does not exist for Re (a + b) > 2, but we can 
use Eq. (2.5) (as an analytic continuation) to define the 
quantity 1X 1tr(2 - a - b) for all a and b.211 When 
Re (a + b) > 2, the sums in Eqs. (2.7), (2.8), and 
(2.11) do not even converge pointwise, but meaning 
can be attached to them in several ways. First, the HF 
on the right is an analytic continuation of the sum for 
fixed x into regions of a and b where the series does 
not converge; second, the series are summable by 
summation methods such as described in Ref. 2b; and 
third, these equations can be regularized to define 
continuous linear functionals (eLF) or generalized 
functions. 

We define the set offunctions G such that a function 
gA(X) belongs to G if, on the closed segment [-1, 1], 
g).(x) is defined and has the properties that (i) it is 

2 (a) F?r the case where a + b - I is a positive integer, the 
contInuatIon of Eq. (2.5)yields sums which over some set offunctions 
G A yet to be defined are functionally equivalent to zero (FEZ). 
The eXistence of sums FEZ has an important bearing on the unique
nes~ ?f ~q. (2.7) and following. If in Eq. (2.8) we set a equal to a 
P?SltIve Integer,. the resultIng sums (which are FEZ) can be recog
nIzed a~ expansions of the delta functions and its derivatives. Further 
InterestIng results can be obtained in a manner similar to that 
described in Footnote 4. (b) J. T. Holdeman, Math. Compo 23 275 
(1969). ' 

piecewise continuous, (ii) its Legendre polynomial 
expansion coefficients Yl exist in the usual sense (and 
hence g).(x) is integrable on [-I,ID and YI= 
0(/-21'+1) where p, > 0, and (iii) in the neighborhood 
of x = 1, g;.(x) = O([HI - X)]-Hv), where 11 > ° and 
A is given by A = min (p" v). We let GAO be a subset of 
G such that g;.(x) E GAO if and only if A ~ Ao. 

For some fixed (but arbitrary) Ao we consider the 
integral 

[r(2 - a - b)r1f12F1(a, b; 1; t(1 + x» 

X g).(x) dx = f1(a, b), (2.12) 

for all g).(x) E GAO' For all values of a and b such that 
Re (a + b) < Ao + 1, the integrand is integrable on 
[ -1, 1] and is an analytic function of a and b on the 
interval (-1, 1). Thus, for all a and b such that 
Re (a + b) < Ao + 1, the integral in Eq. (2.12) is 
uniformly continuous in a and b and defines an 
analytic function h (a , b) and a eLF .on G).o' 

For the same Ao and subset G).o' consider the integral 

(I i (21 + 1) (a)1 (b)z P d 
)-1 !=o f(2 - a + l) f(2 _ b + I) tCx)g;.(x) x 

= i2 (a)z (b)z - a 
1=0 f(2 - a + /) f(2 _ b + l/z - f2( ,b) 

(2.13) 

(where by the integral of the sum when Re (a + b) > 
t we mean implicitly term by term integration).3 For 
all a and b such that Re (a + b) < Ao + 1, the second 
sum in Eq. (2.13) is uniformly convergent and defines 
an analytic function/2(a, b) and also a eLF on G). . 

From the uniform convergence of the sum in Eq. 
(2.7) we see that /l(a, b) = /2(a, b) = lea, b) for 
Re (a + b) < 1. For these values of a and b, Eqs. 
(2.12) and (2.13) define the same eLF on G. But Eqs. 
(2.12) and (2.13) define analytic continuations of 
lea, b) into the region 1 ~ Re (a + b) < ,1.0 + 1. 
Since the analytic continuation of/(a, b) is unique, we 
must have h(a, b) = j;(a, b) in this region. Thus, 
Eqs. (2.12) and (2.13) define the same eLF on G).Jor 
all a and b such that Re (a + b) < ,1.0 + 1. Thus we 
see that Eq. (2.7) is valid in the sense of a eLF on 
GAO' for any ,1.0> ° and Re (a + b) < ,1.0 + 1, as is 
Eq. (2.8) for Re a < ,1.0' Equation (2.11) is defined in 
a similar manner for Re a < Ao + 1. 

The preceding discussion only gives sufficient con
ditions under which the equations in question are 
defined. These results can be extended to cases where 

3 The interchange of the order of summation and integration 
when Re (a + b) S ~ is allowed because g;.(x) is absolutely integ
rable and the sum of Eq. (2.7) converges uniformly. 
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a + b - 1 is equal to a positive integer4 and to a 
slightly wider class of functions than G.5 

3. APPLICATIONS 

The Eqs. (2.7), (2.8), and (2.11) are of value in that 
they provide formulas for evaluating sums of the type 
mentioned in the introduction. As a simple example, 
if in Eq. (2.8) we set a = 1 + irl, we find 

00 

(2ik)-1 L (21 + l)e2i<1/P!(x) 
!=o 

where 

I ~ ten - 3), let 8! be phase shifts obtained in some 
manner other than by BA. We replace n by n + E, 

subtract off the terms with BA phase shifts, and add 
terms with 8! for I ~ ten - 3). We then take the limit 
as E -* O. This yields 

J'(x) =j;'(x) _ A2
n
k-

1 
(n - 2)! 

o 2E (n _ 1)!2 

x r(tn + t + i1J) [1(1 + x)]!(n-l) 

r(tn - t - i1J) 2 

X 3F2[~(n + 1) ~ i'fj, 1, 1; t(1 + X)], (3.6) 
2(n + 1), 2(n + 1) 

(3.2) where 

Although a delta function is conventionally included, 
we see that Eq. (3.1) is just the expansion of the non
relativistic Coulomb scattering amplitude. 

Now suppose that the Hamiltonian contains a term 
Ar-n , where n > 1. Then in BA the contribution o! of 
this potential to the total phase shift is given by6 

tan o! = AAnr(l + 1 - ten - 1»/1'(1 + 1 + ten -1), 

(3.3) 
where 

To first order in .the parameter A, the contribution to 
the scattering amplitude (the residual amplitude) of 
the potential Ar-n in BA is 

00 

f'(O) = AAn(k)-1 L (21 + 1) 
1=0 

x r(l + 1 + i'fj) r(l + 1 - ten - 1) p!(x) 
r(l + 1 - i'fj) r(l + 1 + ten - 1» 

= AA (kr1 r(1 + i'fj)r(te3 - n» 
n rein - ! - i'fj) 

X 2Fl(1 + i'fj, t - in; 1; t(1 + x». (3.5) 

For n even, this gives the residual amplitude in terms 
of known functions. For n odd and greater than unity, 
Eq. (3.5) is undefined. It is just the terms given in
correctly by BA that are responsible for this difficulty. 

The case in which n is an odd integer and greater 
than unity can be treated in the following way: For 

4 For instance, if in Eq. (2.8) we take a = I + E and a = I - E, 

subtract the two equations, and take the limit E --+ 0, we find 

~ (21 + \)!p(/ + I)P/(x) = (x _ 1)-'. 
! 

• For a (nonrigorous) discussion of the case of Eq. (2.8) when 
Re (a) = ,1.0 = I see J. T. Holdeman and R. M. Thaler, Phys. Rev. 
139, BI186 (1965). 

6 For 1 S !(Il - 3) the phase shifts as given by BA are ~uali
tatively incorrect. These terms can always be subtracted off as In Eq. 
(3.6). 

!=!(n-3) ~ 
f~(x) = (2ik)-1 ~ (21 + l)e2i<1'(e2ib, - I)P!(x). 

!=o 

(3.7) 

As a third example, suppose we wish to include the 
effects of the interaction of the magnetic moment of a 
charged particle with a point Coulomb field. This 
interaction is described by a term in the Hamiltonian 

'( IiZe
2 

3 L H = fl - 1.) -- r- a . j) 2 2m2e2 • 
(3.8) 

If the phase shift due to H' is calculated in BA, then, 
to first order in the strength of H', the spin-dependent 
scattering amplitude h(O) is given by 

h(O) = i( _ 1.)( 2E) k-1 ~ (21 + 1) e2i<1/pl(x). 
flj) 2 2 1J ~ 1(1 + 1) ! ,me I-I 

(3.9) 
If in Eq. (2.11) we set a = 1 + i'fj, we find' 

h(O) = 2i(flj) - !)(~2) (2:) 

4. CONCLUSIONS 

We have shown that, with certain general restrictions 
on the parameters, the sums and functions of Eqs. 
(2.7), (2.8), and (2.11) are equal in the sense of an 
analytic continuation and that they define the same 
functional on sets offunctions G). s; G, even when the o 
sums do not converge in the ordinary sense. The con-
ditions imposed on the functions contained in these 
sets were rather weak and we did not find the most 
general set on which these equations define functionals. 

7 This result is discussed in the author's Ph.D. thesis. See Nuclear 
Physics Laboratory, Case Institute of Technology, Cleveland, Ohio, 
technical report No. COO-I 573-1. 
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One might conjecture that, operationally, the follow
ing criterion can be used: If both sides of Eqs. (2.7), 
(2.8), or (2.11) are multiplied by some function and 
integrated over some interval contained in [-1, 1] and 
if both integrals exist, then they will be equal. 

Though we gave several examples of applications 
of the expansions derived in Sec. 2, we have obviously 

8 See, for example, N. F. Mott, Proc. Roy. Soc. (London) AI24, 
425 (1929); J. H. Bartlett and R. E. Watson, Proc. Am. Acad. Arts 
Sci. 74, 53 (1940). 

not exhausted all of the possibilities. Several cases of 
Eqs. (2.7) and (2.8) have appeared in the literature for 
special values of the parameters a and b,8 but the 
equations given here seem to sum up most of the 
earlier results. 
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INTRODUCTION 

The analytic properties of complex functions are of 
interest in the theory of scattering as well as other 
fields. For example, certain classes of integral equa
tions, which include those reducible to a Dyson 
equation, can be solved exactly for the renormalized 
particle spectral; the analytic regions on the momen
tum and energy planes are defined by solutions of 
eigenvalue equations which generate the Cauchy
Riemann equations in the two variables. Sufficient 
conditions for analyticity on both planes have also 
been given.2 In the case of angular momentum, the 
irreducible representations of the complex rotation 
groups define both the real (particle) and complex 
(resonance) eigenvalues of the S matrix,3 and the 
groups of rotation operators acting on functions of one 
and two complex variables have been considered by 
several authors.4- s 

In this paper we show that, for functions having a 
complex basis and satisfying either classical or 
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• V. N. Gribov and 1. Ya. Pomeranchuk, Phys. Rev. Letters 8, 

343 (1962). 

quantum bracket identities, eigenvalues are easily 
found from solutions of a divergence equation, which 
is a form of the Cauchy-Riemann equations, and thus 
provide a necessary condition for analyticity. Tn this 
case the eigenvalue problem is reduced to that of 
finding the analytic regions of the function. 

1. EIGENVALUE EQUATION 

We consider a function of P(z) = u(p, q) + iv(p, q) 
of a single complex variable z = p + iq. The Poisson 
brackets read 

so that 

where 

Also 

[z,p] = [p, z*] = i, (1) 

[z,q]=-[q,z*]=-l, (2) 

oP oP 
[q, P] = op' [p, P] = - oq' (3) 

[z,P] = oP + i OP 
= iVP = 2i oP (4) 

oq op oz*' 

op* 
[z*, P*] = -2i oz . (5) 
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brackets read 
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Thus, for complex functions, the fundamental brackets 
can be replaced by a simple variational function. 
The transition to quantum systems is straightforward. 
With 

[z, P]cl = (-i/h)[z, P]qm, (6) 

the quantum brackets (qm) give the same equations 
multiplied by a constant as do the classical brackets 
(cl); we write for both classical and quantum com-
mutators, 

[z, z*] = (1z. (7) 

Note that the quantum equivalent of (4) is obtained in 
momentum representation by replacing z by 2ih%z*. 
Also 

[z, z] = [z*, z*] = O. (8) 

Now (4) equates the commutator of z with P to the 
variation of P with respect to the conjugate variable, 
so that, for example, the constants of motion of a 
dynamical system, or more generally, the eigenvalues 
belonging to P, are found from the solutions of the 
differential equation oP(z)/oz* = O. But this equation 
is just the Cauchy-Riemann equations, so that, 
provided P is differentiable, the eigenvalues of (4) are 
defined by the analytic regions of P on the z plane. 
If we take for P the Hamiltonian of a dynamical 
system, then oH/oz* = 0 resembles the minimization 
condition in the familiar variational method for real 
variables. The variational method, however, yields 
an approximation to the eigenvalues, whereas for 
complex variables (4) is exact. 

From these considerations we obtain the following: 

Theorem 1: If the z' are solutions of 

lim oP == 0 
z-+z' oz* 

(9) 

and P(z) is differentiable and real on the real axis, then 
P(z') is analytic at z', and z' are eigenvalues of P 
satisfying 

[z', P(z')] = O. (10) 

The converse gives the following corollary: 

Corollary 1: If there exist z' satisfying (1.0) and 
P(z') is differentiable and real on the real axiS, then 
(9) holds and the z' define an analytic region of P(z). 

It can now be shown that if P is analytic in z, then 
P* is necessarily analytic. Thus, we obtain a second 

corollary: 

Corollary 2: If Theorem 1 holds for P(z) , then 

ap* 
lim - == 0, (11) 
z-+.' az 

and P*(z') is analytic in a region including z', and z*' 
are eigenvalues satisfying 

[z*', P*(z')] = O. (12) 

Proof' With operators such as those in (4) and (5), 
one easily obtains 

oP = oP* + 2i 1m op . (13) 
oz* oz az* 

If there are z' for which (13) vanishes and Theorem I 
holds, then the rhs vanishes and oP*(z')/oz' = 0 as 
well. Q.E.D. 

Equation (9) gives an. exact relation between the 
eigenvalues z' and the analytic regions of P, so that, in 
effect, the eigenvalue problem is reducible to that of 
finding the analytic regions, or of finding the solutions 
ofthe differential equation (9). In general there will be 
a finite number of solutions representing points 
around which P may be expanded in powers of z' - z, 
i.e., in a Laurent series. The set of such points is the 
analytic region on the z plane. and it is defined by the 
solutions of (9) and the requirement that P be differ
entiable. 

2. UNITARY TRANSFORMATIONS 

We can now utiliZe Theorem 1 to obtain the con
dition that a transformation be unitary on the complex 
plane. Consider the transformation 

pt = eZPe-z = P + (1 oP + (12 02p +.... (14) 
Z oz* Z az*2 

With Theorem 1 we now obtain the following: 

Theorem 2: If P(z) satisfies Theorem I, then 

(15) 

is a unitary transformation on the analytic region 
including z'. 

Proof' If P is analytic, the secoQ-d-order bracket on 
the rhs of (14) becomes 

[z, [z, P]] = (1.[z, ::'J 
- (1 [z ap - ~ zpJ 
- z oz* oz* 

== 0. 
Hence, also 

[z, [z, [z, pm = 0, 

(16) 

(17) 

(18) 

and all higher-order commutators vanish identically. 
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A similar relation 

(19) 

can be proved for p •. However, the two remaining 
possible transformations of P on the z* semiplane and 
p. on the z semi plane cannot be unitary, unless P = 
constant; Le., if oP/oz· = 0, then oPfoz =;t. 0, and if 
op· /oz = 0, then oP* /oz· =;t. O. Hence the only unitary 
transformations occur with P on the upper semiplane 
and with p. on the lower semiplane. 

3. SEVERAL COMPLEX VARIABLES 

Theorems 1 and 2 may be extended to include P as a 
function of several complex variables by everywhere 
replacing the partial derivatives with total derivatives. 
Then (4) becomes for P(x,y, z,···) 

[z P] = a ~ P(x y z ... ) 
, Z dz. '" 

( 
oP oP dy* oP dx'" ) (20) 

= az oz* + oy* dz* + ox* dz* + . .. , 

and there is a similar relation replacing (5). Thus (20) 
vanishes only if P satisfies the CaUChy-Riemann 
equations in every variable, and then all higher-order 
brackets vanish as well. Similarly, (14) becomes 

oH-II+Zp -"'_1/_% P + dP + dP + dP e e = a- a- a-
'" dx* II dy* Z dz* 

d dP +aa--+'" 
II Z dy* dz* 

d d dP + a a a - - - + .. '. (21) 
'" II • dx* dy* dz* 

Theorem 2 holds also for any number of complex 
variables, regardless of whether the x, y, z, ... are 
independent or not. This may be verified by writing 
out the higher order terms in (21) and noting that all 
are of the form (17) and (18) with one of the z variables 
replaced by x or y; after expanding the second-order 
terms, one obtains a sum of commutators involving 
only products of scalars and derivatives of scalars, 
and since the scalars commute, the commutators all 
vanish identically. Thus we obtain the following 
theorem: 

Theorem 3: If P(x,y, Z,' •. ) is an analytic function 
of x,y, Z,'" ,then 

pt = e"'+II+z" 'Pe-.,-II-z··· 

=P (22) 

is a unitary transformation on every plane. 

Proof: One second-order term for two variables 
reads 

lim lim [y, [z, P]] = [y', 0] 

=0, (23) 

and similar relations are obtained for the remaining 
variables. From these relations, one obtains 

o y' = ox' = ... = 0 (24) 
oz*' oz*' , 

so that if P is analytic in x,y, z, ... ,then x,y, z, ... 
are analytic functions of each other. 

An alternative proof may be given by using the 
sufficient condition for analyticity; consider 

[y', [z', P]] = [z', [y', P]], (25) 

which holds because of the interchangeability of 
operators in an analytic region. Expanding both sides 
of (25) gives 

P[z', y'] + [y', z']P = [P, [z', 1')] 

op 
=-a----

o(dy*'jdz') 

= 0, (26) 

which is the requirement that P satisfy the sufficient 
condition for analyticity in y and z. Thus (23) satisfies 
the sufficient condition as well. 

4. ANALYTICITY OF HIGHER-ORDER 
FUNCTIONS 

In this section we utilize Theorems 1-3 to prove that 
ordinary algebraic functionals of analytic functions 
are also analytic. Let Q, R, S, ... be functions of z; 
then we obtain the following theorem: 

Theorem 4: If P = QRS' .. and Q, R, S,' .. are 
analytic functions of z, then P is also analytic. 

Proof' The necessary condition that P be analytic is 

oP = QR oS + SQ oR + RS oQ + ... 
oz* oz* oz* oz* 

=0. 

By Theorem 1, if 

oQ = oR = oS = ... = 0 
oz'" oz* oz* ' 

(27) 

(28) 

and if Q, R, S, ... are differentiable, then Q, R, S," . 
are analytic, and it follows that P is analytic as well. 
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The proofs of functions of the form 

p=fl~ ... 
RT ' 

P=Q+R+S+"', (29) 
and 

P =Q R 

follow in the same way. Thus, any function expressible 
as a convergent power series in z is analytic, and the 
inverse of an analytic function is also analytic. Thus, 
if oPjoz* = 0, then also oz*joP = 0, except when all 
partial derivatives vanish identically, i.e., when P = 
const. In this way, it can be shown that some logarith
mic functions are also analytic. For example, let 

Q = eZ
• (30) 

Then 

? log Q = O. 
GZ* 

(31) 

Thus, the usual illustration of eiz as a nonanalytic 
function is not valid if z is a complex variable; i.e., the 
many-valuedness of eiz requires that z be real, whereas 
for complex z, eiz describes a spiral rather than a cir
cular function. 

5. ANALYTICITY AND CONSERVATION LAWS 

From the preceding sections, it is evident that the 
eigenvalues of an operator are related to the analytic 
regions of the operator on the complex plane. Hence 
we expect that, for a complex variable representation, 
the analytic regions correspond to conserved or 
constant regions in a real variable representation; 
that is, the analyticity requirement corresponds to a 
conservation law. This result is well known in potential 
theory and in fluid dynamics problems involving 
constant sources; in the former case analyticity corre
sponds to charge conservation for electrostatic fields, 
and in the latter case to conservation of mass. Evi
dently, then, any conserved function in a real vari
able representation corresponds to an analytic function 
in a complex variable representation. 

Now, define the minimal electromagnetic current 
j« by 

. bC 
Ja = 150 - , 

({la. 
(32) 

where ({la = ({l(qa.) is a function of the four-momentum 
qa' and t = L( ({l, O({l) is defined on the upper semi
planes. Now writing 

= t + [qa, C] + ... , (33) 

where qa is a sum of normalized complex scalars, 

it can be shown that C is invariant under the trans
formation, provided the Lagrangian is analytic in qa. 

that is, provided energy and momentum are conserved, 
and that if £. is analytic, then the Lagrangian is also 
invariant under a rotation through 7T on each semi
plane carrying t into the continued function tt on the 
lower semiplanes. The complete proof is given in a 
later paragraph. 

If, in the case of electromagnetic interactions, £. is 
invariant under a gauge transformation of the first 
kind, then 

~=o']' =0 a - a , 
({la. 

(34) 

which is equivalent to conservation of charge. Evi
dently this conservation law can be related to the 
requirement that the Lagrangian be an analytic func
tion by means of the unitary transformation 

=C+(i ~+ ... 
II' 0-

({l7 

= t, (35) 

so that charge conservation is equivalent to analyticity 
in ({la' Conversely, if the current is not conserved, then 
the splitting is given exactly by the second term on the 
rhs in (35) since 

(36) 

This procedure may be generalized to include 
Lagrangian functions of an arbitrary number of 
variables and with a conservation law corresponding 
to analyticity in each variable. Thus, if ({lap are complex 
bases satisfying the usual bracket relations, then 

a£. 
elPaPCe-"'aP = C + (i -- + ... ap :l -

v({la(J 

= C + (iapojaP + . . . . (37) 

The higher-order terms are related to the mass 
splittings by 

ot .. 2 
(iap -_- = -ump({laP' 

O({l,.p 
(38) 

Conversely. if C is analytic in a variable ({l,.p, then all 
commutators involving ({lap vanish identically. 

We now prove that analyticity is equivalent to 
rotational invariance. Consider the transformation 

[t = tji[tp,L] 

_ ot 
= (1",!p otji 

= (1",[S", + iL",]C, (39) 
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and with q; = x + iy, 

L~ = 1m (p O~) 
o 0 =x--y-oy ox (40) 

is the usual rotation operator, and 

( 41) 

measures any radial deformation under the rotation. 
(We omit the indices of the dimensionality but a s~m 
of terms is implied.) If one makes the usual assumptIOn 
of rigid body rotations, then (39) gives th,e famili~r 
rotation operator acting on C. If Lrpf. vamshes, ,f. ~s 
invariant under rotations in the q; plane, and It IS 

evident that this condition and the rigid body require
ment are both satisfied, provided f. is analytic in q;, or 

of. = 0, 
op (42) 

since both real and imaginary parts of (39) vanish 
under this condition. This can be shown by writing out 
the components of (39), with f. = u + iv, 

- of. = .! {x(Ou _ OV) + y(OU + OV) (43) 
q; op 2 ox oy oy ox 

+ i[X(OU + OV) _ y(OU _ av)]} oy ox ox ay 
= -HS~u - L~v + i(L~tI + S",v)], (44) 

planes. Thus we require 

lim [q", f.] 

df. 
=(J ,-

q" dij; 

_ (J [Of. dip + of. dip] 
- q,,' oip dij~ oip dij~ 

+ terms which vanish identically by (4S) 

= O. (46) 

If (46) holds, then all higher-order terms in (33) 
vanish according to (I 5) and (I7). Hence the solutions 
of (46) determine the eigenvalues q~ for which f. is a 
constant. As will become evident, Eqs. (4S) and (46) 
are the only possible conditions for which one obtains 
nontrivial solutions. 

The rhs of (46) must vanish independently for each 
variation with respect to q" since, in general, the 
variations with respect to the four-momentum do not 
vanish. Now unless f. is a constant, it is evident from 
(4S) that of.joip ¢ 0, so we obtain the condition 

(
dq;) = O. 
dq~ 

(47) 

Then either 

of. dip 
- = 0 or -= 0, 
oip oij~ 

(48) 

From general considerations of the equation of motion 
of the Lagrangian, one can show that the first of Eqs. 
(48) must hold. Thus, from 

ac =fdX oC 
o(V1p) oip 

(49) 

and (45), one obtains the first of Eqs. (48). Hence the 
which vanishes identically, provided the Cauchy- conditions that (46) hold are given by (47) and 
Riemann equations are satisfied. 

6. RELATIVISTIC SELF-CONSISTENT FIELDS 

We now apply the methods developed in the pre
vious sections to the solution of the coupled equations 
of motion of spinor and scalar fields. We consider a 
Lagrangian L( q;, 1p, V q;, V1p) with equations of motion 

oC oC 
- = 0 and -=- = o. 
aq; a(v1p) 

(45) 

After the Fourier transformation, consider the analytic 
continuations of (4S) and C. The requirement that f. 
conserve energy and momentum, as was shown in the 
previous section, is equivalent to the requirement that 
C be invariant under rotations on the four-momentum 

oC = o. 
oip 

(SO) 

We now treat the case of scalar and spinor fields. 
Consider the Lagrangian 

C = t(V' q;)2 - !m2q;2 + ip"ll1p - ipM1p + gipq;1p. (51) 

The variations of (Sl) give 

and 
("ll - M + gq;)1p = O. 

(52) 

(53) 

In momentum representation, these equations read 

q; = -igrip1p + const, (S4) 
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where r = (ql! - ml!)-t, and with k = P + q, we have 

~- M + gcp},p = 0 (55) 

since cp must be independent of or a constant function 
of q~ by (47). Now (47) gives 

dcp = -gr1ii (-2Q'r1ll + dtpa) d I Ta a T,. d I qa qa 
=0, (56) 

since (47) requires also that dcp/dq~ = o. Takingq~ as a 
column vector, solutions of (56) read 

ro 
"Pa = r "Po,. 

Q'2 _ m2 
= M2 2 "Po,., -m 

(57) 

and r 0 = (PI! - m2)-1 for a free field. In obtaining 
(57), the integrations have been carried out from 
qa = PfZ = 0, Wi = Wo, to q' in an analytic region, so 
that the path need not be specified; that "P is analytic in 
qa. follows from aipfoq~ ~ 0 [see (48) and (50)], and the 
integrand over dqa. is analytic by Theorem 4 since the 
component functions are all analytic, as can be verified 
by writing the Cauchy-Riemann equations for each. 

Setting the constant in (54) to zero, we find 

where 

l"Pol2 = I ;POa "POa . ,. 

Equation (55) now reads 

(k"- M - p(q'2 - ml!)]"P = 0, (59) 
where 

p = iglll"PollI/(M2 - mil)?. (60) 

Solving (59) for motion in the xy plane (see Appendix 
A), one obtains 

q'? = mil + M(W - m2)2fig2 1"Pol lI• (61) 

The sign of the interaction term in (61) is fixed by 
convergence requirements [see (68) and (70)]. It is 
easily verified that (61) is an analytic function of the 
four-momentum and of energy and space momentum, 
separately. With l"Pol2 = 2M, we find q'll is a constant 
depending only upon the masses and the coupling 
strength. 

The mass splitting in (61) is symmetric (there is 
another component with negative sign for the upper 
semiplane), and the mass difference is a function only 
of the coupling strength and the initial masses so that 
the coupling strength can be found provided one 

knows the mass difference. Writing (~m)2 for the 
third term in (61), 

gil = (Mil - m2)2f2(~m)2. (62) 

Finally, (57) and (61) yield 

"Pa. = [(Mil - m2)f2ig2]"Poa. (63) 
and 

"P = -Mfg· (64) 

The relation between the total wavefunction I"PIII and 
cp is 

Itplll = - [(Mil - m2)2f2g3]cp, (65) 

so that cp can be regarded as an effective field or 
average over the particle field components, multiplied 
by a coupling factor. The fact that cp is a constant 
shows a strong correlation among the particle fields 
so that the latter may, in fact, be written as the product 
of cp, "POa, and an effective coupling strength: 

"Pa. = (icpf2gM)(M'I. - m2)"POa. (66) 

Thus, the effective scalar field cp has no structure or 
short-range properties and is, in fact, an infinite-range 
field proportional to the average particle field. 

The Lagrangian of (64) and (66) is a function only 
of the masses and the coupling strength 

(M2 _ m2)3{. 1 _ } 
!: = 4 1M + - "PoaEk' - 2M)"Po,., (67) 

4Mg M 

and so is completely determined by the self-consistent 
solutions of the equations of motion. 

In the limit tp -- tpo, consistent limits of (61) and 
(63) are obtained if g2 -- (Mil - mll)f2i as the coupling 
is reduced to zero. Then (64) becomes 

I
. ~ ±(2i)1 
1m cp = ,t;., 

m2_MI ± (M 2 _ m2)1 

= o. (68) 

Equation (61) may be written in terms of a single 
complex variable as follows: With z = u + iv and 
resolving (61) with qa. = u,. + iVa, provided g is real, 

and 

or 

and 

U'2 _ V'2 = I (-1)P(u~2 - V~2) = m2, 
11. 

fJ = 0, 0: = 1, 

= 1, 0: = 2,3, 

(69) 

U'2 = im2{1 + [1 + (~mfm)4]1} (71) 

V'2 = -im2{1 - [1 + (~m/m)4]1}. (72) 
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With ql = E = w + iy, qrz = 71'rz + iICrz (oc = 2, 3), it 
is not difficult to show that 

W,2 _ L 71'~2 = U,2, y,2 - L IC~2 = l,,2, (73) 
a a 

and the requirement that m2 + (Llm)2 be analytic in 
the four-momentum gives the first equality in 

(74) 

and the second is then obtained from (73). The energy 
and decay time can now be obtained from 

W,2 = Z 71'~2 + lm2{1 + [1 + (Llm/m)4]1} (75) 

and 

'T,2 = Z /(~2 _ tm2{1 _1 [1 + (Llm/m)4]1} ' (76) 

and the interaction range can be obtained from 

L r~2 = __ 1_ 1 + [1 + (Llm/m)4]t . 
~ 71'~2 1 - [1 + (Llm/m)4]1 

(77) 

For Llm/m« 1, ,',....., 2t(mjLlm)2ro so that the inter
action range varies inversely with the mass splitting; 
but for Llm/m > 1, " approaches a constant '0 in the 
limit. 

The zero coupling limits of (75)-(77) give 71'~ = Prz' 
m = M and w' = wo, with y~ = 0 = /(~ and reduce to 
w' = Wo = M at rest. The initial values obtained in 
this limit represent a particle and field of identical 
mass and velocity either moving or at rest, so that the 
coupling is turned on only when the particle emits the 
field, i.e., when differential motion begins. We find 
then that the renormalized field momentum becomes 

, U' 

71'1Z = -, 2M P"" . u -
(78) 

by means of which w', 'T', and /(' may all be determined 
as functions of the initial masses and the coupling 
strength. 

APPENDIX A: SOLUTION OF THE DIRAC 
EQUATION 

For motion in the xy plane, Eq. (59) reads 

&'_[M+p(q-,2_ m2)] k'+ Ok' 
2 I 3 "PI 

&'_[M+p(q'2_ m2)] k~-ik~ "P2 
=0, 

"P3 -k~+ik~ -&'_[M+p(q'2_ m2)] 

-k2+ik~ _&'_[M+p{q'2_ m2)] "P4 

which gives 

M + p(q'2 _ m2)]2 = &'2 - L k~2. (A2) 
IZ 

Writing .A(,2 for the rhs, we find 

Re.A(,2 = - L (Pa + 71'~)2 + (wo + W,)2 - y,2 + Z IC~2, 
(A3) 

1m .A(,2 = -2 Z (Pa + 71';)/(~ + 2y'(wo + w'). (A4) 

We require that (A2) be an analytic function of the 
momentum, energy, and four-momentum, since the 
lhs of (A2) is obviously analytic in those variables. 
Thus, for 

a Re .A(,2 oy' Z a I = -2 Z (Pa + 71'~) - 2y'L;-; 
71'a U71'a 

(AS) 

(A6) 

we require (AS) = (A6), and 

and 

ow' + 2( Wo + w') L -
O/(~ 

L a Im.A(}! - 2 L I 2 I Law' - - /( + y -:. , a ::l , 
U7T!7. U7Ta 

(Al) 

(A7) 

a ' + 2(wo + w') Z L (A8) 
a7T~ 

must give (A 7) = - (A8). Then (A5)-(A8) give 

J" _ (OW' OJ") / (OJ" OW') 
Wo + w' - L 071'~ - OK~ L il71'~ + aK~ 

_ (Oy, OW') / (OY' aW') 
- L 07T~ + OK~ L a/(; - 071'; , 

(A9) 

which is the necessary condition that .A(,2 be analytic 
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in the momentum. For .AL2 to be analytic in the energy, 

",0 Re.AL
2 

= -2"'( + n,)on; 
,(., oy' £., P« «oy' 

+ 2 ~ K~ ~;~ - 2/ (AlO) 

and 

must give (AlO) = -(All), and 

'" 0 Re .AL
2 

'" ( ') on; ( ') £.,---= -2,(., P« + n« - + 2 Wo + w 
ow' ow' 

(AI2) 

and 

2 L ' on~ 
- K-

~ oy' 
(A13) 

must give (A12) = + (A 13). Then (AlO)-(A13) give 

K~ = (on~ _ OK~)/(OK~ + on~) 
P« + n; ow' oy' ow' oy' 

= (on; + OK;)/(OK; _ on;), (AI4) 
oy' ow' oy' ow' 

since the sum of all cross products vanishes. 
It is a simple matter now to show that .AL2 is analytic 

in the four-momentum, provided 

+ ' , 
~ P« n« = ~K«. (AI5) 

Wo + w' y' 

The same result is also obtained by requiring 
that Re.AL2 and Im.AL2 be consistent; that is, 

Re .AL2 = [J2 - VI, 1m .;1(,2 = 2UV gives 

U2V2 = [y'(wo + w') - L (PIX + n~)K;]2 
= I(wo + W')2 + ~ (p« + n~)2][y~2 + L K~2], 

(AI6) 

which gives (A15) since all sums of products of the 
form x«yp must vanish. 

With (A15) we get 

Re .;1(,2 = ~ (I - ;::) [Cwo + W')2 - y,2] (AI7) 

and 

Im.;l(,2 = 2 ~ y'(wo + W')(l _ K~2), (AI8) y,2 

so that, with 1;' = Wo + w' + iy', 

.;1(,2 = &'2 _ ~ &'2 K~2 
y,2 

= &'2 _ ~ (P2 + n;)2. (A19) 

The rest mass of the excited state can be determined in 
the limit n~ = p" = 0, w' = Wo, which gives .;1(,2 = 
4M2, and the same result is obtained for the dynamical 
case n~ = p«, so that, finally, (A2) gives with (A19) 

if'2 - m2 = M/p. (A20) 

The behavior of n~ in the zero coupling limit can be 
studied by using (74), which follows directly from the 
requirement that q'2 be an analytic function of the 
four-momentum. With (73), (74), and (A15), we 
obtain 

(A21) 

which gives 
U' 

n~ = - u' _ 2M P«· (A22) 

In the limit g2 ---?- (M2 - m2) ---?- 0, U ---?- m ---?- M and 

lim n; = p". (A23) 
g2-+0 

Then (75) gives w' = Wo in agreement with the inte
gration limit in (57), and (59) reduces to the Dirac 
equation for a noninteracting particle. 
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Degeneracy of the Dirac Equation with Electric and Magnetic 
Coulomb Potentials * 
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Investigation is made of the symmetry and degeneracy of the Dirac equation for a Coulomb potential 
with a fixed center bearing both electric and magnetic charge. Seen from the viewpoint of classical 
mechanics, relativistic precession removes the accidental degeneracy of the nonrelativistic potential, 
and may be so severe as to lead to spiral rather than precessing elliptic orbits. The degeneracy may be 
restored by the introduction of a vector potential which combats the precession and leads to closed 
relativistic orbits. An angular momentum and a Runge vector are found for the "symmetric" potential 
for arbitrary values of electric and magnetic nuclear charges. A related symmetric Hamiltonian and 
constants of the motion may be constructed for the Dirac equation, which reduce to those of Biedenharn 
and Swamy in the absence of magnetic charge. Magnetic charge must be quantized-a requirement 
seen from the angular part of the wave function exactly as in the nonrelativistic problem. The Dirac 
Hamiltonian is singular for the lowest admissible angular momentum state, corresponding to the spiral 
orbits, when the magnetic charge is nonzero. The remaining states show an accidental doubling of 
degeneracy, whose presence may be deduced from an operator which reduces to that of Johnson and 
Lippman, or the algebra of Malkin and Manko, without the magnetic charge. 

I. INTRODUCTION 

In the past few years there have been numerous 
investigations into the symmetry and group-theoretical 
structure of quantum-mechanical problems. The 
hydrogen atom and the harmonic oscillator have al
ways received the most attention, probably because of 
the intrinsic importance of these two systems to 
theoretical physics, and also because of the fact that 
they are the only two systems of such importance 
showing a high degree of accidental degeneracy. An 
explanation for their accidental degeneracy has been 
known for quite some time,l and the reason is that 
the phase space of Hamiltonian mechanics accommo
dates rather more symmetry than may be found solely 
in the configuration space, which is rarely more than 
the spherical symmetry enjoyed by central-force 
potentials. The recently increased activity has been 
concerned with establishing the precise extent of the 
occurrence of hidden symmetry of this kind, on the 
one hand, and with "noninvariance," on the other. 
Noninvariance is concerned with determining the 

* Sponsored in part by the Swedish National Research Council 
and in part by the Air Force Office of Scientific Research through 
the European Office of Aerospace Research, U.S. Air Force, 
Grant EOOAR-69-0043. 

t Instituto Nacional de la Investigaci6n Cientifica Fellow 
(Mexico). 

t Permanent address: Escuela Superior de Fisica y Matematicas, 
Instituto Politecnico Nacional, Mexico 14, D.F., Mexico. "Profesor 
Becario de la Comisi6n de Operaci6n y Fomento de Actividades 
Academicas del Instituto Politecnico Nacional." 

1 V. Fuck, Z. Physik 98, 145 (1935); V. Bargmann, ibid. 99, 576 
(1936); J. M. Jauch and E. L. HilI, Phys. Rev. 57, 641 (1940). A sur
vey of the earliest papers on accidental degeneracy may be found in 
H. V. McIntosh, Am. J. Phys. 27, 620 (1959). Among the many 
recent treatments, the hydrogen atom is especially well discussed in 
G. Gyorgyi, Nuovo Cimento 53A, 717 (1968); M. Bander and C. 
Itzykson, Rev. Mod. Phys. 38, 330, 346 (1966). 

shape and not merely the degeneracy of the eigenvalue 
spectrum from group-theoretical information. 

The study of the degeneracy and symmetry of 
relativistic wave equations has probably been inhibited 
by the low degree of accidental degeneracy found in 
the Dirac equation for the Coulomb potential, not 
to mention that the relativistic hydrogen atom is 
just about the only system whose Dirac equation 
leads to any bound states at all. Although a number 
of magnetic-field configurations lead to confined 
motion, they are not described by the adjective 
"bound" in quite the sense that one would think of 
for an attractive center; in any event, the Coulomb 
potential seems to be the only electrostatic potential 
expressible as a power series in rand l/r which leads 
to bound-state solutions.2 All the other potentials 
have only oscillatory solutions which extend to infinity 
with nonvanishing amplitude. Phenomena of this 
category comprise the Klein paradox.3 

Although Dirac chose the form of his Hamiltonian 
deliberately, so that the wave equation would be a 
set of coupled linear first-order differential equations 
and not a second-order equation such as the non
relativistic Schrodinger equation, the very fact that 
the wave equation is such a set of first-order equations 
obscures their symmetry to a considerable extent. 

The most important symmetry property of the Dirac 
equation for a spherically symmetric potential is, of 
course, that very same spherical symmetry and the 
concomitant conservation of angular momentum. 
Just as a system of first-order equations cannot 

2 M. S. Plesset, Phys. Rev. 41, 278 (1932). 
3 O. Klein, Z. Physik 53, 157 (1929). 
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possess spherical symmetry as written, it is found 
that the "orbital" angular momentum r x p, which 
generates infinitesimal rotations of the coordinates 
and momenta, is not conserved. One can attribute 
this failure of the canonical angular momentum to 
generate a symmetry operation to the fact that one 
deals with a system of equations, and thus with a vector 
field rather than a simple wavefunction. It is a familiar 
property of fields that a transformation of the co
ordinates with respect to which they are defined 
causes simultaneous mixing of the field components, 
which must be separated again before one can discuss 
the possibility of a symmetry.4 This resolution of the 
components can be effected by a matrix and gives rise 
to the "spin" component of the angular momentum. 
The combination of orbital and spin angular momen
tum, which leads to a symmetry operation, is called 
the total angular momentum, and was found by 
Dirac5 to be a constant of the motion for systems 
with spherically symmetric potentials. 

The study of the reflective symmetry of the Dirac 
equation is similarly complicated by the fact that a 
spatial reflection must be combined with a spin 
adjustment, and even the experimental consequences 
of reflective symmetry were not appreciated for twenty 
years, until the parity-conservation experiments were 
performed. 

Above and beyond any rotational or reflective 
symmetries common to all central-force potentials, 
there are some potentials which exhibit the higher and 
supposedly accidental degeneracy, similar to the 
instances which we have already_ mentioned in the 
nonrelativistic theory. The additional symmetry has 
been explained in terms of "hidden" symmetries from 
the phase space of the problem, the degeneracy in the 
hydrogen atom generally being attributed to the 
existence of a second conserved vector, the Runge 
vector. This is a polar vector in contrast to the first 
vector constant, the angular momentum, which is an 
axial vector. In classical mechanics, the Runge vector 
points from the attracting center to the perihelion of 
the elliptical Keplerian orbit, whose constancy 
reflects the independence of the orbital energy from 
the eccentricity of the orbit. Instead, the energy of 
any orbit depends only on its semimajor axis. One 
might expect to find a residue of the nonrelativistic 
symmetry in the relativistic problem. 

Even in classical mechanics, however, the symmetry 
implied by the c<?nstancy of the Runge vector is lost 
in the relativistic problem. The variation of the 
particle's mass with its velocity results in an orbital 

• D. L. Pursey, Ann. Phys. (N.Y.) 32, 157 (1965). 
• P. A. M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928). 

precession, so that the perihelial vector no longer 
remains constant. It would therefore seem unlikely 
that a quantized version of the motion would show 
any greater degree of symmetry. Such expectations 
for the Dirac equation of the hydrogen atom are 
confirmed with one slight exception: One finds double 
the degeneracy which one expects from spherical 
symmetry and the behavior of the irreducible repre
sentations of the rotation group. The hydrogen atom 
consequently does show an accidental degeneracy in 
this doubling of the rotational degeneracy. 
. Historically, this doubling was quite important 
because its incompatibility with the known degener
acies·due to the spherical symmetry first led to the 
hypothesis of electron spin, and eventually to the 
Dirac equation itself. Ironically, it is the symmetry 
aspect of the Dirac equation which has resisted a 
group-theoretical explanation for the longest time. 

In 1949, Saenz6 reported an unsuccessful search 
for a hidden symmetry group which would explain 
this degeneracy, although he did succeed in showing 
that no operator similar to the Runge vector could be 
constant. Almost simultaneously, Johnson and Lipp
man? reported an operator which, by its anticommuta
tion properties, could account for the accidental 
degeneracy. At about the same time, Johnson and 
Lippman8 also investigated the motion of a Dirac 
particle in a uniform magnetic field, finding some 
new constants of the motion, their commutation rules, 
and that a similar doubling of energy levels could be 
attributed to the indifference of the energy to the 
relative orientation of the spin and the orbital angular 
momentum. 

The accidental degeneracy of the hydrogen atom 
coul~ certainly be explained in similar terms, but 
only after one had solved Dirac's equation and 
obtained. explicit formulas for the wavefunctions and 
energy levels. Biedenharn9 in 1962 first established a 
direct connection between the Johnson-Lippman 
constant of the motion and the "helicity independence" 
of the Dirac Hamiltonian. 

If one understands the loss of symmetry in passing 
from the nonrelativistic to the relativistic hydrogen 
atom in terms of the precession caused by the rela
tivistic mass variation, it is certainly tempting to try 
to restore the symmetry by counteracting the pre
cession in some way. Biedenharn and SwamylO were 
able to identify a term in the Dirac Hamiltonian 

• A. w. Saenz, Phys. Rev. 79, 1004 (1950). 
1 M. H. Johnson and B. A. Lippman, Phys. Rev. 7SA, 329 (1950). 
8 M. H. Johnson and B. A. Lippman, Phys. Rev. 76, 828 (1949); 

77,701 (1950). 
• L. C. Biedenharn, Phys. Rev. 126, 845 (1962). 

10 L. C. Biedenharn and N. V. V. J. Swamy, Phys. Rev. 133B, 
1353 (1964). 
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which could be held responsible for the loss of 
degeneracy, and whose removal led to a highly 
degenerate system. Christened as their "symmetric" 
Hamiltonian, it was shown to have two vector con
stants of the motion, whose commutation rules led 
to identification of R4 as a hidden symmetry group. 
However, their symmetric Hamiltonian still showed 
a doubling, this time of R4 degenerate levels, and it 
was found that the 'two vector constants of the motion 
were no longer orthogonal, as they are for the non
relativistic hydrogen atom. 

By taking the Foldy-Wouthuysen limit of the 
"symmetric" Hamiltonian, Shethll has shown that it 
differs from the Coulombic Hamiltonian by including 
a vector potential whose influence is just adequate to 
counteract the relativistic precession. 

Probably the most satisfactory accounting for the 
degeneracy doubling in the Dirac equation is found 
in a recent series of articles by Malkin and Manko.12 

It may still be an open question as to whether the 
phenomenon appears in non-Coulombic problems, 
although it is readily enough seen for free particles and 
for uniform magnetic fields. Some insight may be 
gained from the "two-dimensional" Dirac equation of 
Ionesco-Pallas,13 or the multidimensional theory of 
Coulson and Joseph,a but it does not seem that one 
can look for analogies among other potentials, since 
they do not generally yield bound states. 

A system closely related to the relativistic hydrogen 
atom is the charged magnetic monopole,1s which 
does not seem to have been previously treated in 
the Dirac theory. Harish-Chandra16 investigated the 
Dirac equation for a charged particle moving in 
the field of an uncharged monopole to see whether 
the intrinsic magnetic moment of the electron could 
lead to bound states. It did not. Banderet17 treated 
scattering from an uncharged monopole according to 
the Dirac theory. Malkus18 studied the influence of 
the presence of a magnetic monopole in an atomic 
nucleus on its electronic energy levels, as well as the 
motion of a nucleus in the field of the monopole in 
the Pauli approximation. Eliezer and Roy, 19 as well 

11 C. V. Sheth, Nuovo Cimento S4A, 549 (1968). 
12 (a) 1. A. Malkin and V. I. Manko, Yad. Phys. 8, 627 (1968), 

[Sov. J. Nucl. Phys. 8,363 (1969»); (b) 1. A. Malkin and V. I. Manko, 
ZhETE Pis. Red. 7, 105 (1968) [JETP Lett. 7, 79 (1968»). 

13 N. J. Ionesco-Pallas, Rev. Roumaine de Phys. 12, 327 (1967) . 
.. A. Joseph, Rev. Mod. Phys. 39, 829 (1967); C. A. Coulson and 

A. Joseph, Rev. Mod. Phys. 39, 838 (l967). 
U (a) P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931); 

(b) Ig. Tamm, Z. Physik 71, 141 (1931). 
16 Harish-Chandra, Phys. Rev. 74, 883 (1948). 
17 P. P. Banderet, Helv. Phys. Acta 19, 503 (1946). 
18 w. V. R. Malkus, Phys. Rev. 83, 899 (1951). 
19 C. J. Eliezer and S. K. Roy, Proc. Cambridge Phil. Soc. 58, 

401 (1962). 

as McIntosh and Cisneros,2o have used the nonrela
tivistic Schrodinger equation to study lllotion in the 
field of a combination of magnetic and electric charge. 
There are numerous nonrelativistic accounts of motion 
in the field of an uncharged monopole, but there are 
no bound states in such systems. Hurst21 has made a 
fundamental investigation of the requirements of 
quantization of the magQetic charge imposed by 
integrability conditions for both the SchrMinger and 
Dirac equations for the monopole. 

There are some significant differences between the 
Coulombic hydrogen atom and the charged magnetic 
monopole, whose mathematical origin lies in the 
vector potential of the monopole's magnetic field. 
The angular momentum is no longer conserved, there 
being a certain amount of angular momentum resident 
in the magnetic field. Again, there is a conserved 
total angular momentum, originally discovered by 
Poincare,22 but whose minimal value is nonzero and 
depends on the magnetic charge of the monopole. 

The existence of such a lower limit affects the wave
functions in such a way that there are never s-states, 
nor even some other states of low angular momentum, 
depending upon the magnitude of the magnetic charge. 

Since the Dirac equation demands the inclusion 
of spin angular momentum in the conserved total 
angular momentum of a spherically symmetric 
system, it is worthwhile to see how the threefold 
combination of spin, field, and orbital angular 
momentum is to be made in the relativistic theory of 
the monopole. It is a consideration which is not 
entirely academic, in the light of proposals which 
have been entertained from time to time,23 that 
particles are composites of magnetic monopoles. 
Schwinger23a has recently proposed a possible justifica
tion of the "quark" model following this idea. Also, 
an attempt has been made to explain the great mass 
and anomalous magnetic moment of the neutron in 
this way.23b Even though quite different explanations 
in terms of meson theories are generally given to 
these phenomena, the nonrelativistic theory of the 
monopole contains some interesting possibilities for 
speculation. Classically, two charged monopoles 
would not be expected to collide because of the 
magnetic mirror effect. This result is retained quantum 
mechanically, and may be attributed to the angular 
momentum of the magnetic field, so that even in the 

20 H. V. McIntosh and A. Cisneros, Bull. Am. Phys. Soc. 13A, 
909 (1968); J. Math. Phys. (to be published). 

21 C. A. Hurst, Ann. Phys. (N.Y.) 50,51 (1968). 
22 H. Poincare, Compt. Rend. 123, 530 (1896). 
23 (a) J. Schwinger, Phys. Rev. 173, 1536 (1968); (b) M. N. Saha, 

Indian J. Math. 10, 141 (1936); (c) R. F. Palmer and J. G. Taylor, 
Nature 219L, 1033 (1968). 
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ground states, the repulsive centrifugal potential 
occurring in the radial equation is nonzero, and the 
particles would be excluded from the origin of the 
center-of-mass system. 

Such reasoning makes one think that there might 
be a state of quite high binding energy, due to the 
s~rength of magnetic interaction between two oppo
sItely charged monopoles, and of relatively long 
lifetime, since the probability of coincidence of the 
t~o particles would be greatly reduced. Such expecta
tIons are quashed in the relativistic Dirac theory, at 
least to the extent that one can obtain information 
by studying the motion of a spin-! particle in the field 
of a fixed, spinless particle. The reason is that the spin 
angular momentum can oppose the residual angular 
momentum responsible for excluding the particle from 
the origin in the nonrelativistic theory; in fact, when 
the effects of relativistic precession are also included, 
one obtains a singular potential for the ground state. 

This singular potential is familiar in the Dirac 
theory, and has a classical relativistic analog in the 
spiral orbits which arise for sufficiently low angular 
momentum when the relativistic precession com
pletely overwhelms the orbital motion. A very 
thorough account of the singular case was given by 
Frenkel and Rojansky24 in 1938, but for the relativistic 
Coulomb potential one does not encounter such 
difficulties for nuclei with Z S; 137, due to the small 
size of the fine structure constant. While the possible 
occurrence of spiral motion is then of no practical 
importance for the study of atomic nuclei, we find 
that it occurs already from Z = 1 when the nucleus 
carries a magnetic charge. 

Aside from the occurrence of a singular potential, 
we may note that the degeneracy of the nonrelativistic 
Coulomb potential, which is lost to the charged 
monopole, may be regained by considering a fictitious 
problem in which there is a repulsive centrifugal 
potential proportional to the square of the magnetic 
pole strength. At the same time, the possibility of the 
occurrence of the singular potential would be avoided, 
and we would have a system bearing the same relation 
to a relativistic physical potential as Biedenharn and 
Swamy's symmetric Hamiltonian has to the relativistic 
hydrogen atom. 

II. CLASSICAL TREATMENT 

The classical relativistic Hamiltonian25 for the 
hydrogenlike atom is 

Je = (p2C2 + m2c4)t - Ze2/r, (1) 

24 J. Frenkel and J. Rojansky, Physik. Z. Sowjetunion 13 181 
(1938). • 

26 A. Sommerfeld, Ann. Physik 51, 1, 125 (1916); M. Born, 
The Mechanics of the Atom (Fredrick Ungar Pub!. Co. New York 
1960). ' , 

where Z is the nuclear charge. Squaring this Hamil
tonian leads one to a Hamilton-Jacobi equation which 
is separable in polar spherical coordinates 

(
as)2 1 (as)2 1 (as)2 (E Z)2 
ar +;:z ae + r2 sin2 () arp = ~ + (J.r - m

2
c
2
, 

(2) 
where 

(J. = e2/c. 
Introducing separation constants fJ, (z projection of 

the angular momentum), t2 (square of the angular 
momentum), and E (energy), we obtain their defini
tions as follows: 

as 
fJ, =. arp' 

t 2 _ (as)2 + fJ,2 
ae sin2 e 

(3) 

Using these separation constants, we may introduce 
the action-angle variables 

J<p == f ;~ drp = 27TfJ" 

1. as 
J 8 == :r ae de = 27T(t - fJ,), 

J, == 1. as dr :r ar 

(4) 

= -27T(t2 _ (J.2Z2)! + (J.ZE . 
(m 2c2 _ E2/C2)! 

Th~s formula for the radial action is only valid for 
suffiCIently large angular momentum, viz., t> r:t.Z. 
The restriction which must be laid upon the range of 
angular momentum arises from the fact that the 
Hamiltonian-Jacobi equation contains the term in 
1 fr 2 , which is effectively an attractive potential with 
the sa.me r~dial dependence as the "centrifugal" 
potentIal whIch appears on separation of the radial 
variables. Both of these are singular potentials in the 
sen~e that. the action integral diverges if the range 
of IntegratIOn extends to the origin. If the Coulomb 
potential is attractive and the centrifugal potential 
repulsive, the innermost classical turning point will 
lie at s?me distance from the origin, producing the 
expressIOn for the radial action given above. However, 
if both potentials are attractive, the particle may 
reach the origin, the action integral diverges, and the 
formulation of Hamiltonian mechanics in terms of 
action-angle variables is not applicable. 

Upon solving for the energy, we obtain 

E = mc2(1 + (J.2Z2 )-! 
{n, + [(n8 + n<p)2 _ (J.2Z2]!}2 ' (5) 

where 
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Using the old quantization rules, this is seen to be 
nothing but Sommerfeld's expression for the energy 
levels,25 provided that nr , n8 , and n", are integers, 26 
which gives account of the fine structure of the levels. 
The equation for the orbit is that of a forward pre
cessing ellipse, with a frequency (1 + (J.2Z2/t2)!' An 
explicit solution was found by CopeP7 and also by 
Frenkel and Rojansky. 24 

In addition to the appearance of the rest-mass 
energy and the double sign, two main features can 
be noticed in comparing Eq. (2) with the nonrela
tivistic Hamiltonian-Jacobi equation. One of them 
is the inclusion of an increment to the centrifugal 
potential (J.2Z2/r2, while the other one is a factor 
2E/c2 in the Coulomb potential term -e2Z/r. The 
former causes the precession of the orbital ellipse due 
to the instantaneous mass change with the velocity, 
while the latter one is a screening factor due to the 
average mass change. It is the modification to the 
centrifugal potential which destroys the familiar R4 
symmetry of the nonrelativistic hydrogen atom. On 
account of this term, the Runge vector will no longer 
be a constant vector, but in actuality it precesses with 
a constant velocity. 

The potential responsible for the orbital precession 
is attractive and results in an advance, rather than 
a retardation, of the perihelion with each cycle of the 
orbit. It has the same radial dependence as the 
centrifugal barrier, namely, l/r2, and,as we have seen, 
the nature of the motion changes drastically when this 
term changes sign. As long as the centrifugal terms in 
l/r2 are repulsive, the particle can never penetrate to 
the origin, it oscillates back and forth between a 
maximum and minimum radius, and a radial action 
variable may be defined. When the term is attractive, 
the particle may reach the origin, with unpleasant 
effects on the action integral, which then diverges. 
That the particle should pass through the origin 
would probably be of minor physical consequence 
were it not for the fact that Newton's laws do not 
seem to be adequate to describe the passage through 
the origin. Wave equations seem to suffer a similar 
inability. 

The difficulty is that, although the radial velocity 
of the particle is nearly constant as it approaches the 
origin, it loses potential energy so rapidly that it must 
accelerate tremendously in order to maintain its 
angular momentum. It therefore spirals around and 
around the origin, and loses its orientation on passing 
through the origin. Such behavior normally does not 
occur in a Coulomb potential, but the relativistic mass 

.8 We will use /I = 1 throughout. 

.7 P. Copel, J. Phys. Radium 4,636 (1933); see also R. G. Cawley. 
J. Math. Phys. 8, 2092 (1967). 

variation prevents a particle from undergoing an 
adequate acceleration, and its maximum velocity is 
limited by the velocity of light. 

One might recall the considerable difficulty which 
the old quantum mechanics encountered with orbits 
through the nucleus, and take note of the fact that 
even wave mechanics is not free of delicacies in the 
treatment of states of zero angular momentum.28 

Fortunately for the relativistic treatment of atomic 
spectra, singular behavior in the Dirac equation does 
not occur until the critical nuclear charge of Z = 137, 
well beyond the heaviest stable nucleus now known. 

It is most interesting to construct a relativistic 
Hamiltonian which restores the broken symmetry, and 
look at this as an approximation to the hydrogenlike 
problem. This is achieved by introducing a vector 
potential whose magnitude is eZ/r and forcing it to be 
orthogonal to p, the canonical momentum vector, 
i.e., in the relativistic Hamiltonian 

Je = {[p - (e/c).A: ]2C2 + m2c4}! + e4>, (6) 

we take 4> = -Ze/r and.A: = (Ze/r/A, where;" is a 
unit vector such that p • i = o. The Hamilton-Jacobi 
equation for the squared Hamiltonian, 

Je2 = p2C2 + m2c4 - (2(J.Z/r)Je, (7) 

now reads 

where E is the total energy of the system. 
Although the "screening factor" remains, the 

centrifugal potential (J.2Z2/r2 is no longer present. 
The separation constants are again 

as 
p, = arp' 

2 (as)2 p,2 
t = ao + sin2 (I , 

and the energy E. For the action-angle variables, one 
finds 

J", = 21Tp" 
J 8 = 21T(t - p,), (9) 

Jr = -21T[(t2)! + aZE/(m2c2 - E2/C2)!]; 

thus, choosing the positive square root for t 2 , the 
energy is given as 

E = mc2(1 + (J.2Z2/N2)-!. (10) 

2. T. Tits, Sov.Phys.-JETP 3,777 (\956). 
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This is exactly the same as the one found by Frenkel 
and Rojansky24 for the critical case in which the two 
potentials just cancel. 

The expression for N is 

N = (Jr + J6 + J",)J27T, (11) 

which, together with the energy expression (10), 
shows that the motion is doubly degenerate, as the 
radial, azimuthal, and zenithal frequencies are the 
same, namely, 

v = oJe = oJe = ax = mc
2
(X2Z2 (N2 + (X2Z2)-I. (12) 

oJr aJ6 aJ", 27T 

The equation of the orbit is readily found to be 
that of an ellipse, as expected, but with a semimajor 
axis 

rived from the Hamiltonian (14), rather than from 
the potentials themselves. 

As the orientation of the ellipse is fixed for this 
problem, one expects the Runge vector to be also a 
constant of the motion. This is true provided one 
replaces the Hamiltonian function over c2 for the 
mass in the usual formula. That is, we define it as 

A' = t x p + (ocZ/c)Jer. (18) 

Using the fact that 

y = [r x (t x r)JJr3, (19) 

recalling that Je and t are constants, and recalling 
the expansion for a double vector product, one finds 

A' = t x it + (IXZJc)Jet = 0, (20) 

(13) where we have used the identity 

instead of the usual Ze2J2E. 
The canonical equations of motion for our 

Hamiltonian 

are given as 

t = VpJe = pJMo, 

it = -Vr3e = «(X2Z2JMor4)r - (lXZcJr3)r, (15) 

where 

Mo = (lJC2)[p2C2 + m2c4 + «(X2Z2Jr2)c2J! (16) 

plays the role of the mass. 
Using these equations, we immediately see that the 

canonical angular momentum is a constant of the 
motion, for 

t=txp+rxp 
= (pjMo) x P + r x [«(X2Z2JMor4) - (XZcjr3Jr = 0 

(17) 

and as, by construction, it is orthogonal to p, we can 

identify i with t and notice that p and r lie in a plane, 
the plane of the orbit. Furthermore, the separation 
constants t and fA on Eq. (9) are, respectively, the 
total canonical angular momentum and its projection 
on the z axis. It is worth noticing the unusual fact that 
it is the canonical, rather than the mechanical angular 
momentum which lies on the orbit plane, a result due 
to the fact that we are dealing with a velocity-depend
ent vector potential. A word of warning should also 
be spoken regarding the Lagrangian function and 
the Lorentz force, quantities which have to be rede-

(21) 

It is convenient to normalize A' as 

A = c(m2c4 - Je2)-!(t x p + (ocZjc)Jer), (22) 

a vector which fulfills the two identities 

t·A =0, 

t2 + A2 = [oc2Z 2f(m2c4 - Je2)JJe2. (23) 

Thus, from the last one, we can express the Hamil
tonian in terms of the magnitudes of the two constant 
vectors t and A: 

In addition to the Hamiltonian Je, we have thus found 
six constants of the motion-the components of t 
and A-which are not independent of each other as 
we can see from (23). By direct computation of the 
Poisson brackets, it is easily shown that 

g, t i } = €iiktk' 

{t;, Ai} = €ii0k' 

{Ai' Ai} = €iiktk' 

for i,j, k = 1,2,3. 
The relations show that these components are the 

generators of a rotation group R4 in four dimensions. 

III. SYMMETRY OF THE RELATIVISTIC 
HYDROGEN ATOM 

Separation of the Hamiltonian-Jacobi equation 
for the relativistic hydrogen atom in polar coordinates 
yields an expression for the energy which can be 
quantized according to the rules of the old quantum 
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mechanics. Such was the origin of the Sommerfeld 
formula for the fine structure of the hydrogen spec
trum, which may have been one of the most successful 
applications of the old quantum mechanics. Never
theless, there had been experimental indications that 
the behavior of electrons was more complicated than 
could be simply extrapolated from classical con
siderations, and this eventually led to the hypothesis 
of electron spin. Moreover, the attempt to treat the 
hydrogen spectrum by a relativistic version of wave 
mechanics led. to unequivocally wrong predictions of 
the fine structure, and thereby discredited the wave 
equation which has eventually become known as the 
Klein-Gordon equation. By its automatic inclusion 
of the electron spin and an accurate placement of the 
hydrogenic levels, Dirac's relativistic wave equation 
gained immediate acceptance. 

As is well known, this equation is a system of four 
simultaneous first-order partial differential equations 

(PIa 0 pc + Pamc2 + V)'Y = E'Y, (25) 

which is most readily solved by iteration after being 
written in spherical coordinates. Its most important 
symmetry property, when the vector potential.,t is 
zero and V(r) is a central force potential, depends 
upon its behavior with respect to a rotation of coordi
nates. As Dirac showed when he first introduced the 
equation, a change of spatial coordinates always 
results in the mixing of the components of a multi
component wavefunction. So it was that the orbital 
angular momentum 

L = r x p 

alone was not conserved, but rather, the total angular 
momentum 

J = L + to. (26) 

Indeed, this was the automatic way in which the 
Dirac equation incorporated the electron's "spin" 0. 

Since J is a vector constant of the motion, its magni
tude J2 and one of its components, say J., may be 
used to define quantum numbers for the wavefunctions. 
As the components of J satisfy the angular-momentum 
commutation rules 

(27) 

the familiar algebra of angular momentum is appli
cable. It is only necessary to recall that J is a total 
angular momentum, incorporating a simultaneous 
charge of coordinates and mixing of wave components. 

These two operations are possible individually, and 
for the classification of the wavefunctions, it is often 
preferable to consider Land J as separately diagonal. 

In such a representation the Dirac Hamiltonian will 
not be diagonal, but its nearness to being diagonal 
often makes the product representation much more 
useful. In fact, if we consider the Lie algebra generated 
by L and a separately, the rotational symmetry group 
of the Dirac equation is the Kronecker product of 
these two Lie groups, generated by J. The Casimir 
operators of the direct product are L2, (12, and a 0 L, 
while J2 is the Casimir operator of the Kronecker 
product. 

It will be found that these Casimir operators are 
not themselves constants of the Dirac equation, but 
the closely related operator 

J(,=Pa(ooL+I) (28) 

is such a constant. Its square is not independent of 
J2 since 

J2 = J(,2 - ! 

so its eigenvalues (-K) fulfill 

K
2 =(j+W 

(29) 

(30) 

and have an important interpretation. Namely, they 
measure whether the spin is parallel or anti parallel to 
the orbital angular momentum, and distinguish 
whether a state of given j is formed as I + t or 
1- t. The eigenvalues -K of J(, have opposite signs 
according to these two possibilities: If K = +j + t, 
then K = I; while if K = - (j + t), then K = - (I + 1), 
recalling that 

(31) 

When the Dirac Hamiltonian is written in polar 
coordinates, the operator J(, makes its appearance in 
the role of an angular momentum operator. We find 
(he equation taking the form 

[ ,(I a . PaJ(, - 1) PIo,or-;--+1 C 
I ar r 

+ Pamc2 + V(r) - E JY = O. (32) 

There are various ways to solve the Dirac equation, 
particularly for the Coulomb potential, but they share 
the common feature that J(, be diagonalized. The same 
spherical harmonics arising from Pauli's nonrelativ
istic spin equation suffices for the purpose, throwing 
the main burden of the solution on a determination 
of the radial wavefunctions. Trial solutions of the 
form of power series may be used, according to the 
time-honored methods of solving linear differential 
equations. Yet operational methods are more elegant 
and often are much more instructive. 

The earliest operational solution of the Dirac 
equation for the hydrogen atom seems to have been 
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published by Temple29 in 1930. Working with the 
Dirac equation itself, even after the angular variables 
have been separated, leads to four coupled radial 
equations, so that an effort is generally made to 
reduce this number to two by iterating the Dirac 
equation to form a second-order equation analogous 
to the Klein-Gordon equation. This is best done by 
reinterpreting the Dirac equation as a projection 
operator fO,r positive masses. If we define 

0+ = (l/2mc2)[ip20" • pc + mc2 - PaCE + (1..Zc/r)], 

(33a) 
and similarly, 

0_ = (l/2mc2)[ip20" • pc - mc2 - PaCE + (1..Zc/r)], 

(33b) 
it is readily verified that 

O! = 0+, 

0: = 0_, 

0+0_ = 0_0+. 

(34) 

As a consequence, any solution of the Dirac 
equation 

O+'Y = ° 
also satisfies the iterated equation 

O_O+'Y = 0. 

(35) 

(36) 

Conversely, we may manufacture a solution of Dirac's 
equation by projecting any solution of the iterated 
equation. We need only read this iterated equation 
in the form 0+(0_<1» = 0, and define'Y = 0_<1>. 

Written in spherical coordinates, the iterated 
equation has the form 

[1.. ~ ,2 ~ _ r(r - 1) _ 2(1..ZE + k2J<1> = 0, (37) 
r20r or r2 rc 

wherein one has defined 

r = PaJ(, + i(1..Zpl O"· f, 

k 2 = (E2/c2) _ m2c2, 

and exploited the identities 

(38) 

{O". f, PaJ(,} == {O". f, 0". L + I} = 0, (39a) 

{P20"· p, P3rt..Z/r} = (1..ZplO"· f/r 2, (39b) 

r 2 = J(,2 - (1..2Z2. (39c) 

Over three decades elapsed before the suggestion 
was made that r itself be diagonalized, rather than 
J(,. In 1962, Biedenharn9 showed that, in the co-

29 G. Temple, Proc. Roy. Soc. (London) A127, 349 (1930); and 
also F. Sauter, Z. Physik 63, 803 (1930); 64, 295 (1930). 

ordinate system S, defined by 

S = exp [-iP 20" • f arc tanh «(1..Z/J(,)], (40) 

the diagonal r is 

srS-l = PaJ(,(1 - (1..2Z2/J(,2)!, (41) 

and the equation for the radial wavefunction also 
became simpler. As predicted, Fradkinao found that 
Sl defined a coordinate system in which the scattering 
solutions for the hydrogen atom were more tractable. 

The eigenvalues of r also enter into the energy 
eigenvalues of the Dirac Hamiltonian in a way which 
is best seen in the work of Coulson and Joseph.l4 
They showed that the Hamiltonian had the operational 
formal 

Je = mc2[1 + 1J.2Z2/(R + J(,)2]-l, (42) 

where the operator R is defined by 

R = (m2c2 - Je2/C2)-![ -i(J(,Pl/C)(Je - Pamc2) 

+ (1..ZcO" • fl. (43) 

This form of the Hamiltonian leads, with the help 
of (38) and (39c), to the Sommerfeld fine structure 
formula for the hydrogen atom: 

E = mc2(1 + (1..2Z2 )-!. (44) 
[n + CIKI2 - (1..2Z2)!]2 ' 

where n is the radial quantum number and -K the 
eigenvalue of J(,. It will be seen that this formula 
requires K :F 0, which is always satisfied on account 
of the allowable range of j, and that (1..Z ~ 1, since 
one is the least admissible value of /K/. This latter 
requirement is satisfied for all the natural elements, 
for which Z ~ 137, and is seen to be a quantum
mechanical manifestation of the requirements for the 
nonoccurrence of spiral orbits which we encountered 
in the classical analysis of the previous section. 

If these restrictions are violated, it by no means 
implies that the Dirac equation has no solution, 
although it does indeed become singular and a more 
specialized treatment becomes necessary. In any 
event, the validity of the energy formula is not 
assured for the spiral orbits, and one should not 
simply assume that there are complex energy eigen
values. Since the cutoff for spiral orbits depends on 
the angular momentum, we see that for ° ~ (1..Z ~ 1 
the Sommerfeld formula is completely valid, that for 
1 ~ (1..Z ~ 2 it only applies in unmodified form to 
states with I KI ~ 2, and that,as (1..Z is steadily increased, 
one loses one more angular-momentum state each 
time that it passes an integer value. 

80 D. M. Fradkin, Phys. Rev. 135B, 1085 (1964). 
81 There is a misprint in their formulas (5.8) and (5.9), in which a 

factor H' is missing. 
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In analyzing the symmetry of the hydrogen atom 
and the degeneracy arising therefrom, it is important 
to notice that formula (44) is independent of Jz, as one 
would expect from the "spherical symmetry" of the 
system. Dependence upon the total angular momentum 
J means that the accidental degeneracy of the non
relativistic hydrogen atom is no longer present. This 
might have been foreseen from the relativistic pre
cession of the hydrogen orbits since that would mean 
that the Runge vector, to whose constancy the non
relativistic degeneracy was due, no longer plays that 
role. However, the fact that the absolute value of K 

and not j itself appears in the energy formula means 
that the relativistic hydrogen atom still has a twofold 
accidental degeneracy above and beyond the degener
acy due to its spherical symmetry. An indication that 
it is due to spin effects is given by the fact that the 
degeneracy indicates an insensitivity of the energy 
to the relative orientation of spin and angular 
momenta, according to whether they are parallel or 
anti parallel. 

A constant of the motion explaining the sign 
degeneracy of J\, in the relativistic hydrogen atom was 
first announced by Johnson and Lippman,' but was 
given an explicit derivation by Biedenharn,9 who 
used his coordinate system S to construct the Johnson
Lippman constant explicitly as an operator that 
reversed the sign of K and thus inverted the "helicity" 
(which he called the "Coulomb helicity") of the 
electron. Coulson and Joseph14 generalized the anal
ysis to a multidimensional hydrogen atom and 
interpreted the degeneracy in terms of self-adjoint 
ladder operators. This is the operator R in (43). 

The Johnson-Lippman operator produces degen
eracy in a somewhat unconventional manner, since it 
commutes with the Dirac Hamiltonian and anti
commutes with J{,. By constructing normalized 
operators whose eigenvalues are ± 1, Malkin and 
Manko12 formed a set of quaternionic operators 
which account for the degeneracy doubling in terms 
of commutation rules, as group theory is usually 
applied to the study of degeneracy. 

Just as it is clear that the fine structure of the 
hydrogen spectrum can be attributed to the non
degeneracy of the operator r, one can see the tempta
tion to construct an approximation to the Coulomb
Dirac Hamiltoniam in which the nonrelativistic 
degeneracy would be restored. In terms of classical 
mechanics, we have already done so by introducing 
the vector potentialZet/r in Eq. (6). Due to the impor
tance of spin (i.e., multicomponent) effects in the 
Dirac equation, it does not seem that such a simple 
expedient will produce a degenerate relativistic system, 

but the complications are of the same type. It is 
necessary to modify the Dirac Hamiltonian in a way 
which will produce a desired alteration in the iterated 
equation. 

Biedenharn32 found a way to restore the non
relativistic degeneracy which he and Swamy expounded 
in an article introducing their "symmetric" Hamil
tonian.10 A number of features of their restoration 
merit comment, so we shall review the construction. 
Their guiding principle was to retain the eigenfunc
tions of r while modifying its eigenvalues to become 
±K, a procedure motivated by the fact that r reduces 
to PaJ\, in the absence of any nuclear charge. The 
result is to produce a matrix G 

G = P3J{,(1 + OC2Z2/J\(2)! + iOCZpI0 • f (45) 

instead of r. Now, there is a transformation SI 

SI = exp (-iP20 • f arc sinh (ocZjJ\,)J (46) 

for which 

and we notice that G2 = J{,2. 

In the coordinate system, the iterated equation SI 
takes the form 

(V'2 - 2ocZE/rc + k 2)!l> = 0, (48) 

so that the nonrelativistic degeneracy has been 
restored in such a way that the relativistic screening 
of the nuclear charge has been retained, but the 
orbital precession is lost. The energy levels have the 
form 

E = -mc2(l + OC2Z 2/N2)-!, (49) 

forN=I,2,3,···. 
If we ask for the Dirac Hamiltonian which produces 

G in place of r on iteration, we find 

Jes = PIa • rc{~ ~ + i[paJ\,(1 + OC

2Z2)! - IJ 
I Or r J\,2 

+ P3mc2 - ocZc/r, (50) 
or 

Jes = Je + Jefs , 

where Je is the ordinary Coulomb-Dirac Hamiltonian, 
and 

Jets = P2(O' f/r)cJ\,[(l + oc2Z2fJ\(2)! - 1] (51) 

has been called the "fine structure interaction" by 
Biedenharn and Swamy. Our foregoing discussion 
should clarify the extent to which it deserves this 
terminology, but the analogy may be completed by 
referring to a result by Sheth.l1 He shows that,in the 

.2 L. C. Biedenharn, Bull. Am. Phys. Soc. 7A, 314 (1962). 
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Foldy-Wouthuysen limit, Jets passes over into a 

vector potential of the general form Zet/r. It is 
interesting to notice that Jefs is invariant under the 
SI transformation. 

The term Jefs in the Dirac Hamiltonian which 
results in the operator G, whose eigenvalues coincide 
with those of J(" may be deduced straightforwardly 
from assuming that it has the form cp2(a· ifr)f(J(,); 
it should be stressed, however, that its presence 
removes some relativistic effects (orbital precession) 
but not others (nuclear screening). Biedenharn and 
Swamy have emphasized how the simultaneous 
presence of both effects in the Coulomb-Dirac 
Hamiltonian have complicated power series expansions 
such as the one made by Sommerfeld and Maueaa in 
terms of the fine structure constant. 

Once the effects of orbital precession have been 
canceled from the hydrogen atom Hamiltonian, one 
might hope that the Runge vector would be restored 
as a constant of the motion. In fact, Biedenharn's 
iterated symmetric equation coincides with the 
Klein-Gordon equation for the degenerate classical 
problem, for which one finds a conserved Runge 
vector 

A = [cj(m2c4 - E2)!][(OCZjc)Ei + teL x P - P xL)], 

(52) 

where E is the energy solution of the stationary 
degenerate Klein-Gordon equation. 

It is to be noted that the energy replaces the mass 
if this is compared to the classical formula as happens 
in Eq. (18). 

The usual Klein-Gordon equation is a one
component second-order equation, whereas the 
iterated equation (48) applies to a four-component 
wavefunction. Grouping the components in pairs 
according to their magnitudes for positive and 
negative energies, we still find that there is a complete 
freedom of spin transformation. Translated into 
terms of degeneracies, we find that the symmetric 
Hamiltonian has a 2N2-fold degeneracy in the state 
of principal quantum number N, while the non
relativistic level is N2-fold degenerate. Again, the 
doubling due to the spin orientation is present but in a 
perverse way. If we count the number of states of 
positive K in this degenerate level, the number is 
N(N - 1), while belonging to negative K the number 
is N(N + 1). The discrepancy is due to the fact that 
K runs from 1 to N - 1 when K = J, and from -1 
to -Nwhen K = -(I + 1). 

However, the discrepancy means that if R, is the 

33 A. Sommerfeld and A. W. Maue, Ann. Physik 22, 629 (1935). 

symmetry group, the representations which occur are 
not the ones of dimension N2 that are realizable in 
terms of hyperspherical harmonics. 

The Runge vector (52) itself is not a constant of the 
motion for the symmetric Hamiltonian since opera
tors which commute with the iterated operator do not 
necessarily commute with the Hamiltonian itself. 
However, Biedenharn and Swamy found a vector 
constant of the motion K (see Appendix) as well as 
a "Coulomb helicity" operator constant of the 
motion defined as 

A = (iK/lKI)(N2 - J(,2)-t(m2c2 - Je~rt 

X (PaocZa. rJeB - iJ(,a· pc), (53) 

where JeB = SIJe,Sll is the symmetric Hamiltonian 
in the original coordinate system. This operator is 
proportional to Paa • A', where A' is given by Eq. (52) 
with JeB replacing E, and changes the sign of K when 
acting on an eigenfunction of J(" i.e., it anticommutes 
with J(, and, furthermore, commutes with J. Finally, 
upon defining 

X = A' + J(" 

A' = [mV - Je1r![PaocZa • iJeB - i,X,a • pc], (54) 

they proved that 
K x K = iJ, 

2J. K = .N' - t, 
which, with the fact that K is a vector and 

J x J = iJ, 

(55a) 

(55b) 

(56) 

define J and K as the generators of an R, group. They 
also proved that 

(J + K)2 + 1 = [oc2Z 2/(m 2c4 
- Je.~)]Je~, (57) 

in analogy to the classical (23). 
Equation (55b) confirms the fact that the repre

sentations of this group are not of the same dimension 
(N2). 

Malkin and Manko [Ref. 12(a)] recently defined 
three normalized operators 

Ml = [(Je~ - m2c4
) + 1X2Z2Je~fJ\}rt 

x [a. pc - iIXZ(a. ipSJ(,/J(,2)JeB ], 

M2 = [(Je~ - m2c4)J(,2 + oc2Z2Je~rl (58) 

X (psocZa. iJeB - iJ(,a • pc), 

Ma = 1.1(,1-1 J(" 

which fulfilled the following relations: 

[JeB, M i ] = 0, 

[Mi , Mil = 2iEiikMk' 

{Mi , M i } = 2diJ· 

(59) 
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Such relationships can be used in two different ways. 
The commutation rules are those which define the Lie 
algebra of the unitary unimodular group SU2 , while 
the anticommutation rules ensure that the representa
tion which they realize is the two-dimensional one. 
On the other hand, the anticommutation rules alone 
show that they forma representation of the quaternions, 
and since it is the non-Abelian representation,it is again 
two-dimensional. They have furthermore shown12b 

that similar quaternionic constants of the motion can 
be constructed both for the planewave and the 
ordinary Coulomb-Dirac problems. Except for nor
malization, we see that M2 and M3 are just the anti
commutating A and x" while Ml is essentially their 
product which reduces to the chirality a . p/lpl when 
Z-..O. 

In other words, the symmetry group for the dis
crete part of the spectrum is just d(2)(SU2) ® .K4 ; the 
result which could be expected from the iterated 
equation (48), for which 0, L, and A are constants of 
the motion. 

Some light might be shed by noticing that the states 
with positive K define an irreducible representation 
of R4 of dimension N(N - 1) on one hand, and those 
with negative K an irreducible representation of 
dimension N(N + 1) on the other hand; but by 
adjoining the "Coulomb helicity" inversion operator 
A to this R4 group, we mix the two representations, 
and it is the whole set of 2N2 states with fixed N which 
remains irreducible, rather than either of them 
separately. 

IV. RELATIVISTIC SYMMETRY OF THE 
MAGNETIC MONOPOLE 

Aside from the practical interest which exists in the 
knowledge of the solution of Dirac's equation for the 
magnetic monopole which is required in order to 
establish the experimentally observable properties 
which it might possess, the equation is of theoretical 
interest for the high symmetry which it possesses. A 
vector potential is required for its study by Hamil
tonian methods, whose presence complicates the 
symmetry properties, since it may be required to 
couple a transformation of coordinates with a com
pensating change of gauge. In fact, as Poincare22 

noticed as long ago as 1896, the canonical angular 
momentum L = r x p alone is not conserved in the 
spherically symmetrical field of the monopole, but 
rather a total angular momentum 

On account of the relation D· r = -E, the tra
jectory of an electrically charged particle moving in 
the magnetic field due to the monopole will be confined 
to a cone whose axis is D and whose half-angle is 
determined by the pole strength E. In the limiting 
case of zero pole strength, we recover the accustomed 
configuration in which a particle, whose canonical 
angular momentum is conserved, moves in a plane 
orthogonal to the angular-momentum vector L. 

Quantum-mechanical treatment of the motion of 
a charge in a monopole field originated with Dirac's15a 
speCUlations in 1928, and Tamm's15b solution of its 
SchrOdinger equation. Relativistic treatments began 
with Banderet's paper17 of 1946, and Harish
Chandra's16 of 1948, but few people have treated a 
nucleus bearing both a magnetic and an electric 
charge. Malkus18 considered such a possibility in the 
Pauli approximation and made an experimental 
attempt to detect monopoles. Eliezer and Roy19 studied 
the shift in energy levels of a hydro genic atom incor
porating a monopole, but apparently did not observe 
some of the restrictions on quantum numbers arising 
from the particular properties of the total angular 
momentum D, which were found by Fierz34 and later 
by McIntosh and Cisneros.2o 

The precise importance of these restrictions is that 
the total angular momentum is bounded below by 
the value of the quantized pole strength, which is 
E = t according to Dirac's original speculations, or 
twice that amount according to more recent field
theoretic arguments of Schwinger.36 In either event, 
no s-states of orbital angular momentum are possible 
so that a particle moving in such a field would not 
spend an appreciable part of its time in the immediate 
neighborhoOd of the origin. One assuredly expects 
similar results from the Dirac theory, but with the 
added complication that the spin angular momentum 
must be taken into account as well. 

In the gauge used by McIntosh and Cisneros, and 
Schwinger, which is not the one used by the other 
authors cited, the vector potential for the monopole 
field is 

.A:. = [cEZ/er(x2 + y2)](y, -x, 0). (61) 

The Dirac Hamiltonian would have to be written in 
the form incorporating the vector potential, 

Je = Pia' (pc - cA) + P3mc2 + V(r) , (62) 

D=M-d" (60) but it is the most enlightening to write both the vector 

where M is the mechanical angular momentum 
M = r x 1t and E is the monopole strength. •• M. Fierz, Helv. Phys. Acta 17, 27 (1944). 

36 J. Schwinger, Phys. Rev. 144, 1087 (1966). 
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potential and the Dirac equation in polar coordinates: 

.-i{;r = 0, .ito = 0, .it", = (c€/er) cot e, (63) 

:Ie = cPIo • r(~ ~ + i 0 • .M.,) + Pamc2 + VCr). (64) 
I or r 

As to the spherical symmetry of the Hamiltonian, 
we start from Poincare's conserved total angular 
momentum (60) to find its commutator with the 
Hamiltonian (62): 

(65) 

The commutator of the monopole Hamiltonian with 
the spin is the negative value of (65), 

(66) 

so that the conserved total angular momentum for 
the Dirac monopole Hamiltonian J incorporates the 
spin angular momentum to, the mechanical angular 
momentum M = r x 1t, and the contribution from 
the magnetic field - €r: 

J = D + to. (67) 

The components of the total angular momentum 
obey the commutation rules of angular momentum 
operators, 

J x J = iJ, (68) 

and the Casimir operator J2 is also a constant of the 
motion with eigenvalues j(j + 1). One would be 
tempted by analogy to the nonmagnetic Hamiltonian 
to think that Pa( 0 • D + 1) would be a constant of the 
motion, but calculation shows that the gods enter
tained other plans for the monopole. Instead, one 
should define an operator 

.)(, = Pa(o, M + 1) (69) 

in terms of the mechanical angular momentum. From 
the definition of D (69) we find that M = D + €r, 
and that the commutation rules for the components 
of these two vectors are 

D x D = iD, 

M x M = i(M + €r). (70) 

D2 and (12 playing the roles usually held by L2 and 0'2. 

There are further relations between .)(,2 and J2. We 
have 

D2 = M2 + €2, 

J2 = D2 + o· D + t, (71) 

.)(,2 = M2 + Pa.)(, - €o • r, 
so that 

J2 = .)(,2 + €2 _ }. (72) 

The charged monopole is defined by the electric 
and magnetic fields 

& = -(2e/r2)r, B = -(c€/er2)r. (73) 

To form the iterated equation, we introduce the 
projection operators 

19+ = (l/2mc2)[iP20' 1tC + mc2 
- PaCE + cO(Z/r)], 

19_ = (1/2mc2)[ip2o • 1tC - mc2 - PaCE + cO(Z/r)], 

(74) 
to obtain 

4m2c2eJ+eJ_ = 7T; - M2/r2 - (e/c)o. 

- i(efc)PIo. E + k2 + 0(2Z2/r2 - 20(ZE/rc, (75) 

where 
k2 = E2/c2 _ m2c2• 

Again it is convenient to introduce Temple's 
operator 

(76) 

which incorporates the term (e/c)o • B in its square, 

f2 = M2 + Pa.)(, - €o • r - 0(222, (77) 

and using the fact that Pa.)(, anticommutes with 
Plo-. r, the iterated equation reads 

(p; - r(r - 1)/r2 - 20(ZE/cr + k2)<J> = 0. (78) 

This expression is exactly the one we encountered 
in the absence of the monopole, with the unique 
distinction that .)(, is defined by Eq. (69) rather than 
Eq. (28), The solution of the iterated equation would 
then be effected by diagonalizing r, solving the 
resulting uncoupled radial wave equations, and 
projecting the result. 

In terms of J, we get from Eqs. (71) and (72) that 

With respect to the eventual separation of the Dirac r 2 = J2 + 1 _ €2 - 0(222, (79) 
equation in spherical coordinates, we should note 
that .)(, differs from its version in which D replaces M Its eigenvalues are then given by 
by a term of the form €PaO • r, which has only radial 

] '2 =J'(J' + 1) + t - €2 - 0(2Z2 components in the 0' space. We may therefore expect 
to classify the wavefunctions with the eigenvalues of = (j + !)2 - €2 - 0(2Z2. (80) 
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Diagonalization in p space may be effected by the 
Foldy-Wouthuysen-type transformation introduced 
by Biedenharn: 

S = exp [-tN~ . r arc tanh (cxZjJ(,)]. (81) 

Then srS-l is free of odd operators, and now 
takes the form 

It will be completely diagonal when we have diagonal
ized J(" whose eigenvalues are ± [(j + W - E2]!. 
Since J(, is a Hermitian matrix, we know that these 
eigenvalues must be real, which imposes the condition 

(83) 

However, J(, will not be invertible when j + t = I E I, 
a critical case which has to be treated very carefully 
since it results in a negative value of y2 [Eq. (80)]. It 
leads to spiral orbits for every nonzero value of Z 
while without the magnetic charge such complica
tions did not arise until Z surpassed 137. Since j is a 
semi-integer or integer as the eigenvalue of a Casimir 
operator of Ra, this limitation (83) to its values is 
probably the most important consequence of the 
presence of the magnetic charge. 

Substituting the above expression for the eigen
values of J(, and thence r into the iterated equation 
(78), we finally obtain an expression for the admissible 
discrete energy eigenvalues: 

E = mc2 1 + _____ cx _____ -,-_ 
( 

2Z2 )~ 
{n + [(j + t)2 _ E2 _ CX2Z2]i}2 

(84) 

forj + ! > lEI. This formulation should be compared 
with the Sommerfeld fine-structure formula, and we 
are to find that the fine structure cxZ due to re:~tivistic 
precession and the fine structure E due to tm: con
finement of the monopole orbits to a conic surface 
combine according to the Pythagorean relation for 
right triangles. 

The previously known quantization of the mag
netic pole strength for the Schrodinger equation for 
the monopole is again confirmed here because one 
encounters the same angular wave equation as in the 
other problems, and so no new arguments may be 
contributed to this phenomenon. 

The Dirac equation for the monopole exhibits its 
doublet degeneracy which is so characteristic, and we 
may readily adapt the Lippman-Johnson constant to 
apply here as well. It is formally the same: 

R = G • f - iJ(,p!GJe - Pamc2)/cxZmc2, (85) 

but with the definition (69) for J(, appropriate to the 
monopole. As Rand J(, anticommute while Rand Je 
commute, we are assured that the eigenvalues of R 
as well as those of J(, occur in negative pairs, belonging 
in each case to the same energy, and the same tech
nique of Malkin and Manko can be employed to 
construct the chiral algebra, with the appropriate 
definition of J(,. 

In order to obtain an algebra of quaternions, it is 
necessary to divide the operators J(, and R by their 
absolute values so as to obtain operators with eigen
values ± 1, which assumes that zero is not an eigen
value of J(,. This condition was met for the purely 
electrostatic potential of the hydrogen atom, but not 
for the lowest angular-momentum state of the mono
pole. One may still obtain a quaternion algebra if the 
states of zero eigenvalue of J(, are excluded, but it 
must be remembered that the conclusions regarding 
their doubling will no longer apply, and that only the 
remaining states will show accidental degeneracy. 

In view of the close resemblance of the Dirac 
equations for a charged nucleus both with and 
without a magnetic charge, it is hardly surprising that 
they can both be degenerated by the methods of 
Biedenharn and Swamy, although there are slight 
differences in the dimensionalities of the R4 representa
tions which occur in the two cases. Even the classical 
relativistic treatment are closely similar. Although 
McIntosh and Cisneros degenerated the monopole 
problem by introducing a repulsive centrifugal 
potential E2Jr2 to counteract the attractive tendencies 
arising from the separation of the variables, to make 
such an alteration here would introduce inverse 
fourth-power terms in the iterated Dirac equation. 
So, we are forced to resort to a vector rather than an 
electrostatic potential, precisely the same strategem 
by which we handled the relativistic precession. The 
required classical Hamiltonian is 

The perturbing vector potential is now of magnitude 
(CX2Z 2 + E2)!jr2, the total rate of precession, and 
parallel to the mechanical angular momentum M, 
rather than to the canonical angular momentum L. 

V. SUMMARY 

We have studied the symmetry and degeneracy 
properties of relativistic Coulombic system in which 
a fixed attracting center may bear both electric and 
magnetic charge, in the fields of which a charged 
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particle, such as the electron, is supposed to move. 
Such a system may be treated classically-its Hamil
ton-Jacobi equation being soluble by separation in 
spherical polar coordinates. It is found that the high 
symmetry and degeneracy usually associated with the 
electrostatic Coulomb potential is lost, and that only 
the degeneracy due 10 the spherical symmetry remains. 
The removal of the accidental degeneracy can be 
attributed to a term in the Hamilton-Jacobi equa
tion,quadraticin l/r, which consists of two parts. One 
is due to the relativistic precession of the orbits 
coming from the variation of the electron mass with 
velocity, and the other is due to the fact that in a 
monopole field, the particle moves on the surface of a 
cone rather than a plane, the result of which difference 
in geometry is also an apparent orbital precession. 

Since the lack of degeneracy can be attributed so 
clearly to a term of the nature of a potential energy, 
classically it is a simple matter to alter the potential 
and re-establish a degenerate system, admittedly 
distinct from the original one. Since the alteration 
must be made through the introduction of some 
potential directly into the relativistic Hamiltonian 
and not into an equivalent form of the Hamilton
Jacobi equation, a supplementary (velocity dependent, 
as it turns out) vector potential can be introduced, 
with the desired result. It is therefore possible to 
study some "symmetric" relativistic systems which, 
in spite of their being relativistic and containing a 
magnetically charged nucleus, have bounded closed 
orbits. There should be a constant vector such as the 
Runge vector, which we have also found to be the case, 
and the necessary modifications to the familiar vector 
seem perfectly natural to the new context. The mass 
must be replaced by its relativistically covariant 
equivalent, the Hamiltonian itself; also, the angular 
momentum of the magnetic field must always be 
incorporated in the angular-momentum vector. 

There is relatively little effort required to establish 
similar results for the Klein-Gordon equation, where 
again the accidental degeneracy of the hydrogen atom 
is lost and can be restored by considering the alterna
tive system. Likewise, the classical constants can be 
established in operator form, and the degeneracy of 
the "symmetric" variant is deduced as the consequence 
of a hidden symmetry. But, since the Klein-Gordon 
equation is not applicable to particles such as electrons, 
the Dirac equation must be considered, and with it 
the complications of a wavefunction with several 
components. 

A comprehensive survey of the symmetry properties 
of the Dirac equation has not yet been given. Indeed, 
there are relatively few systems for which it has even 

been solved explicitly; Stanciu36 has enumerated them 
and recently added a few new ones. With the exception 
of the Coulomb potential, the soluble fields are all 
electromagnetic fields of some especially high degree 
of symmetry, such as a uniform electric37 or magnetic 
field,8.38 or the field of a monochromatic plane wave.39 

Plesset2 showed in 1930 that Klein's paradoxa would 
be exhibited by all electrostatic potentials expressible 
as a finite power series in r or 1/ r, there being no 
bound states in any of them with the sole exception 
of the Coulomb potential. Nikolsky40 and Postepska41 

confirmed this behavior of the harmonic oscillator 
potential, which is the other highly degenerate 
potential in nonrelativistic theory. Titchmarsh42 

devoted quite a few of his last papers to the effect 
and the completeness properties of solutions of Dirac's 
equation. 

In those Dirac equations for which solutions are 
known, the spin doubling is a pervasive feature. We 
have seen that for the Coulombic equations, including 
the monopole field, it was forced by the existence of 
an anticommuting pair of operators, one of them the 
Johnson-Lippman constant and the other being 
Dirac's J(,. Every spherical potential is bound to have 
J as a constant of the motion, generating rotations and 
ensuring the presence of a spin angular momentum. 
But, since we are always dealing with the direct product 
of a configuration and a spin space, the representa
tions of J will always be reducible. The Kronecker 
product will always contain a constituent of angular 
momentumj = 1+ t, and one of angular momentum 
j = 1- t (l being greater than zero). The constant of 
the motion J(, owes its existence to the possibility of 
always distinguishing these two constituents and the 
Hamiltonian containing no matrix elements connecting 
them. This does not imply that they should have the 
same energy, however, and therein lies the accidental 
degeneracy of the Dirac equation for the hydrogen 
atom. The Johnson-Lippman operator establishes 
such a degeneracy through a constant of the motion, 
while the chiral algebra of Malkin and Manko12 

formalizes the degeneracy in group-theoretical terms. 
As far as we know, it is still an open question as to 

36 G. N. Stanciu, Phys. Letters 23, 232 (1966); J. Math. Phys. 
8,2043 (1967). 

37 F. Sauter, Z. Physik 69,742 (1931). 
8. I. I. Rabi, Z. Physik 49, 507 (1928). 
a. D. M. Wolkow, Z. Physik 94, 250 (1935); N. D. Sengupta, 

Bull. Calcutta Math. Soc. 39, 147 (1947); A. H. Taub, Rev. Mod. 
Phys. 21, 388 (1949). 

4. K. Nikolsky, Z. Physik 62, 677 (1930). 
41 I. Postepska, Acta Phys. Polon. 4, 269 (1935). 
42 E. C. Titchmarsh, Quart. J. Math. (Oxford) 15, 193 (1964); 

14, 65, 147 (1963); 13, 181, 255 (1962); 12,227 (1961); Proc. Roy. 
Soc. (London) A262, 489 (1961); A266, 33 (1962); A245, 147 (1958); 
Quart. J. Math. (Oxford) 13, 1 (1942). See also related work ofW. D. 
Evans, ibid. 17, 211, 345 (1966). 
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whether the existence of the Malkin-Manko algebra 
extends beyond Coulombic systems, since the exact 
form of the Coulomb potential has to be used in 
verifying the commutation rules of the Johnson
Lippman constant, the Hamiltonian, and the other 
members of the algebra. The degeneracy at least 
appears to be more an attribute of the spin than the 
Coulomb potential, and a similar chiral algebra can 
be formed for a plane wave (a limiting case of the 
hydrogen atom as the nuclear charge vanishes). 

Turning now to the degenerated versions of the 
Coulomb-Dirac equation, we have seen that a slightly 
different treatment is needed than simply introducing 
the vector potential which served for the classical 
relativistic systems, even though the perturbing 
potential approximates the latter in the Foldy
Wouthuysen limit. But the presence of the spin 
creates some unique complications. It is one thing to 
restore the missing degeneracy, but quite another to 
recover the same symmetry, since attention has to be 
paid to the way in which the degenerate levels are 
distributed between the parallel and antiparallel chiral 
states. Here the splitting tends to be unsymmetrical, 
because the total number of states in the anti parallel 
set (K > 0) is always lower than the total number of 
states in the parallel set (K < 0). 

This asymmetrical grouping of the degenerate states 
implies that the Runge vector will not be translated 
into a constant of the Dirac equation unless it in
corporates spin operators in some way. If our intuition 
is correct that a change of spatial coordinates must be 
coupled with a mixing of spin components, we have 
only to think of the infinitesimal transformations 
generated by the Runge vector to see that more may 
be required than simply replacing L by J in the 
classical formula for the Runge vector. 

In fact, Biedenharn and Swamy's construction of 
the second vector constant for the symmetric Hamil
tonian left us completely without any concrete 
physical interpretation for it or its components at all. 
One knows that there are several ways of constructing 
a constant of the motion for the Dirac equation from 
known constants of the Klein-Gordon equation. 
Fortunately for the symmetric Hamiltonian, the 
iterated Dirac operator is actually the Klein-Gordon 
operator, so that the latter is available as a starting 
point. For example, the mass projection tJ_AtJ_ of the 
Runge vector must be a constant of the Dirac 
Hamiltonian, but there is no assurance that its com
ponents still satisfy the same commutation rules as 
the original Runge vector for the Klein-Gordon 
equation. In any event, the relation L • A = 0 cannot 
be preserved, for this is the quantity which determines 

the rectangularity of the dimensions of the irreducible 
representation of R4 • The dimension is (2m + 1) x 
(2n + 1) with m and n two integers and m - n = 
2L • A, a quantity which we know changes when 
going from the Klein-Gordon to the Dirac equation. 

Anyhow, mass projection was not the approach 
adopted by Biedenharn and Swamy, but it is still 
reassuring to know that the existence of constants 
for the Klein-Gordon equation implies constants for 
the Dirac equation as well. 

Latent in all discussions of the symmetry of the 
Dirac equation is the problem of its singularity for 
certain ranges of its parameters. When one is only 
interested in obtaining the energy levels and wave
functions of the naturally occurring nuclei, the 
problem can be put aside because it requires a super
heavy nucleus, whose atomic number lies beyond 137, 
to make the Dirac equation singular. Even then, one 
frequently encounters the reasoning that the singu
larity owes its origin to the assumption of a point 
nucleus, and that if one were actually interested in 
superheavy nuclei, one also ought to take into account 
that the nuclear size corresponds to the extent of the 
lowest wavefunction and abandon the assumption of 
a point nucleus. 

Reasonable as such an attitude might be from the 
purely pragmatic point of view, the issue of a singular 
differential operator poses a legitimate mathematical 
problem which, were it satisfactorially resolved, 
would still allow us to retain the convenient idealiza
tion of a point charge. Singular Hamiltonians are 
known in other contexts, one of the simplest being 
that of the motion of a particle in an attractive 
potential of the form q/r2• It was treated by Shortley43 

in 1931, and some similar potentials by Jaffe44 in 
1930. The classical motion in such a potential is 
spiral in nature and is noteworthy for its dilational 
symmetry. Its Schrodinger equation possesses a 
square-integrable eigenfunction for every negative 
energy,45 but not every pair of such eigenfunctions is 
orthogonal. 

It was once thought that such motion could not be 
quantized, and indeed in the old quantum mechanics, 
one finds that the action integral diverges, preventing 
quantization by the Bohr-Sommerfeld rules. However, 
the philosophy of quantization is satisfied if we can 
pick out a complete orthonormal set of eigenfunctions, 
so that our only conclusion is that the criterion of 
square-integrability is not sufficient for quantization 
when dealing with singular potentials. Case46 has 

43 G. H. Shortley, Phys. Rev. 38, 120 (1931). 
44 G. Jaffe, Z. Physik 66, 748 (1930). 
45 E. A. Guggenheim, Proc. Phys. Soc. (London) 89, 491 (1966). 
48 K. M. Case, Phys. Rev. 80, 797 (1950). 
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proposed one scheme, wherein he has shown that the 
selection of wavefunctions with a fixed phase at the 
origin will yield an orthonormal set, and he has shown 
that this procedure is consistent with the more straight
forward cutoff procedures for the potential. ScarP7 
has proposed another technique which is more 
elegant from the point of view of complex variable 
theory, and claims to obtain eigenvalues similar to 
those obtained by the cutoff approach. From the 
physical point of view, one must be prepared to deal 
with complex eigenvalues in order to use his technique. 

The fact that supplementary information to the 
requirement of square integrability is required to 
quantize the bound states of the singular potentials 
has its classical counterpart, since Newton's equations 
do not completely define the motion of the particle as 
it passes through the singular point of the potential. 
Such behavior is probably representative of the 
difficulties encountered in relativistic motion as well, 
where the Hamiltonian equations do not apply at the 
attracting center itself. 

The results we have obtained show that there is 
some considerable variation in the range of param
eters over which the Dirac equation will be singular. 
Without a magnetic charge on the nucleus, singularity 
only occurs for superheavy nuclei, Z > 137 (for the 
Klein-Gordon equation, the singularity first occurs 
at half this atomic number, Z > 68), while at multi
ples of this critical atomic number, additional angular
momentum levels become singular. When there is a 
magnetic charge at the nucleus, in the Dirac equation, 
the lowest angular-momentum level is singular. The 
angular momentum used is the combination of orbital 
and magnetic field angular momentum D, whose 
value determines the lowest possible value of the 
total angular momentum j. The singularity occurs 
when the spin and minimum Dare antiparallel, 
leaving the relativistic precession as the dominant 
effect. In this context, the spin is responsible for the 
singularity, which does not occur in the nonrelativistic 
treatment where the angular momentum in the mag
netic field is always sufficient to repel the particle 
from the origin, even when the orbital angular 
momentum is zero. Nor does one find the singularity 
in the Klein-Gordon equation, where spin effects are 
also absent, at least for low atomic numbers. 

The singularity would still be very mild were it not 
for the relativistic precession, so it is not surprising 
that the singularities disappear from the degenerated 
Hamiltonians, both with and without magnetic charge. 
Even with a magnetic charge one finds the full spin 
doubling, in contrast to the "natural" Hamiltonians, 

47 F. L. Scarf, Phys. Rev. 109, 2170 (1958). 

for which the singular states fail to show the accidental 
degeneracy due to the spin doubling. 

We have paid little attention to the scattering 
states of a charged monopole, partly because the 
bound states are more amenable to analysis in terms 
of symmetry and degeneracy. However, the formulas 
which we have derived admit positive as well as 
negative energies and, in principle, all energy values 
are included. The principal difference lies in the 
commutation rules for the R4 symmetry group, which 
must be changed to those of the Lorentz group for 
scattering states. We shall not belabor the point 
further. 
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APPENDIX 

Given a constant of the motion for the iterated 
equation, we construct a constant of the motion for 
the Dirac equation in the following way: 

Assume 
[l'>+l'>_, T] = 0. (AI) 

As [l'>+, l'>_] = 0, we find 

l'>_[l'>+, T] + [l'>_, T]l'>+ = 0, 

l'>+[l'>_, T] + [l'>+, T]l'>_ = 0. (A2) 

Furthermore, as l'>+ and l'>_ differ by unity, we have 

(A3) 

so adding both Eqs. (88), we get 

{[O+, T], 0+ + O_} = O. (A4) 

In order to find l'>+ and l'>_, it is convenient to 
transform to the SI reference frame, so we define 

which reduces to 

:reB = [(1 + (1.2Z2/J\,2/1 - P2a • T(1.ZjJ\,] 

X (PIa. pc - P3mc2) 

(A5) 

= S~(pIa. pc - Pamc2), (A6) 
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and, in this frame, Dirac's equation can be expressed 
as 

(iP2CJ. pc - mc2 - P3ES12)'Y = 0, (A7) 

and one gets 

0+ = (1/2mc2)p3S12(JeB - E) 

= (l/2mc2)(iP2C:S • pc - mc2 - P3ES12), (AS) 

and similarly for 0_. We notice that 0+ + 0_ con
tains a term proportional to P2 and a term proportional 
to P3, so it anticommutes with PI and, from Eq. (90), 
we get 

or, explicitly, 

[Pl[P3S12(JeB - E), T], P3S12(JeB - E)] = 0, (AlO) 

where we have used the fact that 0+ + 0_ = 20+ + 1. 
When applied to an eigenfunction 'Y, we get, using 

Dirac equation, 

[PIP3S12[JeB, T], JeB]'Y = 0 (All) 

independently of E, and since the eigenfunctions form 
a complete set, we have proven that P2S12[JeB' T] is 
a constant of the motion, since it commutes with 
JeB , in the SI frame. 

Regarding the choice of the Klein-Gordon equa
tion's constant T with which we start, we quote 
Biedenharn and Swamy's argument, taking T = 
a x L, as this is orthogonal to J, and when applied 
to a function of definite K, it will produce that with 
-K - 1; so, with the help of A [Eq. (53»), which 
reverses the sign of K, one can construct ladder 
operators for the eigenvalue K, which, with appropriate 
coefficients, yield a constant vector K as the sum of 
three parts-one for the lowering operator, one for 
the raising operator, and J which satisfies the Runge 
vector commutation rules (see Ref. 10 for details). 
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The free energy and the correlation functions are proved to be analytic functions of the inverse temper
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enough and the spin-spin interaction has finite range. In particular, this excludes spontaneous magnetiza
tion at high temperatures. 

1. INTRODUCTION 

The aim of this paper is to show how some general 
techniques developed to analyze the high-temperature 
properties of lattice gases and magnets1.2 can be 
applied to random spin systems. 

The random spin systems that will be considered 
here are of the type recently studied in Ref. 3; their 
precise description follows. 

Consider a y-dimensional lattice Z and a finite 
cubic portion of it K, and suppose that spins are lo
cated on the sites of a randomly chosen sublattice 
D c K; let D = (Xl' ... ,XN(D) and suppose that 
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3 R. B. Griffiths and J. L. Lebowitz, J. Math. Phys. 9,1284 (1968). 

the energy of a spin configuration (Sl' ... , SN(D)

Si = ± I and the spin Si is located at Xi-is given by 

U(S1," " SN(D) = HZ Si + Z CP(Xi - Xi)SiSi' (1) 
i i < j 

where H is the external magnetic field and the spin
spin potential cP is restricted to be a finite-range 
potential. 

Furthermore, we suppose that the probability of the 
random set D c K is given by 

PK(D) = pNWI(1 _ p)N(KI-NWI; 

i.e., interpreting the sites outside of D as points 
occupied by impurities, we suppose that the proba
bilities for a given point in K to be occupied by a spin 
or by an impurity are, respectively, p and (1 - p). 

The free energy can be defined as the average of the 
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free energies that correspond to the various impurity 
distributions; i.e., introducing F(D) as 

-PF(D) = log L exp [-PU(Sl"", SNWl)], 
(S1." "'NtD)l 

(2) 

the free energy of our random spin system (when it is 
confined in the region K) is 

FK = L PK(D)F(D) 
DCK 

= L pNWl(l - p)N(Kl-NWlF(D), (3) 
DCK 

and this formula concludes the description ofthe model. 
(For a discussion of the physical relevance of the 
model, we refer the reader to Ref. 3.) 

If P denotes (as above) the inverse temperature, p 
the impurity probability, and, = exp (-2PH), then 
our main results can be summarized in the following 
theorem: 

Theorem 1: Let f<P, ',p) denote the mean free 
energy defined for p > 0, , > 0, 0 ::s;; p ::s;; 1 as 

f(P, t, p) = lim N(K)-lF K; (4) 
K-+CI) 

then Pf(P, t,p) can be extended to an analytic function 
of p, t,p in the region Qf defined by: 

(i) P is contained in a sufficiently small neighbor
hood of 1m fl = 0, IRe fll ::s;; flo, with Po a suitable 
constant; 

(ii) ,is in the complement of a (closed) circle lying 
in the half-plane Re , < 0 and centered on the real 
axis; furthermore, , # 0; 

(iii) P is inside the circle Ipl < 1. 

The same analyticity properties hold for the corre
lation functions, but with an analyticity domain Q 
obtained from Qf by suppressing the condition , # O. 

Item (ii) leaves the possibility of a singularity at 
, = O. This singularity indeed exists, but it is a trivial 
nonthermodynamic singularity. The proof of these 
results is divided in two steps: The first is the trans
formation of the problem into a lattice gas problem and 
the application of already-known high-temperature 
techniques to this random lattice gas to obtain 
expressions for the correlation functions in the limit 
K --+ 00 (Secs. 2 and 3); the second step (Sec. 4) is the 
study of the analytic properties of the series expan
sions obtained in Sec. 3. As a by-product of the proof 
of Sec. 4, we also find an upper bound on the critical 
temperature (Sec. 5). The proofs in Secs. 3 and 4 are 
rather technical, but the key point is the remark after 
formula (26). 

2. THE EQUIVALENT LATTICE-GAS 
PROBLEM 

The random spin system can be easily transformed 
into a lattice gas whose particles can occupy sites 
in a subset D c K chosen at· random with probability 
PK(D) = pNwl(l - p~(K)-N(Dl. Since the passage 
from a random spin system to a random lattice gas is 
accomplished through the simple and well-known 
algebraic transformatiQns used for ordinary spin 
systems, we skip the detailed derivation which, any
way, is outlined in Ref. 3; the result is that the equiv
alent random lattice gas is described by a pair 
potential <I> and a position- and impurity-dependent 
chemical potential 'JI.,(D) defined, respectively, as 

<I>(x - y) = 4<p(x - y), (5) 

'JI.,(D) = -2H + l L <I>(x - y) 
ysD.y"''' 

= -2H + AiD), (6) 

where A.,(D), which will be needed later, is implicitly 
defined by (6). 

The potential energy of a configuration Y = 
(h, ... 'YNlYl) is then given by 

U(Y; D) = I'll/D) + I <I>(Yi - y;). (7) 
lIsY i<; 

The problem of studying the analytic properties of 
the free energy f and of the spin-correlation functions 
becomes, now, the problem of studying the analytic 
properties of the pressure II and the correlation 
functions p of the "random" gas defined through the 
formulas below. In these formulas the symbols Y, 
T, ... denote configurations (Yl' ... ,YN(Y», (tl' ... , 
tN(Tl)' and the definitions (5), (6), and (7) are used: 

II = lim IlK, (8) 
K-+CI) 

IlK = N(K)-l I PK(D) log I ,N(Y) 
DCK ycD 

X exp [-PU(Y; D)], (9) 

p(Y) = lim I PK<D)PD(Y), (10) 
K-+oo DCK 

PD(Y) = 0, if Y ¢ D, 
= ~ ,N(T) exp [-PU(T; D)]/ 

YCTCD 

L ,N(Tl exp [-PU(T; D)], if Y cD. 
TCD 

(11) 

As an example of the relation between the thermo
dynamic functions of the spin system and the lattice 
gas, we give the expression of/in terms of II (see Ref. 
3): 

Pf(P, " p) = - p log' - ip2P! $(y) - pIl. (12) 
v",o 
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So we see that if TI extends to analytic function with
out singularities in , at' = 0, thenfhas a logarithmic 
singularity at , = 0; for the correlation functions this 
phenomenon does not occur and in fact it turns out 
that the spin correlation functions have the same 
analyticity properties in {l, " and p as the gas correla
tion functions. 

We shall first prove that the functions p( Y) defined 
through (10) and (11) are analytic functions in a 
region Q of the form described in Theorem 1 ; then we 
shall obtain the same results for {lTI by showing the 
validity (for {l > 0, , > 0, 0 ::;; p ::;; 1) of the follow
ing thermodynamic relation between the pressure TI 
and the density (one-point correlation function) p = 
p(Y), N(Y) = 1: 

o{lTI 
--=p. o log , 

(13) 

By translating these results into the spin-system 
language [using (12) and the remark following it], 
Theorem 1 will follow. 

3. THE CORRELATION FUNCTIONS OF THE 
RANDOM LATTICE GAS 

In this section we derive some explicit expressions 
[see (22) below] for the functions p n( Y) defined in 
(11), which will be used in the next section to prove the 
analyticity properties of p( Y) and {lTI. 

It has been shown in Refs. 1 and 4 that the functions 
Pn(Y), regarded as elements of the space E of the 
functions defined over the nonempty configurations Y, 
satisfy the following equations: 

(14) 

where IXn is an element of E and Xn and 5tn are oper
ators on E defined by 

IXn(Y) = 0, if N(Y) > 1, 

IXn( Y) = a exp {lAy(D»(1 + 'exp {lAy(D»-I, (15) 

(XnV')(Y) = 0, if y¢ D, 

(XnV')(Y) = V'(Y), if Y c: D, for all V' E E, (16) 

(Stn1p)(Y) 

= [' exp {lAiD) - {luiY)] 

x [1 + 'exp {lAveD) - {lUy(D)]-l 

X [ON(Y»lV'(Y U » 

+ T('\~=/iT)(V'(y(l) V T) - V'(Y v T»} 

T*I2J (17) 

4 G. Gallavottl and S. Miracle-Sole, Commun. Math. Phys. 7, 
274 (1968). 

where y is a point in Y chosen with a well-defined 
criterion (for instance, the first point in lexicographic 
order), y(l) denotes what is left of the set Y when the 
point y is substracted, ONlY»l is defined to be one if 
N( Y) > 1, and zero if N( Y) = 1. Finally, we have 

UiY) = .1 <I>(y - i), (18) 
y'EY,l/¢Y 

KiT) = IT ({exp [-{l<l>(t - y)]} - 1). (19) 
tET 

The following remark is important: If we call 
(Xn5tn)(Y/Y') the matrix elements of the operator 
Xn5tn, we see from (17) that I(Xn5tn)(Y/Y')1 is 
majorized by the matrix elements K( Y/ Y') of the 
operator K defined as 

(KV')(Y) 

= (m~x laeAP(l + ,e;.pr11) 

x (t5N (Y»lV'(YU
) 

+ ~ IKy(T)1 [V'(y U
) U T) + V'(Y U T)], 

TI"'IY=I2J, 
T¢I2J 

(20) 

where the max has to be taken as A varies between 
-fA and fA, with A = ~1I;60 1<I>(y)l. 

Now if b is any positive number and if we call 

J({l) = 1 I {exp [-{l<iJ(y)]} - 11 
.*0 

and 
m = max "e).P(1 + ,e)'P)-ll 

when -tA ::;; A ::;; tA, we have the following estimate 
of the "magnitude" of Xn5tn: 

sup b-N(Y) 1 K(Y/Y')bN(Y') 
Y¢I2J Y' 

::;; msup b-N(Y)[omY»lbN(Y)-l 

1''''13 

+ ~ IKlT)1 (b'V(YH+N(T) + bN(Y)+N(T)] 

T('\Y=I2J, 
'1'* I2J 

::;; m {b-1 exp bJ({l) + [exp b}({l) - I]} 
= k(b; {l, 0, (21) 

where the quantity k(b; {l, ') is implicitly defined by 
the last step of (21). 

We can make the following use of inequality (21): 
If there exists b > 0 such that k( b; {l, {) < 1, then the 
correlation functions Pn( Y) will be given by the 
iterative solution of (14): 

00 

Pn(Y) = I [(XnStn)n(XnlXn)](Y). (22) 
n=O 
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This solution exists [and is the unique solution of (14) 
if, as it is always the case in this paper, D is a finite set] 
since the series in (22) is absolutely convergent 
because 

00 

b-X(Y l ~ I «XD5lDt(XDIXD»( Y) I 
n=O 

00 

~ ~ ~ b-N(YlK(Y/Yl)bN(Yllb-N(Yll 
n=O Yl,' ',Yn 
X K(Y

1
/Y

2
)" • b-N(Yn-ll 

X K(Yn-il Yn)b''>'(Y nlb-''>'(Y nl I (XDIXD)(Yn ) I 

x (m;x b-N(Yl I(XDIXD)(Y) I) 'n~ok(b; p, ,)n 

= b-1(1 - k( b; (3, 0)-1 < + 00, (23) 

where we have used (21) and (15), and IXD.RD( Y/ Y')I ~ 
K(Y/Y'). 

The correlation functions defined in (10) will then be 
given by 

00 

p(Y) = lim ~ L PK(D)«XD.RD)n(XDIXD»(Y)' 
K->oo n=O DcK 

(24) 

4. PROOF OF ANALYTICITY 

The nth term in (24) can be written as 

p<;l(Y) = ~ L (XD5lD)(Y/Y1)' •• (XD5lD) 
Yl," ',Y" DCK 

X (Yn-dYn)(XDIXD)(Yn)PK(D), (25) 

and we observe that in the sum (25) only the terms 
with Y, Y1 , ••• ,Yn such that Y U Y1 U ... U 

Yn c D are different from zero because of the oper

ators XD' 
Another crucial remark is that the quantity 

(XD5lD)( Y/ Y1) ••• (XD5lD)( Yn- 1/ Yn)(XDIXD)( Yn) 

(26) 

does not depend too much on D, provided Y U Y1 U 

... U Yn c D; more precisely, denote Yi and Sr(Y;), 
respectively, the privileged points in Yi as they have 
been defined after (17), and a sphere centered at Yi with 
radius r equal to the range of the interaction potential 
(which we are supposing finite); then it is immediately 
seen from the definition (17) of .RD that (26) depends 
on D only through the part of D defined as 

D 11 [Y U Y1 U ... U Yn U ;90 SlY;)] 

[where Yo denotes the privileged point of Y). This last 
property is a consequence of the fact that the matrix 
elements of .RD depend on D only through AlIi(D) 
[see (17)]. 

Using these remarks, the summation over D in 
(25) can be partially performed because we can de
compose any D which gives a nonvanishing contri
bution to (25) in two parts Dl and D 2 , with Dl such 
that 

(Y U Y1 U . . . U Yn) 

c Dl C (Y U Y1 U ... U Yn U go S,(Yi») ' 

and D2 is contained in the complement of 

( Y U Y1 U ... U Yn U i~ SlYi) ) ; 

the summation over D2 can be immediately done using 
the relation 

for all K 1 , K 2 , Dl C K 1 , 

and the fact that the summand in (25) depends on D 
only through the above defined D1 • Applying the last 
formula to (25) and taking into account the above 
remarks, we obtain that 25 can be written as 

pj£l(Y) 

_ ~ ~ (XD.RD)(Y/Y1)" • (XD.RD)(Yn) 
- Yl, ",YN D=>YV" ,VYN 

DcKrlR 

where R abbreviates 
n 

Y U Y1 U ... U Yn U U Sr(yJ 
;=0 

We remark also that (27) has the same analyticity 
properties as the matrix elements (Xn5lD) ( Y/ Y') and 
the functions (XDIXD)( Y) and PK(D), since it is a finite 
sum of products of such matrix elements and functions; 
it is also clear from the definitions of P K( D), Xn5lD, 
and XDIXD that PK(D) is a polynomial in the impurity 
probability p and that the functions (XDIXD)(Y) and 
(XD5lD ) ( Y/ Y') are analytic in (3 and " provided 

max "e).//(l + 'e).//)-ll < + 00, 

where the maximum has to be taken for (-j-)A ~ A. ~ 
(j-)A. 

Now, if No denotes the number of points in Sr(Y;), 
and if we take into account (15) and the inequality 

I IPKrlR(D)\ 
D=>YVYIV,' 'VYn DC[(rlR 
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it follows that (27) can be majorized by 

Ip~)(Y)1 

~ 1 IpIN(YVY,v, . ·VYn) K(Y/Y1)' •• K(Yn- 1 1 Yn) 

Yh""Y n 
N(Y n )=l 

X (max IXDIXD(Y) I) . (Ipl + 11 - pl)Non, 
D,Y 

(28) 

where the kernel K('f') has been introduced and 
studied in (20) and (21), and the condition N( Yn) = 1 
is due to the fact that IXD( Yn) vanishes unless N( YlI) = 
1 [see definition (15)]. 

Inequality (28), together with (21), allows us to 
show, through a chain of inequalities of the type (23), 
that the sum of the moduli of the addends in (27) is 
majorized by 

p(n)(y) = (max IIXD(Y)I) . [(Ipl + 11 _ pl)"von 
D,Y 

X k(b; (3, mn • bN(Y), (29) 

provided Ipl ~ I; in (29) b is any positive number. 
Now if (/pl + 11 - pl)No. k(b; (3, n < 1, it is clear 

from (28) and (29) that (27) has a limit as K ~ 00, 

which is equal to 

Y,,",Y n D=>YVy,V"'VYn 
DCR 

where R abbreviates, as above, 
n 

Y U Y1 U ... U Yn U U SlYi); 
i=O 

furthermore, Ip~)(Y)1 ~ p(n)(y). Therefore it follows 
that the limit (24) exists [cf. (29)] and is equal to 

ex> 

p(Y) = 1 p(n)(y). (31) 
n~O 

It is also clear that, as a consequence of the uniform 
bounds on Ipj()(Y)1 obtained in (27), (28), and (29), 
the analyticity properties of (27) become analyticity 
properties of p( Y) in the region where 

(Ipl + 11 - pl)No. inf k(b; (3, n < 1, Ipi ~ 1, (32) 
b 

and it is straightforward to check that the analyticity 
region so defined contains a region Q of the form 
described in Theorem 1 (for details see Appendix). 

The discussion above proves the part of Theorem 1 
concerning the correlation functions; to prove the 
promised results on the free energy we need to prove 
that the function (3TI, defined for 0 ~ p ~ 1, { > 0, 
{3 > 0, by the limit (8), can be extended to an analytic 

function in the region Q where the correlation 
functions have been shown to be analytic. In fact, we 
shall obtain the analyticity of the pressure by proving 
(13) through the following lemma [although it could 
be easily deduced from (22) and the inequalities derived 
in (23), we omit the proof since it is essentially identi
cal to the analogous proof first given in Ref. 5 (see also 
Ref. 6)]: 

Lemma: Suppose that inf k(b; (3, {) < 1, and de-
b 

note SaCy) as a sphere of radius d around y. Given a 
configuration Y and y E Y, we have 

uniformly in D and a. Furthermore, the functions 
PD(Y + a) are uniformly bounded in a and D (at 
fixed Y). 

In other terms this lemma says that the correlation 
functions PD( Y) and their translations in space 
PD(Y + a) do not depend too much on the points of 
D located outside a sphere with large radius and 
centered at a point of Y + a; furthermore, the "small 
dependence" on the far points is uniform in D and a. 

Now suppose (3, {, and p are real and positive 
(p ~ 1), and consider the identity 

O(3TIK -1 "" 
-0 I r = N(K) "- 1 PK(D)PK(a), (34) 

og., aeK DcK 

which follows from the definition (11) of PD and by 
differentiation of the definition (9) of TI K' Using the 
convexity of (3TI as a function of log { (the existence of 
the limit defining TI has been proved in Ref. 3) and 
taking into account (33) and (10), we find 

o(3TI = lim o(3TI K 

olog{ K .... ooolog{ 

= lim N(Kr1 L L PK(D)PD(a) 
K .... oo aeK DCK 

= lim L PK(D)PD(a) = pea) = p, (35) 
K .... ooDcK 

which proves that (3TI can be extended into an analytic 
function in the region Q where P is analytic, and this 
completes the proof of Theorem 1. We remark that the 
fact that to obtain TI one has to integrate over { the 
function pit does not introduce any singularity at 
{ = ° because it can be easily verified [from (22) and 
(31)] that P is proportional to { at small , (Le., 

5 D. Ruelle, Ann. Phys. (N.Y.) 25, 109 (1963). 
• See Ref. 4, Proposition 2, and proof of Theorem 1. 
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p = , + C,2 + ... ); however, one cannot guarantee 
that the function pIT obtained integrating p is single 
valued in the nonsimply connected domain Q.7 

5. CONCLUDING REMARKS 

The results obtained so far are not complete in the 
sense that essential use is made of the fact that the 
potential has finite range and also because, if we 
suppose p > 0, the analyticity region in the (P, ') 
space implicitly obtained in the preceding proofs does 
not become larger and larger as p ~ 0, as it can be 
expected from the fact that the critical temperature 
tends to zero when p ~ 0.3 

On the contrary, one realizes that the analyticity 
region in (P, ') remains unchanged as p varies, pro
vided it stays positive. 

In particular, one finds that, if 0 ::; P ::; 1, the free 
energy and the correlation functions are analytic 
functions in (P, ') if 0 ::; P ::; Pc, where Pc is defined 
by the equation 

inf k(b; Pc> 0 < 1 for all ,> 0, 
b 

which gives the numerical lower bound Pc on the 
critical inverse temperature: Pc LII#o 14>(y) I =0.15. 
This last result can probably be improved, perhaps by 
replacing 0.15 by 0.40 and by using more refined 
techniques which take into account the spin reversal 
symmetry.l 

It would be interesting to find a further enlargement 
of the analyticity regions to get bounds on the critical 
temperature which tend to zero as p ~ O. (Doubts on 
this point have, however, been aroused in Ref. 8.) 

Note added in proof' The impossibility that the 
critical temperature, defined as the first temperature 

7 D. Ruelle, Statistical Mechanics (W. A. Benjamin, Inc., New 
York, 1969), Chap. 5; 2.1. 

8 M. A. Mikulinskii, Zh. Eksp. Teor. Fiz. 10, [Sov. Phys.
JETP 26,637, 1968). 

where a nonanalyticity appears, tends to zero as p ~ 0, 
has been recently proved by Griffiths9 (in the case of 
the Ising model). 

APPENDIX 

The region defined by (32) is the set of p, p, " such 
that 

(Ipl + 11 - pl)No. inf m' [b-1eb[(P) + (e bl(P)_ 1)] < 1, 
b 

Ipl < 1, (AI) 

where we have used the definition (22) of k(b; p, ~. 
To study the region defined by (AI) put b = 3No+1 

(say) and suppose IPI < Po with Po so small that 

(Ipl + 11 - pI)No(b-1ebl(P) + (1 + ebl(P» < t. (A2) 

Then clearly the analyticity region will contain the 
circle Ipl < 1 and the (P, ') space region defined by 

m = max "e).P(l + ,e.l.P) I < 2, -lA::; A. ::; lA, 
IPI < Po· (A3) 

The set I 'e).P(1 + ,e"P) I < 2 is, for )"P real, the 
exterior of a circle centered at the point on the negative 
real axis with coordinate ~ = (-t)e-).P, and with 
radius (t)r"P, and so, for P real, the set m < 2 con
tains in the, space the complement of a circle centered 
at the middle of the interval « -t)e(!)pA, (-i)r(!)PA), 
passing through its extreme points. 

By continuity arguments, one realizes that the above 
discussion implies that the analyticity region in the 
(p, p, ') space contains a domain of the form Q of 
Theorem I. However, it is also clear that the analyticity 
region is in fact quite larger. 
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We prove the impossibility of phase transitions for a class of infinite-range potentials extending recent 
analogous results. We prove also a cluster property for the equilibrium state y and apply some collateral 
results to describe, in the case of finite-range interactions, the state or in terms of a family of density dis
tributions, and to verify a general variational property of or. 

t. INTRODUCTION 

It has been conjectured that even in one-dimensional 
systems a phase transition can occur if the range of 
the potential in infinite (in the sense that the first 
moment of the potential diverges) and the potential is 
attractive. l [Note added in proof: A proof of this state
ment has been given by F. 1. Dyson in Commun. 
Math. Phys. 12,91 (1969).] 

On the contrary, if the potential has infinite range 
but the first moment is convergent, it is commonly 
accepted that, at least if the potential is sufficiently 
regular, no phase transitions occur in one dimension2 ; 

in this case one can also conjecture that the pressure 
has some analyticity properties with respect to the 
chemical potential and the temperature, and also that 
the correlation functions have some cluster property. 

Most of these conjectures have been proved to be 
true by Ruelle in the case of lattice gases3 ; using his 
technique, it has been possible to obtain similar results 
in the continuous hard-core case.4 In fact, the possi
bility of phase transitions has been excluded for the 
class of continuous bounded-pair potentials, bounded 
in absolute value by a decreasing function cp(x) such 
that 

functions and, using collateral results, we give a 
description of the equilibrium state in the case of 
finite-range forces in terms of a family of density 
distribution, and we verify an extremum property of 
the equilibrium state. 

2. DESCRIPTION OF THE SYSTEM; RESULTS 

Let us consider a one-dimensional system of hard 
rods. A configuration will be represented by the set 
X of the points of the real axis R occupied by 'the 
centers of the rods. If a > 0 is the length of the rods, 
then X is restricted to verify the condition Ix - x'I ~ a 
if x, x' E X, x '# x'. 

We say that a sequence {X,,} of configurations tends 
as ~ -- 00 to the limit configuration Xo if, for every 
bounded interval (a, b) such that a ¢ Xo, b ¢ Xo, the 
configuration X" {\ (a, b) tends point by point to 
Xo {\ (a, b). 

With this definition of convergence the set K of all 
the configurations (finite or not) becomes a compact 
space. It will also be useful to consider the compact 
subsets K+, K_ C K built up, respectively, with the 
configurations of K contained in R_ = (- 00,0] and 
in R+ = [0, + (0). The symbols C(K) , C(K+), and 

i+ OO 

a cp(x)x dx < + 00, (1) C(K_) will denote the continuous functions, respec
tively, over K, K+, and K_; C[O.b) (b > 0) will denote 
the set of continuous functions in C(K+) , with the 
property thatf(Y)=f(Y{\ [0, b) for all YE~. 
It can be shown that the set Ub>o C[O.b) is dense in C(K+) 
[in the sup norm on C(K+)]. 

and this extends considerably the well-known results 
of Van Hove.2 

In this paper we present an extension of these 
results to more general unbounded and not necessarily 
continuous potentials involving two or more bodies; 
we also prove a cluster property for the correlation 

1 M. E. Fisher, Physics 3, 255(1967); M. Kac, "Mathematical 
Mechanism of Phase Transitions" (to be published). 

2 L. Van Hove, Physica 16, 137 (1950). 
a D. Ruelle, Commun. Math. Phys. 9, 267 (1968). 
, G. Gallavotti, S. Miracle-Sole, and D. Ruelle, Phys. Letters 

16A, 350 (1968). 

Suppose the rods interact through symmetric trans
lationally invariant many-body potentials <I>(k) (Xl , ••• , 

xk ) and consider these as a function <I> on the con
figurations X E K defined as <I>(X) = <I>(k) (Xl , ••• , xk) 
if X = {Xl' •.. ,Xk} 0 < k < 00 and <I>(X) = 0 if 
k = 0, + 00; the one-particle potential <1>(1) has to be 
interpreted as minus the chemical potential, so the 

147 
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energy of a configuration is 

U(X) = I <P(S). (2) 
scx 

We want to allow the potential <P to be of the form 

<I> = IPo + IP, (3) 

where IPo is a nonnegative measurable finite-range 
pair potential (not necessarily bounded), while IP is 
supposed to belong to the real space $ defined as the 
closure in the norm (4) below of the set $0 of the real 
finite-range bounded measurable potentials with the 
"continuity" property that if ° ~ h ~ k - 1 and 
Xl, ... , X" are fixed, then the function <l>lk) (Xl , ... , 
X", X/l+I, ••• ,Xk) is continuous in the variables 
Xl' •.. ,X" at the point Xl,' .. ,X" for almost _all 
Xh+!' ••• 'Xk (which is a further restriction on <p1k) 

only for k ~ 3). The norm with respect to which the 
closure has to be taken is 

IIIPII = sup I I<P(T)I. (4) 
XE P TcX 

TnR+* 0*TnR_ 

One can convince himself that the condition that $ 
should be in some closure of finite-range potentials can 
be interpreted as a condition of decrease at large 
distances and the fact that this closure has to be 
taken with respect to the norm (4) is a condition 
similar to that of having a finite first moment. In fact, 
one can see that the requirement that <P E $ is in 
general less restrictive than the requirement that <I> 
verifies simultaneously a condition of type (1) and a 
decreasing condition in the sense usually found in the 
literature. 5 The "continuity" condition imposed on the 
potentials is probably unnecessary and simple meas
urability should be sufficient. In view of technical 
difficulties we shall not deal with this point. 

The thermodynamics of the system is described by 
the partition function (grand canonical ensemble): 

Zlbl,b.)(<P) = r e-U1X
) dX, (5) 

JXC(blob.) 

where 

and the inverse temperature factor f3 has been included 
in the interaction energy. 

The main result of this paper is the theorem below, 
which will be proved in Sec. 4, using the preliminary 
lemmas of Sec. 3, following the scheme used in Ref. 3 
to prove the analogous results in the lattice case. 

• M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964). 

Theorem: Let the interaction potential <I> be given 
by <P = IPo + IP, where $0 is a nonnegative finite
range pair potential and $ E $ .. Then: 

(i) The function 

peep) = lim Ib 2 - bll-1 igZ1b1,b2)(<I» 
I b.-bll""' <Xi 

has the property that, given $1' ... , IPn E $, then 
P(2~o Ai<Pi) is continuously differentiable in Ao E 

[0, (0) and AI"'" An E (-00, +(0). 
Oi) If Y denotes the probability measure (on the set 

K of all the configurations) which represents the 
equilibrium state relative to the potential <P, and if 
AI, A2 ,' •• , An E C(K) and 7'", denotes the trans
lation operator on C,(K) [defined as (7'.,A)(Y)= 
A(Y + x) for x E (-00, +(0), A E C(K)], then y is 
translationally invariant and 

This theorem excludes the possibility not only of 
first-order phase transitions, but also those of higher 
order in the sense that (i) and (ii) imply not only that 
the density is continuous as a function of the tempera
ture and the chemical potential, but also that the 
equilibrium state is unique (given the interaction), and 
that all the correlation functions are continuous with 
respect to the interaction potentials and do not exhibit 
long-range order. 

3. STUDY OF A SEMI-INFINITE SYSTEM 

In this section the symbols m, n, r, and k wiII denote 
nonnegative integers and the symbol 7'", will mean 
the translation operator on the set of configur
ations X E K defined by 7'",X = X + x. 

Given <P as discussed in the preceding section, we 
define a family of operators which map C(K+) into 
itself linearly and continuously with respect to the 
sup norm with which we suppose C(K+) to be equip
ped. These operators are defined for all X ~ ° as 

(C",f)(Y) =f e-U(X I rzY1(X U 7'",Y) dX, 
XC[O,,,,) 

for Y E K+, (7) 

where UCR I W) is defined for Rand Win K as 

U(R I W) = L <P(S U T) 
0*SCR 
TCW 

= L <P(S U T) + L <P(S) 
0*SCR 0*SCR 
0*TCW 

= f(R I W) + U(R), (8) 
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and where <I>(S U T) has to be taken + 00 if S U T¢ K. 
One verifies, as a consequence of the assumed con
tinuity properties of <1>, that 1:" maps C(K+) into itself 

and 111:,,11 ~ ell;t;IIZ[O,,,)' 
The adjoint operators to £." are operators on the 

space C(K+)* = {space of bounded measures on K+} = 
{dual of C(K+)}: 

(1::,u)(dX dT"Y) = e-U(XIT.Y) dX,u(dY) , 

X c [0, x), Y E K+. (9) 

A simple calculation based on (7) shows that 

I:Oll:y = I:,,+v' I:!I:: = I::+ y , x, y ~ 0. (10) 

Let us call y+ the probability measure on K+ which 
describes the equilibrium state of a semi-infinite system 
(contained in R+); then, formally, one expects that 
I:!y + = eOlP y +, where P is the thermodynamic pressure 
and also (if there are no phase transitions) that y+ is 
unique. Two steps towards the proof of such a prop
erty are lemmas 1 and 2: 

Lemma 1: There exists a probability measure 
v E C(K+)* and A ~ 1 such that 

(11) 

where a denotes the hard rod length. 

In fact, let E be the set of probability measures on 
K+; then, since 1::,u(1) ~ 1 if,u E E, the mapping of E 
i~to itself defined by ,u - [C: ,u(l)]-l C:,u is unam
bIguously defined and weakly continuous. The set E 
being convex and weakly compact, the Schauder
Tychonoff theorems applies to give a fixed point vEE 
which verifies (11). 

Lemma 2: There exists Co > ° such that, for all 
integers n ~ 0, 

C e-IIq;1! < A. "Z-1 < ellq;lI. o _ [O,na) _ , (12) 

hence it follows that A = eaP, where P is the thermo
dynamic pressure. 

. W~ have, if 1 denotes the function of C(K+) 
IdentIcally equal to unity, 

(I:na1)(Y) ~J e-U(X) ell ;t;11 dX = ell ;t;IIZ 
XC[O,na) [O,na) . 

(13) 

.~. Dunford and J. Schwartz, Linear Operators (Interscience 
PublIshers, Inc., N.Y., 1958), Vol. I, Chap. V, Sec. 10, item 5. 

We have also, if ra is greater than the range of <1>0' 

(I: nal)(Y) ~f e-U(X)e- lI4iil dX!r(Y) 
XC[O,na) 

- - -11«)11 -fr(Y)e Z[O,na) , (14) 

where the function J,( Y) is defined to be 1 if Y c 
[2ra, + 00) and zero otherwise. This function is a Borel 
function, so we can integrate (13) and (14) with respect 
to v and obtain (12) with Co = v (!,.). To prove that 
Co > ° let m be an integer, m > 2r; then 

(}.-ml:mair)(Y) = A-m ( e-U<x I TmaY)!,.(X) dX 
J[o,ma) 

~ A-m r e-U(X) dXe-II4iIl. (15) 
J[ra,2ra) 

Hence, 

v(!,-) = v(A-rnC !,-) > A-me- II ;I, liZ > ° r rna r _ [ra,2ra,)' 

We now want to show that v is the unique solution 
of the eigenvalue problem C:v = eaPv. We observe 
that the "matrix elements" ofC* are all nonnegative so 

a ' 
it is tempting to try to obtain unicity on the same lines 
of the proof of the Frobenius theorem for finite 
matrices. 7 The key for that theorem is the study of the 
adjoint eigenvalue problem, which in our case would 
be Cah = Ah; this problem is solved by means of the 
lemmas below. 

Lemma 3: IffE C(K+) and v(lff) = 0, then [[f[1 = 
O. Hence, if {In} is a conditionally compact sequence 
0f elements of C(K+), from the limit lim v(lfn[) = 0 
as n - 00, we can deduce that lim Ilfnll = 0 as 
n _ 00. 

Let f ~ 0 and v(f) = O. Suppose f ~ 0; thus there 
exists Y E K+ and f( Y) > 0. Given E < U( Y), one can 
find, because of the continuity off and the nature of 
the topology on K+ ' a k > ° and a nonempty open set 
G c K+ such that 

Y E G +--+ Y n [0, ka) E G, 

YE G=> If(y) -f(Y)[ < E. 

If Xa is the characteristic function of G, we have 

v(f) ~ v(fXa) ~ EV(Xa)· (16) 

To prove that v(Xa) > 0, let n be an integer greater 
than (k + r) wher~ r is chosen such that ra is greater 
than the range of <1>0' Then 

A-nl:naXa(Y) = A-n r e-U(X I TnaY)Xa(X) dX 
JXc[o,na) 

~ A-ne-II;t;11 r e-U(X)Xa(X) dX > 0, 
JXC[O,ka) 

7!=> .. Ruelle, Stati~tical Mechanics. Rigorous Results (W. A. 
BenJamm, Inc., N.Y., 1969), Chap. IV, Sec. 6, item 3. 
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so that 

v(Xa) = v(;.-nl:naXa) 

~ ;'-lle- II a:i11 r e-U(X)Xa(X) dX > O. 
J[O,ka) 

Lemma 4: If r is so chosen that ra is greater than the 

range of 4>0 and if g E C[o.ma) , there exists A > 0 such 
that 

I:~( Y)/l:n~( Y') ~ A, for all Y, Y' E ~ and 

n > m + 2r. (17) 

In fact, if n > m + 2r, using Lemma 2, we have 

=(f e-U(Xl)g(Xl)dXlf e-u/xa)dX2exp[-I(XI/X2 U'TnaY)] X e-l(XBI'''.Y»)(Y~YTl 
XIC[O,ma) XaC[ma,na) 

~ sup (r dX2e-U(Xa)exp [-l(XI IX2 U'TnaY)] X e-l(X2I'''.Y»)(Y~ YTI 
XIC[O,ma) JXaC[ma,na) 

e211 4>IIJ dX e-U(x,) ~ 
2 - Z 611«>11 

~ XaC(ma,na) ~ e411 4>11 [O,(n-m)a) ~ _e _ ;.2r, 

e-211;IIJ dX
2
e-U(Xa) Z[o,(n-m-2r)a) Co 

X.C[(m+r)a.(n-r)a) _________________ _ 

where Y ~ y' means the same term as in the numer- if n > m, 
ator with Y replaced by Y'. r ;'-"Lnal(Y) = ;.-n J[ e-U(X)e-1(X I T,,·y'!(X) dX. 

Lemma 5: IffE C[o.ma) and vCf) = 0, then, if r de- [O,na) 
notes an integer such that ra is greater than the range Now den'2te c;l)k the potential obtained from c;I) by 
of c;l)o, we have replacing c;I) _with ~ potential 4>k E 9';, with range ka, and 

v(I;.-nl:nall) ~ (1 - A-I)v(l/l), n > m + 2r. (18) 

In fact, iff' is any positive function in CeO.ma) ' then, 
using the preceding lemma, we find, for n > m + 2r, 

;.-nl:na!' ~ inf ;.-nrna!, ~ A-I sup ;.-nCnaf' 

~ A-Iv(;.-nCnaf') = A-1v(f'). (19) 

Now letfE C[o.ma) vCf) = 0 and letf+,f_ be, respec
tively, the positive and negative parts of f [i.e., 
f+ = sup (f, O),f_ = sup ( - f, 0)]; then, using v(j+) = 
v(j_) , v(lfD = v(j+) + veL), and Eq. (19), we find 

v(I;.-nl:naID 

= v(I;.-nl:nal+ - ;.-n£'nal-l) 

= (vl;.-nl:nal+ - A-Iv(f+» - o-nl:nal_ - A-1v(f_))I 

~ v(;.-nCnal+ - A-Iv(j+» + v(;.-nCnal_ - A-Iv(f_» 

= (1 - A-I)vCI/D. 

Lemma 6: IffE C(K+), then, given a positive integer 
N, there exists an integer meN) such that all the 
functions ;'-n£'naf with n ~ meN) can be approximated 
within lIN! by functions fn E Ceo.m(N)a); i.e., for 
n > meN), there existsf .. E C[O.m(Nle) and 

II ",-nl:na! - fnll < lIN!. (20) 

Since IIA.-nenall ~ e211~II/Co (Lemma 2), it is sufficient 
to prove Lemma 6 forfE C[o.ma)' LetfE C[O.ma); then, 

such that Ilc;I) - c;l)kll ~ 0 as k -- 00 and II4>kll ~ 114>11. 
If r denotes, as everywhere in the paper, an integer 
such that ra is greater than the range of 4>0' let m (N) 
be an integer greater than 2r and m and such that 

114> - 4>m(NlIl < J, Coe-2!1;11 II !II-I. 
N. 

Then for n > meN) define 

InCy) = ;.-n r e-U(x'!(X) dX 
J[o,na) 

X exp [-leX I 'Tna(Y II [0, m(N)a»]. 

We now havefn E qO.m(N)a) and 

1",-"Lnal(Y) - In(Y)1 

~ A-n 11/11 r e-U(X) dX 
J[o,no) 

X lexp [-/(X I 'TnaCY n [0, m(N)a»] 
_ e-1(X I 'n.Y)1 

~ ;.-n 11/11 r e-U(X) dXell~1I 114> - 4>m(NlII 
J[o,na) 

~ A,-nZ[o,na) IIIII ell~1I 114> - 4>m(N)II ~ :! . 
Lemma 7: IffE C(K+) and v(j) = 0, then 

lim v(I",-"Lna/D = o. 
n-+ 00 

(21) 
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Let m(N) be the number defined in the preceding 
lemma and k be an arbitrary integer. Let 

k 

n > 2I(m(N + i) + 2r). 
i=l 

One has n - meN + k) - 2r > m(N + k) + 2r, so 
using Lemma 6, we can approximate within I/(N + k)! 
the function A-tn-m(NHI-2rlf.(n_m(NHI_2rla! with a 
function he E CrO.m(NHlal; then, using Lemma 5 and the 

bound 11 A-'C.a II ~ e211ill/Co (consequence of Lemma 
2), we have 

v(!A-nCnafD 
_ (1,-(m(N+kl+2rlC' 1-(n-m(N+kl-2rl 
- V A J..(m(N+k)+2rlaA 

X C(n-m(N+kl-2rlafD 

e211~11 1 1 -
~ - + (1 - A- )v(lhD 

Co (N + k)! 

~ _e _ + (1 _ A-I) 1 
( 

211~1I ) 

(N + k)! Co 
+ (1 - A-1)v(lA-(n-m(NHI-2rlf.(n_mINHI_2rlafD; 

and since n - meN + k) - 2r > 2 I~:t (m(N + i) + 
2 k), we can iterate the above procedure and find - . 

211~11 )k-l (l A-1)i 
v(IA-nCnafD ~ 1 (_e -+ (1 - A-I) I - . 

Co i=o(N + k - I)! 
211q.1I 

+ (1 - A-1t-
e -lIfl1. 

Co 

This proves the lemma since Nand k were arbitrary. 

Lemma 8: If IE C(K+), the following limit holds 
uniformly in n: 

lim A-nCnaf(Y') = A-nCnaf(Y). (22) 
y ..... y 

x lexp [-I~(X I TnaY')] - exp [-I<t>iX I TnaY')]1 

+ A-n 11111 r dXe-U(XI 
J[o.nal 

X lexp (-I<t>iX I 'TnaY)] - exp [-I"k(X I TnaY')]1 

~ 211111 A-nZ[o."alell~1I 11<1) - <l)kll 

+ A-(n-kIZ[o,(n_klalellili IIfll 

x A-d lexp [-l"k(X I Tna Y )] 
Jf{n-kla,nal 

- exp [-l~k(X I 'TnaY')]1 e-U(XI dX, 

when A-<n-kIZ[O.<n_klal has to be taken equal to one if 
n - k ~ 0; now using Lemma 2, the chain ofinequali
ties ends as 

2 IIi> II 
~ 2 Ilfll e Co 11<1) - <l)kll 

e211~11 i + 11111- A-k lexp [-I.,i X l'Tka Y )] 
Co [O.kal 

- exp [-I4Ik(X I TkaY')]1 e-U(XI dX, (22') 

and this proves the lemma because the function of Y, 
Y' appearing in the last inequality tends to zero as 
Y' -+ Y (consequence of the continuity properties of 
the potentials) and because lim 11<1) - <l)kll = o. 

Remark: This lemma implies that the set offunctions 
{A-nCnaf} is equicontinuous and (since !lA-nCnail ~ 

e211 ;[)IIC;1) norm bounded, so it is conditionally com
pactS; in particular, there exists a subsequence 
{n;} and a function hE C(K+) (depending on f and 
{ni}) such that 

lim IIA-niCn,af - hll = O. (23) 
i ..... CX) 

Lemma 9: There exists hE C(K+), h ~ 0, v(h) = I, 
and 

Since II ..1.-ncoo II ~ e211~IICo-1, it will be sufficient to 
(i) prove this lemma in the case IE C[O.mal' Suppose 

IE C[o.mal and n > m; let <l>k' <l)k be the potentials (ii) 
introduced in the proof of Lemma 6. For fixed k > r 
(where r is such that ra is greater than the range of 

A-lCah = h, (24) 

<1)0), we have 

1..1.-nCnaf(Y) - A-nCnaf(Y')1 

~ IIflI A-n r e-U(XI dX 
J[o.nal 

X le-I(X I '''.Y) _ e-IIX " ".Y')I 

~ A-n IIflI r e-U(XI dX 
J[o,,,a) 

X lexp [-I~(X I TnaY )] - exp (-I~k(X I TnaY)]1 

+ A-n 11111 r e-U(XI dX 
J[O.lIa) 

lim IIA-nCna f- v(f)hll = 0, fEC(K+), (25) 

(iii) 

where the limit holds in the weak sense. 

In fact, consider the function g = 1 - A-ICal; we 
have v(g) = O. Thus, using Lemmas 7 and 3, we find 

lim IIA-nCna(1 - A-1Ca1)11 = 0, (27) 

and then (27) and (23) imply IIh - A-1C,.h1l = O. 
Since clearly v(h) = 1, h ~ 0, (i) is proved. 

8 N. Dunford and J. Schwartz, Linear Operators (Interscience 
Publishers, Inc., N.Y., 1958), Vol. I, Chap. IV. Sec. 6, item 7. 
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To prove (ii) consider a function f E c(Kr) and 
define g E C(K+) as g = f - v(f)h; clearly v(g) = O. 
Thus, using Lemmas 7 and 3, 

n->oo n->oo 

Part (iii) is simply the dual statement of (ii). 

Remark 1: (ii) implies that h is the unique solution 
of the equation e+aPh = Cah. Since the commutativity 
of the operators C", implies that also C.,h is a solution of 
the same equation, we must have C",h = A(x)h, and 
(10) implies A(X)A(Y) = A(X + y) X, Y 2 0; we have 
also that A(X) is a finite-valued continuous function 
of x because (C",/)( Y), as is easily verified, is a finite
valued continuous function of x at fixed Y. Thus9 

A(X) = e"'p. 
An analogous argument holds for v which turns out 

to be the unique solution of the equation C:v = e"'pv. 

Remark 2: one can drop in (ii) and (iii) the con
dition that n is an integer. This is a consequence of the 
following inequality, holding for n integer and 0 < 
x < a: 

II e-naPCnae-",PC",f - v(f)h II 
= Ile-",PC,,(Cnae-anPf - v(f)h) II 
~ e11iilIlZ[0.a) IICnae-naPf- v(f)hll. 

4. PROOF OF THEOREM 1 

To prove differentiability of P(<I» it is necessary to 
study the dependence of v and h on <1>. Let <1>' be either 
<1>0 or an arbitrary element in $. Let us consider the 
potential <I> + z<l>'. Let us also emphasize the depend
ence of C", h, v, andAon<l> by writing Ca.ef) , hef)' vef)' 
and Aef). From the proof of Lemma 8 and from the 
continuity of Aef)+Z;t,. in z (which follows9 from the 
convexity properties of Aef) as a function of <1», it 
follows easily that the limit 

lim A;;~ziil,Cna.(l>+ziil.f(yl) = A;;~ziil·Lna.ef)+za;.f(Y) 
Y'->Y (28) 

holds uniformly not only in n, but also in z for z in a 
bounded intervaL This implies that (Lemma 9) the 
limit 

holds uniformly for z in a bounded interval. From this 
equicontinuity property it follows that if {zn} is a 
sequence Zn ~ zo, there exists a subsequence {nil 

n~OO 

• N. Dunford and J. Schwartz. Linear Operators (lnterscience 
Publishers. Inc .• N.Y .• 1958). Vol. I. Chap. VIII. Sec. 1. item 2. 

such that the limits 

lim v<l>+zni «,.(f), (30) 
i .... 00 

!im v<l>Hn, ~.(f)h<l>Hni q,. 
t-> 00 

(31) 

exist (the second in the norm sense). Since Cef)+z~' and 
Aef)+Z;t,. depend contimlOusly (in the operator norm 
sense) on z, the limit (31) has to be an eigenvalue of 
Cef)+zoQ,' and so it must be proportional to hef)+Zo;t, .. From 
this it follows that 

lim V<l>H«,.(f) = v<lltzo ;;;.(f), f E C(K+), (32) 
Z-+Zo 

lim hef)H q,. = h<llHo q,. , (33) 
Z-"Zo 

i.e., hef)+z;t,., V<l>+Z;t,. are, respectively, norm and weakly 
continuous in z. 

Now observe that the operator defined by 

( OC~<I> f)(Y) = -J e-U<II(X I raY) 

0<1>' XC[O.a) 

X U~.(X I TaY)f(x U TaY) dX (34) 
is such that 

II C".<I>H«" - Ca.<I> - oC:.~ 11-+ O. (35) 
z 0<1> z->O 

So, using the just-proved continuity properties of v, h, 
and A and the identity 

A<I>+z~' - A<I> = Vef) (Ca.<II+z q,. - Ca.<I> h<l>+z ~. ), 

z Z V<l>(h<llH~') 
(36) 

we find that 

I· A<II+zq,' - A<II _ (OCa.ef) h ) 1m - V<I> -_- <I> , 
z->O z 0<1>' 

(37) 

which proves that 

and also that this derivative is a continuous function of 
z (since vef)+z;t,. is weakly continuous in z and 
OCa.ef)HIr:>.joz and hef)+zQ,' are norm continuous in z). 
Now part (i) of Theorem I follows easily. 

To prove the cluster property we use a procedure 
essentially contained in Ref. 2 and used there to prove 
some ergodicity properties of the equilibrium state in 
lattice systems. 

We have first to construct the state ji which corre
sponds to the equilibrium state of the system when it 
occupies all R. 
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In the remainder of this section the letters band b' 
with or without indices will denote finite real numbers. 
Since the sets C(b.b') c C(K) of functions A E C(K) 
such that A (X) = A(X n (b, b'» are dense in C(K), it 
is sufficient, in order to determine the probability 
measure y on K, to find yeA) for all A E C(b.b') with 
b < b' arbitrary. 

We remark that if A E C(b.b') ' then TbA (translate of 
A by a length b) can be identified with an element 
(TbA)+ E C(K+) defined for X E K+ as 

hA)+(X) =hA)(X n (0, b' - b) 

= A(X n (0, b' - b) + b). (38) 

With this notation and denoting y(c.d) the normalized 
Gibbs measure on (c, d), i.e., the measure 

Y(c.d)(dX) = [e-U(X) dX/Z(C.d)], Xc (c, d), 

the value of yeA) can be defined as 

yeA) = lim Y(_y,y,)(A) 
y~+oo 

lI'-++ro 

= lim y(O.y+y,><'r.yA) 
1/-++00 

1/'-++00 

= lim y(O,Yl+Y2)(TylrbA)+), (39) 
1I1-+-hoo 
112-++ 00 

provided the limits exist. 
To prove the existence of the limit (39), consider a 

function fE C(O,ma) c C(K+) and n > m. Then one 
easily verifies, using definitions (7) and (9) of Ca and 
C*,that 

a 

_ . (e-naPC:ab0 )(f) 
Y(O,na)(f) = (e-naPC!ab0)(1) , (40) 

where 150 is defined by 150 (/) = f(0). 
From the definitions (7) of Ca , one verifies also that 

and so, using (40), (41), (25), and (26), we have 

lim Y(O.Yl+Y2)(Ty1( TbA)+) 

= h(0)-llim (e-V2PC;:b0)(hA)+(e-YIPCYll» 
111-+ 00 

112 -+ 00 

= v(hhA)+). 

Hence we have found 

yeA) = v(hhA)+) if A E C(b,b'); (42) 

this formula proves also the translational invariance 
ofy. 

Let now Al E C(b1.b1:)' A2 E C(b
2
.bz')' Then, using the 

following formula easily deduced from definition (9), 

(T .J)(X)v(dX) = (e-"'PC~ jv»(dX), j E C(K+), (43) 

and the property that C> = eXPv, one can deduce 
[taking also into account (25), (26), and (42)] that 

limy(AITxA2) 

= lim y« TblAI)+ T.,( Tb2A2)+) 
",--> 00 

= !~~ f h(X)(TblAI)+(X)(T",h2A2)+)(X)1!(dX) 

= !~~ f h(X)hlAl)+(X)(e-"'PC~hoA2)+V)(dX) 

= f h(X)h1AI)+(X)v(dX) f h(X)h2A2)+v(dX) 

= y(AIW(A2)· 

Now we prove the more general cluster property 
(6) by induction, Suppose it is true for the product of 
A2 E C(b2,b2') ... An E V(bn'n') ' and let Al E C(b1,b1'); 

using (43) and the uniformity of the convergence 
of (e-X1PC"'lh( Tb1A)+) to hy(AI), and the fact that 

Ilh2A2)+ ... T"'2+" '+xn-l(TbnAn)+11 ~ IIA211 ... IIAnll, 

we have: 

= !/!! fh(X)hlAI)+(X){TxJ(Tb2A2)+' .. T"'2+" '+"'n_1h"An)+]}(X)v(dX) 

= ",~~~ f h(X)( TblAl)+(X){ e-"lPC!Jh2A 2)+ ... T "2+'" +xn_1hnAn)+]V }(dX) 

= !/!!!o f [e-"'lPCX1(h( Tb1A1)+)](X) [( Tb2A2)+ ... T "'2+" .+",.-J TbnAn)+](X)v(dX) 

= "'i2~~>J y(AI)(Tb2A2)+(X)' .. (T"2+" '+xn_/TbnAn)+)(X)v(dX) 

= y(AI) ... yeAn)· 
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Finally the restrictive hypothesis that Ai E C(bj,b/) can 
be released by density arguments. 

5. DESCRIPTION OF THE EQUILmRIUM 
STATE y 

We have seen in the preceding section that h and v 
determine completely the equilibrium state of the 
system considered. In this section we describe y by 
means of a family of density distributions10 in the case 
that <I> has finite range. 

We remark that if the range of the interaction is 
between na and (n + l)a, then the function h has the 
property that heY) = h(Y () [0, (n + l)a»);this is be
cause h = limn A-nCnal and A-nCnal depends only on 
Y () [0, (n + l)a) . 

Now the state y can be described by the family of 
density distributions fLex) on [0, La) which have the 
meaning of probability densities (with respect to the 
measure dX, X C [0, La» for finding the configuration 
X inside [0, La) irrespective of what happens outside. 

If L ~ n + I, these probabilities can be defined as 

fL(X) = lim Z~mla,(L+m)a) [ dX1 dX2 
ml-+OO JXIC[-mla,O) 
ml-+oo X2C[Laa,(L+ma)a) 

X e-ULYIIX)e-U(X)e-U(X21 X). (44) 

One can define a family of operators E", on C(K_) 
which are the analogies of the C", for left-semi-infinite 
systems as 

(E",f)(Y) = [ e-U(X I LzY'!(X U T_",Y) dX, 
JXC[-"',O) 

Y E K_. (45) 

The theory of these operators is exactly the same as 
that for C"" so there exists 11 E C(IC) such that 

t",11 = e",pl1, and I1(Y) = limx~oo e':"'PC",I(Y) (uni
formly in Y E IC). An explicit expression for 11 in 
terms of eigenfunctions of operators of the type of C 
can be given by considering the potential :1'<1> defined 
as the mirror image of <1>, and let h'J be the eigenfunc
tion of the operator C corresponding to :1'<1>; then one 
can prove that 

h(T_LaY) = lim (e-amPCmal)(T_LaY) = h'J(:1'Y), (46) 
m-+oo 

where :1' Y is the configuration obtained from Y c 
[0, La) by reflecting T -La Y around the origin. 

10 D. Ruelle, J. Math. Phys. 8, 1657, 1967. 

Now (44) can be written in terms of C and E as 

fLeX) = lim (C(~l+ml+L)aOZ)(1)-l(Cmlal)(Y) 
ml-+C() 
m2-+<Xl 

hence, 

fL(X) = e-PLah(0)-lh(Y)h'J(:1'Y)e-U(Y). (48) 

One easily verifies, using the properties of hand h'J as 

eigenvectors of C and E, the normalization and compa
tibility conditions implicit in the meaning of fL' 

If we consider now the functional on the set 
E () Cl- of the translation ally invariant measures on 
K defined as the difference between the mean entropyll 
and the mean energy, then, as a consequence of the 
differentiability properties of the pressure, one finds 
that this functional attains its maximum at one unique 
point of E () C ~ which coincides with y.12,13 The value 
of this maximum is p, 

This last property can easily be verified by writing 

s(y) - U(y) 

= lim La-Ii fL(X) [ -lg!L(X) - U(X)] dX, 
L-+ 00 [O,La) 

and using (48). 
We mention without producing the explicit calcu

lations that one can find a sufficiently large class of 
elements € c E () Cl- and suitably parametrize its 
elements so that the variational equations corre
sponding to the extremum pro blem maxpe£ s(p) - U(p) 
give rise to the integral equation A-1Cah = hand 
to the expression (48) for the state maximizing 
s(p) - U(p). In this context one could use the results 
of this paper to guarantee that the state in S maxi
mizing s(p) - U(p) is the true equilibrium state. a 
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On the Asymptotic Stability of Reactors with Arbitrary Feedback 

A. Z. AKCASU AND P. AKHTAR 
Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 

(Received 26 April 1969) 

A theorem for the boundedness and asymptotic stability of a point reactor with an arbitrary feedback 
is stated and proved. The criteria obtained are shown to be essentially the same as those given by 
Akcasu and Dolfes. The theorem is applied to a reactor with an arbitrary linear feedback and to a xenon
controlled reactor with a flux reactivity coefficient whose feedback mechanism involves quadratic non
linearity. It is also compared to a criterion obtained by Corduneanu in the case when delayed neutrons 
are ignored and the feedback mechanism is linear. 

I. INTRODUCTION 

Point kinetic equations for a nuclear reactor with 
an arbitrary feedback can be written as 

6 

Z = (1 + z)bKf[z, t] - 2 ab - Zi), (1) 
i=X 

Z; = hb - Zi), i = 1,2, ... , 6, t ~ 0, (2) 

where t denotes time and the dot indicates the first 
derivative of the dependent variables z(t) and Zi(t) 
with respect to t. The functions z(t) and z;(t) represent 
the incremental reactor power and delayed neutron 
precursor densities, respectively. X The parameters ai 
and hi are positive numbers, with the ai satisfying the 
relation 

(3) 

The symbol bKf[z, t] denotes a functional of the 
function z(t) involving values of the latter in the 
interval (- 00, t). We shall always assume that 
bKf[z, t] can be represented as 

bK,[z, t] 

= foo duG1(t - u)z(u) 

+ foodufoodVG2(t - u, t - v)z(u)z(v) + "', (4) 

where Gx(u), G2(u, v), etc., are linear, quadratic, etc., 
feedback kernels. These kernels are defined only for 
positive arguments, but it turns out to be convenient 

1 The usual point reactor kinetic equations! can be reduced to the 
form of Eqs. (I) and (2) by choosing z(t) = [P(t) - Pol/Po, 
z.(t) = [C.(t) - C.ol/C.o, and by letting ->- {Jt/l, a. = (Jd{J, and 
hi = IAi/P, Po and Cto denote equilibrium values of reactor power 
and delayed neutron precursor densities, respectively, and I, A. i , Pi' 
P have their conventional meanings in the field of reactor engineering. 
Po and C iO are determined by Ko + K,(Po) = 0 and C,o =a,Po/A" 
where Ko and K,(Po) are external and equilibrium feedback reactivi
ties .. The incremental feedback reactivity functional oK,[z, tl 
appearing in Eq. (I) is then defined as oK,[z, tl == K,[P, II - K,(Po), 
where K,[P, tJ is the total feedback reactivity functional. We will 
assume that the algebraic equation relating Ko and K,(Po) has a 
unique solution. We also note that (I + z) and (I + Zi) are non
negative, since Po and C,o can never be negative. 

S A. F. Henry. Nuc\. Sci. Eng. 3, 52 (1958). 

to define them to be identically zero for negative 
arguments. 

Physically, bKf[z, t] denotes the feedback reactivity 
at t due to the power generation in the reactor prior 
to t. From the physical nature of the feedback 
mechanism we require bK,[z, t] to be a bounded 
function of time whenever z(t) is bounded (stability 
of the feedback). Mathematically this condition is 
satisfied if we assume that the kernels G n(ux, U2, ••• , 

un) are absolute integrable, i.e., 

Yn = 1'1) dux" .100 

dUn IGn(Ul, U2"", un)l, (5) 

and that the power series 2:-1 Y nMn is convergent 
for all finite values of M where M is the bound of z(t). 

Equations (1) and (2) describe the temporal 
behavior of z(t), Zi(t) only for positive t. Since the 
feedback mechanism depends on the values of z(t) 
in the interval (- 00,0) as well as in (0, t), a unique 
solution of this set of equations requires a specifica
tion not only of the initial value z(O) and Zi(O) but 
also of the values of z(t) prior to t = O. We shall refer 
to z(t) for t ::;; 0 as an initial curve. It is clear from the 
form of Eqs. (1) and (2) and the definition of bK,[z, t] 
that z(t) = Zi(t) == 0, t > 0, is a solution of Eqs. (1) 
and (2) corresponding to the initial curve z(t) == 0 
for t::;; O. We shall refer to this solution as the 
equilibrium state.3 A nonzero initial curve, which 
is the response of the reactor to external reactivity 
changes and external sources for t::;; 0, can be 
regarded as a perturbation on this equilibrium state. 

The question of stability involves the behavior of 
z(t) and z;(t) for t > 0, and in particular when 
t -+ 00. Since these functions depend on the nature 
of the initial curves as well as the initial values, one 

• z(t) = z,(t) == -I for all t also represents an equilibrium state. 
Physically, this corresponds to a reactor in which there are no 
neutrons and delayed neutron precursors. In the course of a deriva
tion we shall exclude this eqUilibrium state from discussion because 
it will be shown that, when conditions for boundedness as stated 
in the theorem in the next section are satisfied, z(t) and z,(t) can 
never approach -lIef. Eqs. (l4a) and (l4b)1 once the reactor is 
perturbed. 

155 
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must first specify a certain class of initial curves in 
order to state conditions for stability. This class must 
be sufficiently broad to include all the possible 
perturbations that may arise intentionally or acci
dentally during the operation of the reactor. On 
physical grounds we choose this class of initial curves, 
henceforth called physically admissible initial curves, 
to satisfy the following properties: 

(i) z(t) == 0 for t ~ -to, to > 0; 
(ii) z(t) > -1, -/0 ~ I ~ 0; 

(iii) z(/) is piecewise continuous and bounded, and 
its first derivative exists and is bounded at all times, 
from b~th left- and right-hand side, in the interval 
(-/0 ,0). 

Condition (i) implies that perturbations are confined 
to a finite time interval. Condition (ii) follows from 
the positivity of reactor power during reactor opera
tion. The boundedness and piecewise continuity of z(t) 
and the boundedness of its first derivative are indicated 
by the fact that an initial curve is the response of a 
reactor to an external disturbance either in the 
reactivity or in the source for 1 ~ O. Jump discon
tinuities are permitted to allow for the presence of a 
possible pulse source in the time interval (- 10 , O). 

We shall not reproduce here the various precise 
definitions of stability.'1 We shall be mainly concerned 
with asymptotic stability in the large which we define, 
for any physically admissible initial curve and for 
finite z(O) and Zi(O), as 

lim z(t) = o. (6) 
t-+ 00 

A criterion for the asymptotic stability of the 
reactors described by Eqs. (I) and (2) was derived 
by Akcasu and Dalfes5 with an heuristic approach. 
The derivation was largely based on intuitive reasoning 
and the results were justified on the basis of energy 
considerations. In the present work a rigorous 
analysis is carried out and the results are stated in 
the form of a theorem. It is found that in addition to 
the criterion in Ref. 5 certain additional restrictions 
have to be imposed on the feedback functional 
()K,[z, t] to guarantee asymptotic stability. These 
restrictions, however, turn out to be not very stringent 
and seem to be quite compatible with physically 
realizable reactor systems. This will be demonstrated 
for reactors with linear feedback and for a xenon
controlled reactor with flux reactivity coefficient 

'N. N. Krasovskii, Stability of Motion (Stanford University 
Press, Stanford, California, 1963). 

• A. Z. Akcasu and A. Dalfes, Nucl. Sci. Eng. 8, 89 (1960). 

where the feedback functional is nonlinear.6 ,? In 
the course of the derivation of the stability criterion, 
it is also observed that the restrictions on ()Kf[z, t] 
are connected with conditions imposed on initial 
curves. The choice of an unrealistically broad class 
of initial curves for the sake of mathematical general
ity will yield sufficient conditions for asymptotic 
stability which may turn out to be too restrictive to 
be of any practical interest for reactor applications. 
This necessitates the restriction of the initial perturba
tions to physically admissible initial curves as defined 
above. 

II. STABILITY THEOREMS 

Theorem 1 (Boundedness): The response of a nuclear 
reactor, described by Eqs. (1) and (2), is always 
bounded for any physically admissible initial curve if: 

(i) z(O), zlO) are bounded and greater than -I; 
(ii) S:oo r5Kf [y, t']y(/') dt' ~ 0, I > 0, for all test 

functions {y(t)} which belong to the class of physically 
admissible initial curves for t ~ 0 and are arbitrary 
for t 2 0. 8 

Theorem 2 (Asymptolic Slability): The response z(/) 
is asymptotically stable in the large if, in addition to 
Theorem I, the feedback functional satisfies the 
following conditions: 

(i) r5K/[v, t] is uniformly continuous for sufficiently 
large t for all test functions {v(t)} which belong to 
the class of physically admissible initial curves for 
t ~ 0, and are continuous, bounded, and have 
bounded first derivatives for 1 2 O. 

(ii) lim 15Kf [w, I] = 0, as t ---+ 00, implies lim w(t) = 
0, as t ---+ 00, for all test functions {W(/)}9 which belong 
to the class of physically admissible initial curves for 
t ~ '0 and, for 120, are continuous, bounded, and 
have uniformly continuous first derivatives which 
vanish as 1---+ 00. 

III. THE PROOF OF BOUNDEDNESS 

We consider a functional of z(/) defined as 

6 a Jt 
V[z, t] = F(z) + i~ ~ F(Zi) - -00 r5K,[z, t']z(t') dt', 

t 2 0, (7) 

• J. Chernick, G. Lellouche, and W. Wollman, Nucl. Sci. Eng .. 
10, 120 (1960). 

7 A. Z. Akcasu and P. Akhtar, J. Nucl. Energy 21,341 (1967). 
8 It should be noted that there is no restriction on the bound of 

the test functions {y(t)} for t ~ 0, and they may diverge as t --+ 00. 

Clearly {y(t)} contains all possible solutions of Eqs. (J) and (2) as a 
subset. 

• It may be noted that the test functions {w(t)} form a subset of 
the functions {v(t)}, which in turn are a subset of test functions 
{y(t)}. 
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in which F(u), u = Z, ZI'···' Z6, is defined as 

i" x 
F(u) == u -In (1 + u) == -- dx, u>-1. 

o 1 + x 

Variations of F(u) with u are shown in Fig. 1. It is a 
positive definite function possessing the following 
properties: 

(i) F(u) is real and positive in (-1, (0) except for 
u = 0; 

(ii) F(O) = 0; 
(iii) F(u) is continuous in ( -1, 00). 

The first two terms of VIz, t] in Eq. (7) are thus non
negative, since ai' hi are known to be positive con
stants. The last term is also nonnegative if condition 
(ii) for boundedness is imposed for all test functions 
{yet)} and thus necessarily for any possible trajectory 
z(t) corresponding to a given physically admissible 
initial curve. Hence, 

VIz, t] ~ O. (8) 

The initial value V(O) is given by 

V(O) = F(zo) + it~: F(ziO) - J~}Kt[Z' t']z(t') dt'. 

(9) 

It will be seen that V(O) is finite since initial values 
Zo and ZiO are finite (condition (i» and the finiteness of 
the last term, 

f}K,[Z, t']z(t') dt', 

is guaranteed by the finiteness of the physically 
admissible initial curves and feedback stability. 
Moreover, by differentiating VIz, t] with respect to t 
and using Eqs. (1) and (2), we obtain the derivative 

F(u) 

/ 

/ 
v/ 

~'/ 
«.~ 
/ 

V(o) / 
_._-- -------------/---------

/ 

/ 
/ 

/ 

FIG. I. 

/ 
/ 

/ 

of VIz, t] along a trajectory as 

6 )2 
• [] '" Gi ( Z - Zi V Z, t = - k ' 

i=1(1 + z)(1 + Zi) 
t > 0, (10) 

which is continuous whenever .z(t) ¥= -1 and z;(t) ¥= 
-1 inasmuch as z(t) and Zi(t) are continuous in t by 
virtue of Eqs. (1) and (2). Furthermore, since (1 + z) 
and (1 + Zi) are nonnegative by definition,! 

VIz, t] ~O, t > 0; (11) 

the equality occurs when Z = Zi. 

It is thus concluded that VIz, t] is a nonnegative, 
monotonically decreasing function of time along a 
trajectory. In particular, we obtain 

VIz, t] ~ V(O) , (12) 

which indicates that VIz, t] is finite for all t ~ 0 if 
V(O) is finite. We observe that VIz, t] is a sum of three 
nonnegative terms (cf. Eq. 7). Therefore, each term 
in Eq. (7) is smaller than V(O) for all t ~ 0: 

F(z) ~ V(O) , 

F(zi) ~ V(O) (hdaJ, 

I foobKAZ, t']z(t') dt' I ~ YeO). 

(13a) 

(13b) 

(13c) 

The inequalities (13a) and (13b), with the help of 
Fig. 1, imply that 

-1 < -Zm ~ z(t) ~ ZM, (14a) 

-1 < -zm
i 
~ z;(t) ~ ZM

i
, (14b) 

where Zm, ZM, Zm., and Z}\.I. are positive numbers such , , 
that 

and 

The inequalities (14a) and (14b) establish the bounded
ness of the reactor response to any physically admis
sible initial curve. Furthermore, they also prove that 
both z(t) and Zi(t) are bounded away from -1 for 
t > 0, and hence the power can never approach the 
shutdown equilibrium state (cf. Ref. 3). 

The conditions of Theorem 1, apart from the 
boundedness of z(t) and z;(t), also lead to the following 
conclusions which will be useful in proving asymp
totic stability: 

(i) i(t) is bounded for all t ~ 0; this follows from 
Eq. (1) and stability of the feedback; that is, 

li(t)1 ~ (1 + ZM)W + 2zM , (16) 

where Z M is assumed to represent the largest value of 
the upperbounds ZM, ZM,,···, zM. and Wis the 
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upper bound of bK,[z, t] corresponding to the given 
physically admissible initial curve. Hence z(t) is not 
only bounded but also uniformly continuous. 

(ii) Zi(t) is also uniformly continuous, since 

(17) 
(cf. Eq. (2)]. 

(iii) V(/) is continuous for all t ~ 0 because 
(1 + z) and (1 + Zi) are never zero by virtue of Eqs. 
(14a) and (14b) (cf. Eq. (10)]. Moreover, 

/ V(t)/ ~ 4z~J(1 - zm)2 (18a) 
and 

I V(t)1 S 4zM (1 + ZM) 

(1 - zm)3 

X((l +ZM)W+2ZM (1 +i~aihi))' (18b) 

where Zm is taken to be the least value of the lower 
bounds Zm, zml"" , zms' Hence Vet) is bounded 
and uniformly continuous for all t ~ O. 

IV. THE PROOF OF ASYMPTOTIC STABILITY 

In proving the theorem for asymptotic stability we 
make use of a lemma by Barbalat10 which is repro
duced here for convenience. 

Lemma: Let get) be a real function of a real 
variable t, defined for t > a > O. If 

(i) limg(t) = goo' as I ~ 00, (goo is finite), and 
(ii) get) is uniformly continuous for t > a, then 

lim g(t) = 0, as I ~ 00. 

We start with the observation that 

lim Vet) = Voo ~ 0 
t-+ 00 

(19) 

because V[z, t] is nonnegative and monotomically 
decreasing. Also, Vet) is uniformly continuous (cf. 
Eqs. I8a, 18b). The lemma is thus applicable for 
get) = Vet) and we have 

lim Vet) = 0 (20) 
t-+ 00 

along a trajectory. Combining Eqs. (10) and (20) we 
conclude that 

lim [z(t) - Zi(t)] = 0, i = 1,2, ... ,6, (21) 
t ... 00 

which, by virtue of Eq. (2), leads to 

lim ti(t) = O. 
t-+ 00 

(22) 

We next note that i(t) [cf. Eq. (1)] is uniformly 
continuous for large t since bK,[v, t] is uniformly 
continuous for all test functions {vet)} [cf. condition 

(i) of the Theorem 2] and thus necessarily for any 
trajectory z(t). It may be noted that limiting the 
requirement of uniform continuity of bK,[v, t] to only 
bounded and continuous test functions having 
bounded derivatives, instead of the set of test func
tions {y, (t)} (which are quite arbitrary and un
bounded), is made possible because we already have 
established the boundedness of z(t) and i(t). More
over, ii(t) is uniformly continuous by virtue of Eq. 
(2) and the fact that z(t) and Zi(t) are uniformly 
continuous as shown above [cf. Eqs. (16), (17)]. 

The conditions of the lemma are thus satisfied for 
the function g == [z(t) - Zi(t)] with goo = 0 and 
hence limg = [i - ii] = 0, as t~ 00. 

The latter together with Eq. (22) leads to 

lim t(t) = 0, (23) 

which, in view of Eqs. (1) and (21), and the fact that 
z(t) cannot approach -1, leads to 

lim bKAz, t] = 0. (24) 
t ... 00 

Condition (ii) can now be applied since we have shown 
that z(t) is continuous, bounded, and has a uniformly 
continuous derivative which vanishes as t ~ 00 and 
thus belongs to the subset {wet)}. Hence 

lim z(t) = 0 
t-+ 00 

and the equilibrium state z(t) == 0 is asymptotically 
stable. 

V. APPLICATIONS 

In this section we apply the stability theorem to 
investigate the asymptotic stability of a reactor with 
an arbitrary linear feedback, and ofaxenon-con
trolled reactor with a flux reactivity coefficient 
whose feedback mechanism involves quadratic non
linearity.6,7,l1 

A. Linear Feedback 

The incremental feedback functional in this case 
reduces to 

bKf[Z, t] = fro G(t -. u)z(u) duo (25) 

The stability of the feedback mechanism requires the 
feedback kernel to be absolutely integrable,12 i.e., 

loo/G(U)/ du < 00. (26) 

101. Barbalat, Rev. Math. Pures App\. 4, 267 (1959). 
11 G. S. Lellouche, J. Nuc\. Energy 21,519 (1967). 
.. The condition (26) is necessary and sufficient13 for the linear 

functional (JK,[z, tl in Eq. (25) to be bound for all t and for all 
bounded functions z(t) in (- CX), + CX). 

13 A. Papoulis, Probability, Random Variables, and Stochastic 
Processes (McGraw-Hili Book Co., New York, 1965). 
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It can be further proved6 that condition (ii) of Theorem implies that 
1, which in this case reduces to lim wet) = A (3Ib) 

ft ft. 
-00 dt' -00 dt"G(t' - t")y(t')y(t") ::;; 0, 

is satisfied for all test functions {yet)} if 

Re[G(iw)] ::;; ° 

(27) 

(28) 

holds7 for all w in (0, 00); G(iw) is the Laplace trans
form of G(t) with iw as the Laplace variable. Hence 
the reactor response is bounded if the initial perturba
tion is a physically admissible initial curve, z(O) and 
Zi(O) are bounded, and relations (26) and (28) hold. 

For asymptotic stability we first show the uniform 
continuity of 6Kf [v, t] for large t and for all the 
functions {vet)} which are continuous, bounded, and 
have bounded first derivatives for t ;;;:: O. 

For t ::;; 0, vet) is a physically admissible initial curve 
and thus has bounded left and right derivatives, 
though it might contain jump discontinuities. Let 
these discontinuities occur at - TI , - T2 , - Ta, •.• , 
- TN with bl , .•. , b N as respective jumps. Then, by 
differentiating M'f[V, t] with respect to t, it can be 
shown that 

16KAv, t]1 ::;; M Loo'G(t)' dt + i~llbiIIG(t + T;)I, 

(29) 

where M is the maximum of vet) for t in the entire 
domain (- to, + 00). The first term in the right-hand 
side of relation (29) is bounded by virtue of relation 
(26). The second term vanishes as t -- 00 as required 
by relation (26). Hence, 16K>[v, t]1 is bounded and 
6VAv, t] is uniformly continuous for sufficiently large 
times. We note that the continuity of G(t) is not 
assumed in these discussions; it may have jump dis
continuities and it may even contain delta functions 
in finite time intervals. 

Next we have to find conditions that will ensure that 

t .... 00 

if: 
(i) G(t) is absolute integrable in (- 00, + (0) and 

its Fourier transform G(iw) does not vanish anywhere; 
(ii) wet) is bounded and has a derivative which 

remains greater than a negative constant. 

The theorem is applicable since Eq. (30a) can be 
written in the form of Eq. (31a) [G(u) = 0 for u ~ 0] 
and any test function of the subset {wet)} is bounded 
and has bounded first derivatives. We thus obtain 
the following criterion from Eqs. (30) and (31). If, in 
addition to relations (26) and (28), z(O) and Zj(O) are 
bounded and we can demonstrate that 

G(iw) ;I: 0, - 00 < w < + 00, (32) 

then a reactor with linear feedback is asymptotically 
stable for all physically admissible initial curves. It 
is clear that Eqs. (28) and (32) will always be satisfied 
if we require that Re[G(iw)] and Im[G(iw)] do not 
vanish at the same frequency. We also note that if 
the equality sign in Eq. (28) is removed, then G(iw) 
cannot vanish at any frequency and Eq. (32) is always 
satisfied. Hence the condition 

Re[G(iw)] < 0 

'is sufficient for asymptotic stability. This is the well
known criterion of Welton. 

It may be noted that Wiener's theorem does not 
make explicit use of the fact that in our case lim wet), 

,as t -- 00, approaches O. By exploiting this property, 
we can replace the condition (32) by a different 
condition which may be more easily applicable in 
certain specific cases of the feedback kernel G(t). 
We first observe that, since wet) is bounded, 

lim iooG(ll)W(t - u) = 0 
t ..... 00 0 

implies that 

(30a) I L: G(t - u)[w(u) - wet)] du I ::;; 2M i:TIG(U)1 du, 

(33) 
lim wet) = 0 
t ..... 00 

for all test functions {wet)} [cf. condition 
Theorem 2]. These conditions immediately 

(30b) where T is finite and M is the maximum of wet) in 

(ii) of (-to, T). The right side of relation (33) vanishes as 
foIl ow t -- 00 since G(u) is absolutely integrable. Hence, 

from Wiener's theorem (Pitts form),14 which states 
that 

tl~~ L+oooo G(t - u)w(u) du = A J~oooo G(t) dt (31a) 

U D. V. Widder, The Lap/ace Transform (Princeton University 
Press, Princeton, N.J., 1946). 

tl~~ L: G(t - u)[w(u) - w(t)] du = O. (34) 

Moreover, by expanding w(t) as wet) = w(u) + 
(I - u)w[u + (j(u)] , whereu :::;; (j(u) :::;; t,andchoosing 
T(e)' for a given e > 0, no matter how small, such 
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that w(u) < E for u > T(E), we have 

I f;G(t - u)[w(u) - wet)] du I 
~ E J:IG(t - u)llt - ul du 

~ E L""G(U)' u duo (35) 

Therefore, if we impose the condition that 

f"'G(U)' u du < 00, (36) 

then it is observed that 

lim stG(t - u)[w(u) - wet)] du = O. (37) 
t-+ "" T 

Relations (34) and (37) are sufficient to show that 

lim [1 00 

G(u)w(t - u) du - W(t)l"" G(u) duJ = O. 
t-+oo 0 0 

(38) 

It can thus be concluded that, if the condition (36) is 
assumed to hold, then 

LX) G(u)w(t - u) du 

behaves as wet) for large values of t and, therefore, 
by virtue of Eq. (30a) , 

lim wet) = O. 
t-+ 00 

The condition (36) may be observed to be very 
relaxed. It is, for example, always satisfied when 
G(t) can be expressed as a sum of exponential terms 
with negative exponents, such as in the case when the 
feedback can be described by a set of coupled linear 
differential equations. 

B. Nonlinear Feedback 

In order to illustrate the application of stability 
theorems to reactors with nonlinear feedback, we 
consider a xenon-controlled reactor with flux reac
tivity coefficient for which bK,[z, t] is quadratic and 
has the form? 

ClK t[z, t] 

= foo duGlt - u)z(u) 

where 

and 

+ foo dUl f"" dU2G2( t - u 1, t - U2)Z( ul)Z( U2), 

(39a) 

Gl(t) = Alb(t) + K(t), 
K(t) = A2e-Axt + Aae-.<t + A4e-'<lt, 

(39b) 

(39c) 

(39d) 

AI, A2,'" , As are constants (defined in Ref. 7) 
depending upon various reactor parameters, and Ax, 
AI, A are decay constants of 135Xe, lasl, and one group 
delayed neutron precursor concentration, respectively. 
Gl(t) and G2(tl , t2) may be noted to be absolutely 
integrable. The reactor response z(t) to any initial 
perturbation belonging to the class of physically 
admissible initial curves and for finite z(O) and zlO) 
is bounded if 

f}KAY, t']y(t') dt' ~ 0 (40) 

[condition (ii) of Theorem IJ, for all continuous test 
functions belonging to the set {y, (t)}. The condition 
(40), which was derived on the basis of energy con
siderations in Ref. 5 as a sufficient condition for 
asymptotic stability, was investigated for combined 
xenon and temperature feedback [cf. Eq. (39)] in 
Refs. 7 and 11, and was shown to lead to the following 
criterion: if the condition 

Re[KUw)] + Al - (As/Ax)Po ~ 0, (41) 

where K(iw) is the Fourier transform of K(t) [cf. 
Eq. (39c)] and Po is the equilibrium power level 
(cf. footnote 1), is satisfied for all real w, then the 
reactor is asymptotically stable. We now demonstrate 
that conditions(i) and (ii) of Theorem 2 are satisfied 
without any additional restrictions upon feedback 
functional. By substituting (39b) and (39d) in (39a) 
and replacing z(t) by the test function vet), we get 

ClKf[v, t] = Alv(t) 

+ f""dUV(U)(A 2e-.<.Ct-U) 

+ Aae- W - u ) A
4
e-'<lCt-U» 

+ Asfooduv2(u)e-.<.(t-U). (42) 

Also, by differentiating bKf[v, t] with respect to t, we 
obtain 

ClK,[v, t] = AIV(t) + V(t)[A2 + Aa + A4 + Asv(t)] 

- I~oo duv(u)(A2A.",e-.<·Ct-u) 

+ AaAe- W - u ) + A4Ale-'<lCt-U» 

- AsA", I~oo duv2(u)e-.<·(t-u), t > 0, 

~ JAIl Ml + 21A2 + Aa + A41 M2 

+ 21Asl Mi, t > 0, (43) 

where M l , M2 are upper bounds of vet) and vet). 
Hence, bK/[v, t] is bounded, and bK/[v, t] is uniformly 
continuous for t > O. 
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For condition (ii) of Theorem 2, we note that 

i"'dUW(t - u)Aje-au
, j = 2,3,4, IX = Ax' A, AI, 

and 

So 00 duo}( t - u )A5e-).xu 

behave as (Aj/oc)w(t) and (A5/Ax)w2(t)as t ---+ 00. This 
can be shown by following a similar procedure as that 
used in the relations (33)-(38). Hence, 

lim bKAw, t] = 0 
t-+ 00 

implies that 

hm wet) Al + - + - + - + - wet) = o. . ( A2 Aa A4 A5 ) 
t -+ '" Ax A Al Ax 

(44) 

From Eq. (44) it is obvious that as t ---+ 00, wet) either 
approaches 0 or 

-- 1+-+-+-' Ax (A A2 A~ A4) 
As Ax A Al 

(45) 

Substitution of the values of AI' ... , A5 and AI, A, Ax 
(cf. Ref. 7) in Eq. (45) gives a constant which is always 
less than -1. But this value is not permissible by 
definition (cf. Footnote 1). Hence, 

lim bKAw, t] = 0 
t-+ '" 

implies that 

lim wet) = o. 
t-+ '" 

VI. DISCUSSION 

In this analysis, sufficient criteria for the asymptotic 
stability of a reactor with arbitrary feedback have 
been obtained. The approach that is followed is 
similar to Liapunov's technique. However, since we 
are dealing with functiona1s instead of functions, 
just finding a positive definite Liapunov function with 
a negative first derivative is not enough, as was pointed 
out by Krasovskii. 4 We note that the most important 
condition on the feedback functional is condition (ii) 
of Theorem 1. This condition was obtained as a 
sufficient criterion for asymptotic stability in Ref. 5 
on the basis of considerations of energy dissipation 
in passive networks. The other conditions in Theorems 
1 and 2 are quite mild in nature and are expected to 
be satisfied in actual physical systems, as was demon
strated in applications of Theorems 1 and 2 in the case 
of a xenon-controlled reactor with flux reactivity 
coefficient. 15 

15 Pasquantonia and Kappel have recently shown16 that the 
condition in Ref. 5 is sufficient for asymptotic stability using Hale's 
theorem." 

16 F. Di Pasquantonia and F. Kappel, Energia Nucl. (Milan) 15, 
761 (1968). 

17 J. K. Hale, J. Differential Equations 1,452 (1965). 

It is instructive to consider the conditions obtained 
in Theorems I and 2 when delayed neutrons are 
ignored, i.e., ai and hi are identically zero. From the 
proof of Theorem 2 we observe that we cannot assert 
asymptotic stability of the reactor when ai = hi == 0 
because condition (ii) of Theorem 1 guarantees only 
the boundedness of the solutions. It is also interesting 
to compare Theorem I with a criterion obtained by 
CorduneanulB which reads as follows: 

The integral equation 

aCt) = f(t) + fl(t - z)tp[a(z)] dz (46) 

has at least one solution aCt), defined for t ~ 0, 
which satisfies 

lim aCt) = 0, 
t-+ '" 

if let), let), and tp( a) are real functions satisfying the 
conditions: 

(i) l(t) is defined for t ~ 0 andj(t),J(t) E L1(0, (0); 
(ii) 

let) = jet) - p, (47) 

where p > 0, and jet) is defined for t ~ 0 and 

j(t), ~ j E LI(O, (0) n L 2(0, (0); 
dt 

(iii) tp( a) is continuous for all real a and satisfies 

atp(a) > ° (a ¥: 0); (48) 

(iv) There exists a q ~ 0 such that 

Re[(1 + iwq)L(iw)] ~ 0 (w ¥: 0), (49) 
where 

L(iw) =l"'j(t)e-iwt dt - -!- . 
o lW 

Equation (46) can be reduced to the point reactor 
kinetic equation without delayed neutrons and with 
a linear feedback functional [cf. Eq. (1)] 

i = (1 + z) foo G(t - u)z(u) du (50) 

by defining 

aCt) = In (1 + z), (51a) 

tp(a) = e" - 1, (51b) 

jet) = f~/UG(t - u)z(u), (SIc) 

dj 
dt = G(t), (51d) 

18 M. C. Corduneanu, C. R. Acad. Sci. (Paris) 256, 3564 (1963). 
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and 
/(0) = j(O) - P = O. 

Integrating Eq. (5Id) on (I, (0), we get 

f(t) = _I'"l G(u) duo 

The condition (49) thus reduces to19 

(5Ie) 

(52) 

R.[(I + iwq)G(iw)/iwl ~ O. (53) 

Hence, according to this theorem, a reactor with 
linear feedback is asymptotically stable in the absence 
of delayed neutrons if a q ~ 0 exists such that Eq. (53) 
holds and /(t) and j(t) satisfy conditions (i) and (ii) 
of Cordunean~'s criterion.The conditions of Theorem I, 
on the other hand, ensure only the boundedness of 
reactor response in the absence of delayed neutrons, 
although the feedback functional may be quite 
arbitrary and not specifically linear. If a q ~ 0 cannot 
be found such that Eq. (53) is satisfied, then Cordune-

18 The condition (ii) of Carduneanu's theorem requires p > 0, 
which by virtue of (5Ie) implies j(O) > o. The latter is the condition 
for the existence of a finite equilibrium power level. The condition 
(53) alone can not guarantee asymptotic stability. 

anu's theorem is noncommital. This happens to be 
the case for a circulating fuel reactor where G(iw) is 
given by20 

G(iw) = (rx'T}/w 20)(1 - iwO - cos wO + isin wO). 

(54) 

Here 0 is the fuel transit time in the core, rx is the 
temperature reactivitf coefficient, and 'T} is the heat 
capacity of the reactor. Application of the relation 
(53) reduces Eq. (54) to 

q(1 - cos x) + sin x/x ~ 1, x oF 0, (55) 

where we have used the fact that rx < 0 and substituted 
x for wO. Clearly Eq. (55) cannot be satisfied for all 
x> 0 for any choice of q. However, application of 
Theorem I [cf. Eq. (28)] reduces Eq. (54) to 

I - cos x ~ o. (56) 

Equation (56) ascertains the boundedness of circulating 
fuel reactor response to perturbations belonging to 
physically admissible class of initial curves. 

20 A. Z. Akcasu and L. M. Shotkin, Nucl. Sci. Eng. 28, 72 (1967). 
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A method of obtaining the highest weight polynomials of irreducible representations (,1.) of SPin 
occurring in a reduction of an irreducible representation (k) of U.n is described. The highest weight 
polynomials of equivalent representations (,1.) are labeled by means of parameters which occur naturally 
from the Littlewood's theorem to determine the branching rules for the representations of the unitary group 
with respect to the symplectic subgroup, when supplemented by modification rules. The results are given 
explicitly for U. :;) Sp. and U. :;) Sp., the former being a canonical chain and the latter a noncanonical 
chain. 

INTRODUCTION 

The aim of this paper is to obtain a basis for any 
given irreducible representation (IR) of the unitary 
group U2n in 2n dimensions such that, with respect to 
that basis, the symplectic subgroup SP2n is explicitly 
reduced into blocks. It is enough to find the highest 
weight vectors of the various IR's of SP2n occurring in 
the reduction of a given IR of U2n since all the other 
basis vectors in an irreducible representation space of 
SP2n can be obtained by applying polynomials of the 

lowering generators of SP2n on the highest weight 
vector because linearly independent highest weight 
vectors give rise to linearly independent spaces. (By the 
reduction of an IR of U2n with respect to SP2n, we 
mean the reduction with respect to SP2n' of the 
representation of SP2n, obtained by considering the 
restriction to SP2n of the given IR of U2n .) We use a 
theorem of Littlewood1 and the modification rules of 

1 D. E. Littlewood, Theory of Group Characters (Clarendon 
Press, Oxford, 1950), p. 295. 
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and 
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Hence, according to this theorem, a reactor with 
linear feedback is asymptotically stable in the absence 
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given by20 
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I - cos x ~ o. (56) 
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fuel reactor response to perturbations belonging to 
physically admissible class of initial curves. 

20 A. Z. Akcasu and L. M. Shotkin, Nucl. Sci. Eng. 28, 72 (1967). 
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weight vectors of the various IR's of SP2n occurring in 
the reduction of a given IR of U2n since all the other 
basis vectors in an irreducible representation space of 
SP2n can be obtained by applying polynomials of the 

lowering generators of SP2n on the highest weight 
vector because linearly independent highest weight 
vectors give rise to linearly independent spaces. (By the 
reduction of an IR of U2n with respect to SP2n, we 
mean the reduction with respect to SP2n' of the 
representation of SP2n, obtained by considering the 
restriction to SP2n of the given IR of U2n .) We use a 
theorem of Littlewood1 and the modification rules of 

1 D. E. Littlewood, Theory of Group Characters (Clarendon 
Press, Oxford, 1950), p. 295. 



                                                                                                                                    

BASES FOR IRREDUCIBLE REPRESENTATIONS OF S" r2n 163 

Newe1l2 for the reduction of an IR (k) = (kl' k2' ... ) 
of U2n with respect to SP2n' and we determine the 
highest-weight vectors of the various IR's (A) = 
(.11' .12, ••• , An) of SP2n occurring in the reduction, in 
one-to-one association with Littlewood diagrams. 

In the case of the chains3.4 U«:::> U '}, X U 2 and 
U3 :::> Ra, the highest weight polynomials (h.w.p.) of 
the subgroups U2 X U2 and Ra contained in the carrier 
spaces of given IR's of U« and U 3, respectively, were 
obtained using Littlewood's theorems for the re
duction of an IR of U4 with respect to U2 X U2 and 
an IR of U3 with respect to Ra. We describe a similar 
procedure in this note for obtaining the h.w.p. of Sp, 
contained in the carrier space of a given IR of U4 and 
similarly, the h.w.p. of Spa belonging to the space of a 
given IR of U6 • 

1. POLYNOMIAL BASES FOR U2n AND SP2n 

The infinitesimal generators of Uan and SPin can be 
realized in terms of boson creation operators aT and 
annihilation operators a; as follows5: ,8 

2n 
Ci' - '" + i' .., 1 2 i - k aj.a .. j,j = ,"', n, (1.1) 

.=1 

have the same commutation rules asthe generators of 
Uan . Writing 

Hi = C; - c~t:, Eil = C! - C:t=, Fu = c;+n, 

with i,j = 1," . ,n, and 

Gil = ct+n + c~+n, Gfl = C~+n + ct+n' 

i < j = 1, ... ,n, (1.2) 

Hi' Eu ' ~i' GiJ , F~. and G;; provide a set of gener
ators for the subgroup SPan of U2n and are in Cartan's 
canonical form. The generators Eij (i <j), Fii • Gii 

are positive-root generators and Eli (i > j), F;/, and 
G;i the corresponding negative-root generators. The 
bases for IR's of (k) of U2n and (A) of SPan can be 
written as polynomials in at. operating on the vacuum 
ket,5.6 Our aim is to find the highest weight poly
nomials of any IR (A) of SPan contained in an IR (k) of 
U2n • A polynomial belongs to the carrier space of the 
IR (k) of U2n if and only if it satisfies5 

C •• P = ksP, Css'P = 0, s < s' = 1, ... ,2n, (1.3) 

and it is of highest weight (A'1' .12, ••• ) with respect to 
SP2n if and only if it satisfies 

HiP = A/P, E"t = 0, i,j = 1,' .. ,n, (104) 
---

: M. J. Newell, Proc. Roy. Irish A.cad. 54, 153 (1951). 
V. Syamala Devi and T. Venkatarayudu 1. Math Phys 9 

1057 (1968). ,. ., 
, M. Moshinsky and V. Syamala Devi. J. Math. Phys 10 455 

(1969). . , 
5 M. Moshinsky. J. Math. Phys. 4, 1128 (1963). 
• G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4,1449 (1963). 

where Ell./ are generators corresponding to a simple 
system of roots7 and 

lin 

CSS' = Iaj;al,. 
1=1 

2. REDUCTION OF IR's OF U2n WITH 
RESPECT TO SP2n 

The reduction of the IR (k) of U2n into IR's 
(A) = (AI, .12 , ••• ) of the symplectic subgroup is 
determined by a theorem of Littlewood.1 Consider the 
IR's of Uan corresponding to partitions (AI' .12 , ••• ) 

and (f3) where (f3) is a partition whose parts occur an 
even number of times. If in the reduction to IR's 
of U2n the product representation (A) X (f3) contains 
(k) a certain number of times which we denote by 
g;"Pk' then under the liinitation to SP2n, the IR (k) of 
U2n breaks up into IR's (A) of SP2n according to the 
formula 

(2.1) 

the summation being over all S functions {f3} whose 
parts occur an even number of times. In using this 
formula, the partitions (A) may sometimes contain 
more than n parts. These have to be interpreted 
according to modification rules. We note that 

(At> ••. , An' 1, I) = - (AI' ••. , An), 

(AI,'" ,An_I' I, I, 1, I) = -(AI>'" , An_I' 0), 

(2.2) 

where (AI, A2' ••. ) denotes the character of the 
symplectic group in the IR corresponding to the 
partition (AI, .12 , •• '). All other nonstandard symbols 
having not more than 2n parts are to be dropped. 

Though the theorem as stated originally concerns 
itself with partitions (k) into not more than n parts, it 
can be extended to partitions (k) with not more than 
2n parts by the use of modification rules (2.2). The 
coefficients g;'Pk in (2.1) are determined by the little
wood ruless to write the product of S functions 
{A} >:< {f3} as a sum of S functions {k}. We may 
restnct ourselves to IR's corresponding to partitions 
(~) of U2n where the last part is set equal to zero, 
SInce the symplectic matrices are unimodular. 

Chain U,:::> Sp,.: The Eqs. (1.3) and (104) in the 
case of U, :::l Sp« are 

CuP = klP, CuP = k2P, CsaP = kaP, 

CuP = Cl3P = C2aP = 0, (Ci - C:)P = AlP, 

(C; - C:)P = A2P, {C~ - C:)P = C:P = ° 
[called (2.3)-{2.12), respectively]. 

7 N. Jacobson, Lie Algebras (Interscience Publishers. Inc., New 
York. 1962), p. 120. 

8 Ref. I, p. 94. 
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3. ELEMENTARY LITTLEWOOD DIAGRAMS 

Let us mark the boxes of the first row of the Young 
frame of the partition (AI, .12) by the symbol x and the 
boxes of its second row by the symbol y. Let us mark 
the boxes of the first and second rows of the Young 
frame of the partition (fJ) by the symbols a and b, 
respectively. Then, corresponding to each of the 
following diagrams built by the application of the 
symbols of (fJ) on the Young frame of (AI, .12) accord
ing to Littlewood's euless and having rows of lengths 
kl' k2' ka, respectively, from top to bottom, we have 
an IR (AI, .12) of Sp4 which is contained in the IR 
(k1 , k2' k s) of U4 • In the diagram 

we have 

x xa'" a 

1.121 rX121 rX221 

y'" y a'" ab··· b 

i X2S[ 
b .,. b, 

(3.1) 

Al ~ .12 + X12 ~ X2S, Xu ~ X22' (3.2) 

Since the lengths of the first, second, and third rows 
are, respectively, kl' k2' ka, we have 

Al + Xu = k1' .12 + X12 + X22 = k2' X2S = ks · 

Also, as the total number of a's is equal to the total 
number of b's, 

(3.3) 

These four equations determine all the four quantities 
Xu, X 12 , X22, X2S uniquely in terms of k1' k2' ks, AI, 
and .12, Hence each IR (AI, .12) of Sp4 contained in the 
IR (k1' k2' k s) of U4 is contained only once. 

We shift all the symbols in the second and third 
rows of (3.1) to the right so that (i) no symbol falls 
below a gap in the row above and (ii) no two identical 
symbols fall in a column. The rearranged diagram is 

,....---. .11---'1 [xUI 
X xa" 'a 

rA21 rX121 r X221 
Y'··ya .. ·ab"· b 

(3.1 ') 

We divide (3.1') columnwise into elementary per
missible diagrams (e.p.d.). A diagram is said to be 
permissible if it contains the same number of a's and 
b's and if the a's and b's occur in it in lattice order 
[i.e., ifthe numbers Xii and Al , .12 of the diagram satisfy 

the inequalities (3.2)]. The e.p.d.'s of (3.1') are 

a,xa,x,x,x 

b yay 
b b. 

4. CONSTRUCTION OF THE h.w.p. 

We associate with each e.p.d. a polynomial satis
fying all the Eqs. (2.3)-(2.12) where the values of k 1 , 

k 2 , ka are those corresponding to the e. p.d. The unitary 
group with generators (l.l) and its symplectic sub
group with generators (1.2) form a chain for which 
the branching rules are furnished by the above 
theorem of Littlewood and the modification rules, as 
can be seen by applying the branching rules to the 
representation of lowest dimension of U2n with 
generators (1.1) [see Ref. 9 for the definition of 
equivalent embeddings of a semisimple Lie algebra 
C' in a semisimple Lie algebra C and a criterion for the 
equivalence of two embeddings]. Hence corresponding 
to each e.p.d. we get a solution of equations (2.3-2.12) 
which is a polynomial in at, the numbers k1' k2' ks, 
AI' .12 having values corresponding to the e.p.d. The 
polynomial corresponding to an e.p.d is found as 
follows. The diagram of the e.p.d is to be filled by 
symbols I, 2, 3, 4 so that the numbers in the rows are 
nondecreasing and those in the columns are increas
ing. The number of I's minus the number of 3's is the 
same as the number of x's in the e.p.d. The number 
of 2's minus the number of 4's is the same as the 
number of y's in the e.p.d. In general, we get several 
such lexical tableaux. Corresponding to each tableau 
we write down the polynomial n~!;:: .rSr' where Sl> ••• , s .. 
are the symbols appearing in a column of the tableau, 
and n is the product taken over all the columns of 
the tableau, and 

AI .. ·.. d t 
US!" 's, = e 

Any such polynomial satisfies Eqs. (2.3)-(2.10), k1' 
k2' ka, AI' ,12 having the values corresponding to the 
e.p.d. We then find linear combinations of these 
polynomials so as to satisfy Eqs. (2.11) and (2.12). It 
is found that a unique polynomial solution of Eqs. 
(2.3)-(2.12) is obtained corresponding to each e.p.d. 
The elementary polynomial solutions corresponding 
to the e. p.d.'s are, respectively, 

s = ~g + ~~!, 
r = ~~~m + ~~~m,~~~:,~g, and ~~. 

---
• E. B. Dynkin, Am. Math. Soc. Trans]. Ser. 2,6, 111 (1957). 
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We associate with the diagram (3.1') and hence with 
(3.1), the polynomial which is the product of all the 
polynomials associated with all the e.p.d.'s into which 
(3.1') splits. Thus the polynomial corresponding to 
(3.1) is 

P = (~~);'1-k2+"'22(~~~);'2+"'12-k3( b )"'23-"'12(~m)"'12(s)"'22. 

(4.1) 

It is easily seen that P is a solution of Eqs. (2.3) to 
(2.12). 

The polynomials (4.1) corresponding to distinct 
diagrams (3.1) are linearly independent, as they are 
common eigenfunctions of the linear differential 
operators q - q, q - C!, corresponding to dis
tinct sets of eigenvalues (AI' A2)' A full basis of V4, 
with respect to which the Sp4 subgroup is explicitly 
reduced into blocks, is obtained by applying on the 
h.w.p. the lowering operators SP4' since the lowering 
operatorslO of Sp4 are known owing to its local iso
morphism with R5 , the rotation group in five dimen
sions. 

The author thanks Professor Moshinsky for point
ing out that the h.w.p. of Sp4 in the chain V4 :::> Sp4 
could also be obtained easily by purely algebraic 
methods, since Sp4 happens to be a canonical sub
group of V4 • Also, the importance of the technique 
developed here lies mainly in its application to non
canonical chains where the algebraic procedure be
comes tedious (almost impossible). (G is said to be a 
canonical subgroup of V n if, in the reduction of any 
IR of Vn (when restricted to G) with respect to G, 
each IR of G occurs only once; G is said to be non
canonical if otherwise, i.e., if G is a noncanonical 
subgroup of V n' equivalent IR's of G may be con
tained more than once in the representation of G 
induced by an IR of V n' We say that the pair V nand 
G form a canonical chain or a noncanonical chain 
G is a canonical or noncanonical subgroup of V n , 

respectively.) 
Chain Vs :::> Sps: In the following we will determine 

the h.w.p. of the various IR's (AI' ,12, As) of Sps 
occurring in the reduction of an IR (kl' ... , k5) of 
Vs. A polynomial belonging to the carrier space of the 
IR (k) = (kl' ... , k5) is of highest weight (AI' ,12, As) 
with respect to Sp6 if and only if it satisfies 

CjjP = kjP, Cjj'P = 0, j < j' = 1,' .. ,5, (4.2) 

(C~ - C!)P = AlP, (C~ - C~)P = AzP, 

(C~ - C:)P = A3P, (4.3) 

(Ci - C:)p = (C~ - C:)P = C~P = 0. 

10 Sing Chin Pang and K. T. Hecht, J. Math. Phys. 8, 1233 (1967). 

S. ELEMENTARY LITTLEWOOD DIAGRAMS 

To determine the IR's (AI' A2, A3) of Spa contained 
in an IR (k) of V6 , we take the Young diagram of the 
partition of Sps and mark its boxes by the symbol 
x. Then we apply to it, according to Littlewood's rules, 
the symbols of the Young diagram of the partition 
(p) = (p,p, q, q), the first, second, third, and fourth 
row boxes of which we mark by symbols a, b, c, and d, 
respectively. We then obtain the following diagrams 
which have at most five rows of lengths kl' ••. , k5 
from top to bottom, respectively; we denote by xlj ' 
x 2j , x aj ' and x4j the number of a's, the number of b's, 
that of c's, and that of d's, in the jth row, respectively, 
and by the modification rules (2.2) one has Xu = 
X25 = 0. Thus, a typical diagram is 

.---,11 I I-xul 
x·············· X a'" a 

-I --,12--1 r-X12i r-X22"! 
x·········xa···ab···b 

r A3j r-X13/ ,X23/ ,xsn 
x"'xa"'ab"'bc"'c 

,X24-1 rXa41 r-X4Cj 
b"·bc"·cd .. ·d 

The numbers Xij satisfy 

Xu ~ X22 ~ Xaa ~ X44, 

Xu + X12 ~ X22 + X2a ~ Xa3 + xa4, 

(5.1) 

Al ~ ,12 + X12 ~ As + X13 + X2S ~ X24 + X34 ~ X4S. 

(5.2) 

and 

Xu + X12 + XIS = X22 + X23 + X24 = p. 
Xaa + X34 = X44 + X45 = q. (5.3) 

Since the lengths of the rows are kl' ... , k s • we have 

Al + Xu = kl' ,12 + X12 + X22 = k2' 

Aa + XIS + X2a + Xaa = ka, X24 + X34 + Xu = k4' 

X 4S = ks · (5.4) 

Corresponding to each diagram (5.1) we have an IR (A) 
of SPs contained in an IR (k) of V6 • Three inde
pendently varying Xij can be chosen, say, X22 ' X44' and 
X1a , so that all the other Xij can be expressed in terms 
of them, kl' ... , ks, and AI, A2 , Aa. Corresponding 
to distinct sets of values of the three parameters, we 
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have distinct diagrams (S.1) and hence, the equiv- are 
alent IR's of Sps contained in the IR (k) of Us 

xxxxxxxxxxxxxaaaa 
are labeled uniquely by the three parameters X22' X44 , 

XIS' 

We rearrange the symbols in (S.1) in all the rows 
except the topmost one as follows. In the second row 
we push all the b's to the right so as not to go beyond 
the a's in the first row. We push all the a's to the right 
so as not to go beyond the x's in the first row. We then 
push the x's in the second row as far as the a's. In the 
third row, we place the a's under the x's in the second 
row and place the b's as far as possible under the a's in 
the second row; if all the places under the a's in the 
second row are filled with b's, then the remaining b's, 
ifany, are placed underthex's; thee's are placed under 
the b's in the second row. Again, in the fourth row we 
place the b's as far as possible under the a's. If there is 
an excess of b's in the fourth row over the a's in the 
third row, then the excess b's are placed under the 
x's. Similarly, the e's are placed as far as possible under 
the b's, and if there is an excess of e's, they are placed 
under the x's; the d's in the fourth row are placed as 
far as possible under the e's. Finally, the d's in the 
fifth row are placed as far as possible under the e's in 
the fourth row. In the rearranged diagram, the 
numbers Xi; stilI satisfy the inequalities (S.2) and the 
Eqs. (S.3) and (S.4). 

The rearranged diagram is 

.----,11'---'1 I-Xll-I 
X X a ... a 

1--,12--1 ,X12-1 
X X a ... a 

,,131 I-X13-1 rX231 
x·"x a"'a .. ·b 

···d ···d 
1 1 IL _-,-----' 

1 X45~ 

(S.1') 

We divide each diagram (S.1') columnwise into ele
mentary permissible diagrams (e.p.d.). A diagram is 
said to be permissible if it contains the same number of 
a's and b's, the same number of e's and d's, and if the 
symbols 0, b, e, d occur in it in lattice order [in other 
words, if the numbers AI' Az , As, Xi; of the diagram 
satisfy the inequalities (5.2)]. A diagram is said to be 
elementary if it cannot be split columnwise into two 
permissible diagrams. The possible columns of (S.l') 

xxxxxxxxoxaa bbb 

xxxxaabbbb ec 

cbbbbbc d 

d d d d d 

To find all the possible e.p.d.'s let us for example find 
all the e.p.d.'s containing the nonpermissible column 

X 

X 

X 

b 

A permissible diagram containing the column must 
contain at least one a in the first two rows. Hence the 
diagram must contain either a column ~ or a column 0 

in order that it is permissible. For, though 0 in the 
first two rows may occur when the diagram has any 
one of the columns 

a a a X X 

b b b a a 

e ebb 

d c 

d 

it must again have either ~ or the column .a in order 
that it be permissible. Now both the diagrams 

X a and X X 

X X a 

X X 

b b 

are permissible and elementary. Moreover , by deleting 
anyone of these e.p.d.'s from a permissible diagram, 
the diagram remains permissible, since in the remain
ing diagram the inequalities (S.2) and Eqs. (S.3) still 
hold. Therefore these two are the only e.p.d.'s con
taining the column 

x 

x 

x 

b 
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Similarly, it can be seen that the following are all the 
possible e.p.d.'s: 

el = x e2 = x ea = x e4 = x x 
x x x a 

x x 
b 

eo = x a e6 = x x a e7 = x a a es = x a 

x x a b x b x b 

x x c x c x 

b b b c 

d d d 

ea = x a elO = x ell = x a el2 = x 
x b x x a 

a c a b b 

b b c c 

d d d 

eta = x e14 = x a e15 = a e18 = a 
a x b b 

b b c 
d 

The division of (5.1') into e.p.d.'s is not unique. 
However, we make it a convention to include a non
permissible column of (5.1') in an e.p.d. by adjoining 
to it the nearest possible column as we proceed from 
left to right in (5.1'); all nonpermissible columns are 
exhausted one by one from left to right in (5.1'). For 
example, 

x x x a a is split as x x, x a a 

x x a b 

x x 
b b 

d 

and not as 

c 

x a, x x a 
x x a b 

x x c 
b b 

d 

x a x b 

x x c 

b b 

d 

Then the diagram (5.1') splits into ql e.p.d.'s el' q2 

e.p.d.'s e2 and so on, where 

qi = Al - A2 - xu, 
qa = A2 - A3 - X13 - X 23 + rn1 , 

qs = As - xa" + xIS - X34 + m" 

q4 = min (X24 - XIS - X4& + X34 + mIS' Xu - mI), 

q" = Xu - Xu - X45 + XS4 + ms - q4.' 

q8 = min (X45 - Xu - m 5, Xu - m 1 - qJ, 
q7 = X45 - XS4. - rnr. - qe, 

q8 = X34 - m4, q" = m&, qlO = XIS - mIS' 

qu = m a, qI2 = ma, q13 = ml - ma, 

q14 = Xa3 - m 1 - rn3' q15 = X44' 

q16 = X22 - X33 - qs, where ml = min (XI2' xu), 

ma = min (XI2' X23' ~34)' 
m3 = min (X23 - ml, X34 - mJ, 

m 4 = min (X23 , xsJ, and ms = min (X13' X46 - X34). 

6. CONSTRUCTION OF THE b.w.p. 

Corresponding to each e.p.d. we find a solution of 
Eqs. (4.2) and (4.3) where the values for kl' ... , k5 
and AI, Aa, A3 are those corresponding to the e.p.d. 
The h.w.p. corresponding to the above e.p.d. are, 
respectively, 

SI = (I), S2 = (12), Sa = (123), 

S4 = (12)(1235) + (13)(1236), 

S5 = (1)(1234) + (2)(1235) + (3)(1236), 

S6 = (12)(125)(12345) + (13)(136)(12346) 

- (16)(123)(12345) + (13)(126)(12345) 

+ (13)(125)(12346) + (23)(125)(12356) • 

+ (23)(136)(12356), 

S1 = (1)(124)(12345) + (1)(134)(12346) 

+ (2)(125)(12345) - (3)(124)(12356) 

+ (3)(126)(12345) + (2)(134)(12356) 

+ (2)(135)(12346) + (3)(136)(12346) 

+ (2)(235)(12356) + (3)(236)(12356) 

+ (5)(123)(12346) - (6)(123)(12345), 

S8 = (12)(12345) + (23)(12356) + (13)(12346), 

S9 = (136)(12346) + (236)(12356) + (125)(12346) 

- (124)(12356), 

S10 = (1236), Su = (1)(12346) + (2)(12356), 

S12 = (12356), S13 = (125) + (136), 

S14 = (1)(124) + (2)(125) + (3)(126) - (6)(123), 

S15 = (1245) + (2356) + (1346), 

and 

S16 = (14) + (25) + (36), 

where (SI' ... , sr) = ~!~::: s.' We associate with the 
diagram (5.1'), hence with the diagram (5.1), the 
polynomial which is the product of all the polynomials 
corresponding to the e.p.d.'s into which it splits. Thus 

(6.1) 
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is the h.w.p. of an IR (Il) of Sps contained in the 
IR (k) of Us. We have as many h. w.p.'s given by 
(6.1) as the number of times the IR (Il) of Sp6 occurs in 
the reduction of the IR (k) of U6 • The h.w.p.'s (6.1) of 
different IR's of Sp6 contained in the same IR (k) of 
U6 are linearly independent as they are eigenfunctions 
of certain linear differential operators corresponding to 
distinct sets of eigenvalues Ill, 1l2' 1l3 • However, if an 
IR of Sp6 occurs in the IR (k) of U6 more than once, 
it has to be shown that the corresponding polynomials 
of highest weight given in (6.1) are linearly independ
ent. This is done in the Appendix. The method can be 
straightforwardly generalized to U2n =:> SP2n' 
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APPENDIX: PROOF OF LINEAR INDEPENDENCE 
OF THE HIGHEST WEIGHT POLYNOMIALS 

IN THE CASE OF U6 :::> SP6 

Let Si be defined as S4 = S,' Ss = Ss, S6 = SlS 2WS6' 

S7 = SlS2WS7' Ss = SlWSS' S9 = SlS 2WS6' SIO = S10' 

Sl1 = WS11' S12 = WS12' S13 = S2S 13 , S14 = S14' SIS = 
SlS2S3S1S' S16 = SlS16' where W = (1234). We have 
the following relations among Si: S6 = SSS13 , S7 = 

SSS14 - S3S11S16 ' S9 = Sl1S13 - S2S12S14 , SIS = S4S14 -

S3S10S16 - S5S13' and SSSIO = S4S11 - S2$SS12' The func
tions Sl' S2, S3' S4' Ss, SIO' 511 , S12' S13' S14' S16 of ats , 
are functionally independent. When expressed in 
terms of these, the polynomial P in (6.1) of theIR (Il) 
of Sp6 contained in the IR (k) of U6 , has a factor 
(Sl}<I-k2(S2)"'2-k3(S3)A3-k4Wk-5 which is common to all P's 

with the same values for (k) and (Il) and which may 
be omitted while considering their linear independence. 
Again set 

S11 = t11s2S12 , S13 = t 13S3SIO , t13t11 - t14 = T 14 , 

s,t11 - Ss = ts , S14 = t14SSS10 , 

P = (S4)"4(S,t11 - tS)"5(t13)"6+"13(T14)"g 

x (tSt13t11 - ts T14 - S16t11)"'(t11)"1l 

X (t13t11 - T 14)q14(tst13 - S16 - S4 T 14)"15 

X (S16)"'6( tS)"6+"8( S2S12)k5( S3s10ta-;'a. 

The last two factors may be omitted. P is a polynomial 
in the independent functions t s , S4' t 11 , t 13 , T 14 , S16 and 
is of degree qs + q7 + q11 + q14 equal to X 11 - X 22 in 
111' The coefficient of (t11)Xll-X22 in P is 

Q = (54)Q4+115(/13)Q6H13H,4(T14)Q9(tSt13 - S16)Q, 

X (t5t13 - S16 - S4T14)QI5(S16)Q'6(tS)"6H8. 

Put tSt13 - S16 = t 16 , t 16 - S4T14 = T, ts = Tst16' 

Q = (S4)Q4+115-Q9(t1S)Q6+1113+1114(t16 - T)Q9 

x (TStI3 - 1)"16 (Ts)Q6+Q8(T)Q15(tI6)Q6+Q8+Q,+Q16. 

Q is of degree q6 + q7 + qs + q9 + q16, which is 
X 22 - X 44 in t16' The coefficient of the highest power of 
t16 in Q is a polynomial R in the variable s, of degree 
k4 - X44 - X13' again leaving a factor (S4)-k5• 

Now X22, X 44' X13 can be taken as independent 
parameters distinguishing the equivalent IR's (Il) 
occurring in the IR (k). No two diagrams hence no 
two P's have the same set of values for these param
eters. Let X22 be the minimum value of X 22 in its 
range, and if many P's have the value X 22 for X 22 , then 
let X 44 be the minimum value of X44' When X 22 = X 22 
and X 44 = X 44 , let X 13 be the minimum value of X 13 • 

P is a polynomial of degree X 11 - X 22 in t 11 ; the co
efficient of (t11)XU-"'22 in P is a polynomial Q of degree 
X22 - X44 in t 16 ; the coefficient of (t16)"'22-X

44 in Q is a 
polynomial R of degree k4 - X 44 - X 13 in S4' Con
sider an equation ~P(X22' X44' x1S)P = 0 where P's 

are numerical coefficients. The coefficient of the 
highest power of t11 in ~PP must be zero in that case. 
That is ~P(X22' X44 , X 13)Q = O. Again in ~PQ, the 
coefficient of the highest power of t16 must be zero. 
That is, ~P(X22' X 44 , X13)R = O. Since the P's having 
the same values for X22 and X 44 necessarily have dis
tinct values for X13, the polynomials R are of distinct 
degrees in S4 and hence linearly independent. There
fore P(X22 , X 44 , X13) = O. Considering the next least 
value X~4 of x",we find by the same reasoning that the 
set of coefficients P(X22 , X~4' x 13) = O. Similarly all 
P(X22 , X44' X 13) = 0 and P(X22 , X 44' X 13) = O. Hence 
the P's corresponding to distinct diagrams (5.1) are 
linearly independent. 
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The highest weight polynomials of irreducible representations of a Ua X Ua subgroup of U6 , which 
occur in the reduction of a given irreducible representation of U., are obtained, making use of Littlewood's 
rules for the reduction of an irreducible representation of U. with respect to a Ua X Ua subgroup. The 
various irreducible representations of Ua X Ua occurring in the reduction are uniquely labeled by 
parameters which are obtained in a natural and obvious way from Littlewood diagrams. These poly
nomials could not be obtained by the algebraic methods developed so far. The method described here 
overcomes the division problem encountered there and makes the solution possible. It can also be directly 
extended to the case of U2n :::> Un + Un for any n. 

INTRODUCTION 

Moshinskyl showed that for a systematic derivation 
of closed formulas for the Wigner coefficients of Un, 
the unitary group in n dimensions, one requires ex
plicit construction of bases for an irreducible repre
sentation (IR) of U2n consisting of subsets each of 
which spans a space' irreducibly invariant under a 
particular subgroup Un X Un. For this, it is sufficient 
to obtain the highest weight polynomials (h.w.p.) of 
the various IR's of Un X Un which are contained in 
the reduction of a given IR of U2n , since the whole 
basis of a space can be obtained by applying lowering 
operators2 of Un X Un on the highest weight vectors, 
and the irreducible spaces of Un X Un determined by 
linearly independent highest weight vectors are also 
linearly independent. a The required h.w.p. are all 
the linearly independent solutions of a certain set of 
homogeneous differential equations. Moshinsky at
tempted to solve them directly for polynomial 
solutions and obtained the h.w.p. in the case of the 
chain U4 ~ U2 + U2 (+ is used since we are con
sidering only the Lie algebras) after considerable labor. 
The algebraic methods employed there made it impos
sible to obtain all the polynomial solutions of the 
equations for the chain Us ~ Ua + Ua. In a previous 
paper,4 these polynomials were obtained much more 
elegantly for the chain U4 ~ U2 + U2> and, by the 
same method, we will obtain them for the chain 
Us ~ Ua + U3 with the same ease. From the pro
cedure that is described in the following sections, it 
will be evident that the method can be directly 
extended to the case of U2n ~ Un + Un for any n. 

We will find that there exists a finite number of 
elementary polynomial solutions so that every poly-

1 M. Moshinsky, J. Math. Phys. 4, 1128 (1963). 
2 J. G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965). 
• E. B. Dynkin, Am. Math. Soc. Trans!. Ser. 2, 6, 245 (1957). 
4 V. SyamaJa Devi and T. Venkatarayudu, J. Math. Phys. 9, 

1057 (1968). 

nomial solution of the equations is a polynomial 
function of the elementary solutions. The elementary 
solutions are easily obtained, as they are solutions of 
the differential equations for particular values of "h's." 
The particular values of "h's" to be considered will be 
evident from the Littlewood diagrams that one gets in 
the determination of the analysis of the Kronecker 
product of two IR's of Un. Once the elementary 
solutions are obtained, it will be seen that it is quite 
easy to obtain all the required pOlynomial solutions 
for any general values of the "h's." 

Chain U6 ~ U3 + Ua: For convenience and to save 
ourselves from extensive numerical work, we will 
restrict ourselves to partitions (hI,'" , h4' 0, 0) of 
U6 • For any general partition (hI' ... , h6), we will 
get only more elementary solutions. We will consider 
a U6 group with generators C88', S, s' = 1,2,3, 1,2,3, 
[called (i) hereafter] and two commuting Ua subgroups 
with generators C8S', s, s' = 1, 2, 3, and ctt', t, t' = 
T, 2, 3, respectively [called (ii) and (iii), respectively]. 

1. EQUATIONS DETERMINING THE h.w.p. 
OF Va + V3 CONTAINED IN THE SPACE 

OF AN IR OF Vs 

The basis vectors of an IR (hI,"', h4) of U6 

consists of a maximal linearly independent set of 
polynomial solutions of the equationsl 

CiiP = hiP, Cii,P = 0, j < j' = 1 ... 4, (1.1) 

where cs.' = Li atai8" s, s' = 1 ... :3 is an operator 
realization of the generators of U6 in terms of boson 
creation operators aT$ and annihilation operators ail 
and 

Cw = L aj.a;,., 
s=1.2,3,i,2,3 

and P = peat) are polynomials in at.. 
Among the above polynomials, those which are 

of highest weight h~, h;, h~ with respect to the Us 

169 
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group with generators (ii) are all the solutions of 

C"p = h~P, C,s'p = 0, s < s' = 1,2, 3. (1.2) 

Similarly, those which are of highest weight hI' h;', hi 
with respect to the Ua group with generators (iii) are 
all the solutions of 

cttp = h~P, ctt'p = 0, t < t' = I, 2, 3. (1.3) 

2. REDUCTION OF AN IR (hI' ... ,h,) OF 
U6 WITH RESPECT TO THE SUBGROUP 

U3 x U3 

The various IR's (h~, h~, h~) x (h~, h~, h~ of the 
direct product of groups Ua X Ua contained in an 
IR (hI, ... , hJ of U6 are determined by the rules of 
Littlewood and Richardson for the decomposition of 
a product of S functions into S functions. We take the 
Young frame of the partition (h~, ... , h~ whose first, 
second, and third row boxes are marked by the sym
bols I, 2, and 3, respectively, and apply to it the 
Young frame of the partition (hI"'" hi) whose 
first, second, and third row boxes are marked by 
symbols I, 2, 3, respectively, according to the follow
ing rules of Littlewood and Richardson5 : 

I. After the addition of each set of identical sym
bols ;, we must have a regular Young diagram with 
no two identical symbols in a column; 

2. If the total set of added symbols are read from 
right to left in the consecutive rows of the final 
diagram, we obtain a lattice permutation of 

Thus, corresponding to each of the following 
diagrams built according to the above rules, 

h' 
1 ,xu\ 

I .. · I 

r-h~----"I , X121 , x221 
2 2 I .. · I i .. · i 

l-h~1 
(2.1) 

,X1a\ ,x2a\ ,xaal 
3 .. ·3 I .. · I 2 .. ·2 3 .. ·3 

,X14\ ,x2'\ r Xa4\ 
I .. · I 2 .. ·2 3'" 3, 

where the rows from top to bottom have lengths hl' 
h2' h3' h" respectively, we have an IR (hI' ... , ha) X 

(hf,'" , hg) of Us x Us contained in an IR (hl ,' •• ,h4) 

of U6 • Let Xii be the number of symbols I occurring in 
the jth row of (2.1). Then from Littlewood's rules we 

5 D. E. Littlewood, Theory a/Group Characters (Clarendon Press, 
Oxford, 1950), p. 94. 

have 

h~ ~ h~ + X 12 ~ h~ + X13 + X 23 ~ Xu + X 24 + X3', 

h~ ~ h~ + X13 ~ X 14 + Xu, h~ ~ X14' (2.2) 

Xu ~ X 22 ~ Xa3' 

Since the lengths of the rows from top to bottom are 
hl' ... , h" respectively, 

h{ + Xu = hI' 

h~ + X 12 + X22 = h2' 

h~ + X13 + X 23 + X33 = h3' 

X14 + X 24 + X34 = h,. 

(2.3) 

The total number of 1, 2, 3 are, respectively, hI, h;', 
h;'. Hence, 

Xu + X 12 + X13 + X14 = hi, 
Xu + X23 + X2' = h2' (2.4) 

X33 + X34 = hg. 

Now the highest weight of the Lie algebra with 
generators (i) occurring in the IR of U6 corresponding 
to the partition (hl ,···, h,) is (hl ,"', hJ, and 
similarly, the highest weights of the two Lie algebras 
with generators (ii) and (iii), respectively, occurring 
in the IR's (h~, ... , h~) and (hI' ... , hi) of the two 
U3 groups are, respectively, (h~, ... , h~ and (hi, ... , 
hpJ. Whether or not the reduction of IR's of a U6 

group with respect to a product of two commuting 
Ua groups given in Littlewood's book applies to our 
present Us and Ua X Ua groups with the above 
mentioned generators can be seen by considering the 
rules with reference to the basic representation6 

(10' .. ) of U6 • For example, the U6 and Ua X Ua 
groups dealt with in Littlewood's book7 are such that 
the basic representation (10· .. ) of Us contains the 
representations (10' .. ) X (0· .. 0) and (0· .. 0) X 

(100) of Ua X U3 • One easily finds by considering 
polynomial bases that the IR of the Lie algebra with 
generators (i) with highest weight (10" .) contains 
the IR's of Ua + Ua [the direct sum of algebras with 
generators (ii) and (iii)] with highest weights (100; 000) 
and (000; 100), where the first three components corre
spond to one Ua and the last three components to the 

8 See E. B. Dynkin, Am. Math. Soc. Trans. Ser. 2, 6 (1950) for 
definition of equivalent embeddings of Lie algebra G' in a Lie alge
bra G and a criterion for the equivalence of two embeddings. 

, Littlewood's book actually gives a way of writing the product of 
two S functions as a sum of S functions which directly gives an 
analysis of the Kronecker product of two irreducible representations 
of the symmetric group. To each irreducible homogeneous integral 
representation of degree m of the full linear group, and hence of the 
unitary group, corresponds an irreducible representation of the sym
metric group on m symbols. Hence, the analysis of the Kronecker 
product of representations of the symmetric group gives a reduction 
procedure for an IR of Um+n with respect to the direct product of 
two commuting subgroups Um X Un by considering the Frobenius 
theorem of reciprocality for finite groups. 
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other Us. Thus, the rules given in Littlewood's book 
hold for the Ua and Us x Us groups in the present 
article. 

We determine a basis for all the solutions of (1.1)
(1.3) in one-to-one association with Littlewood dia
grams. 

3. ELEMENTARY LITTLEWOOD DIAGRAMS 

We will rearrange (2.1) as follows. In each row, the 
2's are placed as far as possible under the l's available 
in the row above; if all the places under the 1's are 
filled, then the 2's are placed under 2 or 3, whichever. 
are available in the row above. Again, the j's are 
placed as far as possible under the 2's available in the 
row above. If all the places under the 2's are filled and 
there is still an excess of j's in the row, they are placed 
as far as possible under the 1's. If the places under the 
1's are also filled and still there are 3's present in the 
row, they are placed under the 3's. The rearranged 
diagram is 

,------h~------, r-Xll-I 
1 I 

""1 ----h~----;I , X 121 
2 2 1· .. 1 

,X141 r-X24-1 

T··· 1···3···3'··2···2··· 3. 

Y I '-----Xs4----' 

(2.1') 

We divide (2.1') columnwise into elementary per
missible diagrams (e.p.d.). A diagram is said to be 
permissible if it is a possible rearranged Littlewood 
diagram [that is, if the numbers Xi; satisfy the inequali
ties and Eqs. (2.2)-(2.4)]; it is said to be elementary if 
it cannot be split columnwise into two permissible 
diagrams. All the possible columns of (2.1') are the 
following: 

I, I, I, 1,1,1,1,1,1, 1, I, 1, 1, 1 

2 2 E3 1 1 1 222 2 2 222 

3 E2 2 2 E62 2 I I I 3 3 3 

El j Es j 2 j Ell j 2 T 

I, I, I, E, ElO E14 

2 2 E17 

3 E16 

E1S 

Their frequencies in (2.1') are, respectively, as follows: 

XS3 = ml' X 22 - X33 = m2, Xu - X22 = m3' 

min (Xl2' X23' X3,) = m" 

min (xl2 , X23) - m, = ms, 

Xl2 - m, - ms = m6' 

min (X 23 - m" X3, - m,) = m 7 , 

X23 - m, - ms - m7 = rna, 

min (X13 , X2,) = mlO' 

min (Xl3 - m10 • xs, - m, - m7) = mD. 

XIS - mD - mlO = mll, 

X34 - m, - m7 - m9 = ml2, 

X24 - ml0 = m13 , Xa = rna, 

h~ - Xl' - m13 - m12 = mIS' 

h~ - h~ - Xl3 - m7 - rna = m16, 

h{ - h~ - X I 2 = m17' 

To find all the possible e.p.d.'s, let us for example 
find all the e.p.d.'s containing the nonpermissible 
column 

1 
2 
1 
j 

A permissible diagram containing the column must 
contain at least one 2 in the second row (and not in 
the third row since then the diagram would not con
tain the column); hence, it should contain at least one 
volumn l Hence, the smallest permissible diagram 
containing the column is 

I I 
2 2 
I 
3 

Moreover, a permissible diagram containing the above 
e.p.d. remains permissible by leaving out the two 
columns of which it consists, as one finds that the 
inequalities (2.1) still hold in the remaining diagram. 
Hence, 

I 1 
2 2 
I 
3 

is the only e.p.d. containing the column. Similarly, one 
finds that the following are all the possible e.p.d.'s. 
Since a permissible diagram is either elementary or can 
be split columnwise into two permissible diagrams, it 
follows that any diagram is a set of the following 
e. p.d. put together, neglecting the order of columns in 
a diagram. In addition to the permissible columns 
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among those written already, the possible e.p.d.'s are 

1 1 1 1 1 1 1 1 1 1 1 1 

2 2 22 22 21 2 

2 2 1 3 3 3 

3 3 3 2 2 

E7 E8 E9 E12 E1a E~a 

The division of (2.1') into e.p.d.'s is not unique as is 
seen from the following example. The diagram 

111 
2 1 
3 
2 

may be thought of as consisting of either E1a and Ea, 
or E;a and Es' Then we make it a convention to 
include a nonpermissible column of (2.1') in an e.p.d. 
by adjoining to it the possible column nearest to it 
as we go from left to right, and we propose to do this 
for every nonpermissible column, going from left to 
right. Thus, in the example above, we think that 
(2.1') = ElaEa . 

The frequencies with which the e.p.d.'s having more 
than one column occur in (2.1') are 

C13 = min (mIa, rna), 

C14 = min (rnia - C13 , rn3) = C~a, 

C12 = min (rn12 , rn2) = rn12' 

C9 = min (rnu, rn2 - CI2) = rn9' 

C7 = rn7 = min (rn7' rna - C14), 

Cs = rns = min (rns, rna - C14 - C7)· 

4. CONSTRUCTION OF THE h.w.p. 

Each e.p.d. is a diagram built by the application of 
the symbols of one Young diagram on another 
according to Littlewood's rules. We read out the 
values of h~, ... ,hg and hI' ... , h4 in each e. p.d. 
and determine the solutions of (1.2, 1.3) by taking 
suitable linear combinations of the Weyl basis vectors, 
obtained by filling the Young diagram of (hI' .. h4) 

by symbols 1,2,3, 1,2,3, so that the numbers in the 
rows are nondecreasing, and those in the columns are 
increasing (we regard that i < j for all i and j). To 
each Weyl basis vector corresponds a polynomials 
in at. which is already a solution of the equations 
(1.1). In the present case, we get a unique solution of 
Eqs. (1.1)-(1.3) for each e.p.d. The solutions 
corresponding to the e.p.d. of (2.1') and denoted, 

8 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1459 (1963). 

respectively, by 81, ... ,817 are as follows: 

Sl = (1 2 3), S2 = (1 2), S3 = (1), S4 = (1 1 2 3), 

S5 = (1 1 2), Sa = (1 1), 
S7 = (1)(1 2 2 3) -r (3)(1 2 1 2) -r (2)(1 2 3 1), 

Ss = (1)(1 2 2) - (2)(1 2 1), 

S9 = (1 2 1 3)(12) - (1 2 12)(1 3), 

SlO = (1 2 1 2), S11 ~ (1 2 1), 

S12 = (1 2 3 3)(1 2) -r (1 2 3 1)(2 3) -r (1 2 3 2)(3 I), 

SI3 == (1 2 3 2)(1 I) - (1 2 3 1)(1 2), 

S~3 == (1 2 3 2)(1) - (1 2 3 1)(2), SI5 = (1 2 3), 

S16 == (1 2), S17 == (1), SI4 == (1 2 3 1), 
where 

We associate with (2.1') the polynomial which is 
the product of all the elementary solutions correspond
ing to all the e.p.d.'s which make up (2.1') that is 
equal to 

p = (1)m17(12)m16(123)m15(SI3)013(S~3t14(S12t12(S9F9 

x (123 1)m14(121 rU(1212)mlo( S7t'( s8)08(11 )m6-018 

x (1l2)m5(1123)m4(1)m.-Ou-08-0, 

x (12r·-C12-09(123)ml. (4.1) 

P is then a solution of Eqs. (1.1)-(1.3). 
When the hi' h;, and h; are fixed, all the quantities 

Xij depend on three independently varying parameters 
which may be chosen as Xa4' X24, and X I3 [as seen 
from Eqs. (1.2), (1.3)]. The range of their variation is 
fixed by the inequalities and equations (1.1)-(1.3). To 
distinct sets of values of X a4 , X24' and Xl3 correspond 
distinct diagrams (2.1). Hence, they serve to label the 
various equivalent IR's of Ua X Ua occurring in the 
reduction of an IR of Us. 

It remains to be shown that the h.w.p. associated 
with diagrams (2.1) in the way described above are 
linearly independent. The h.w.p. corresponding to dis
tinct sets of values for (h~, h~, ha) and (hI' h~, hs), while 
hI' h2' ha, h4 are fixed, are linearly independent, as 
they are eigenfunctions of linear differential operators 
CBS and cit corresponding to distinct sets of eigen
values. It remains to be shown that when an IR 
(h~, ... ,h~) x (hI' ... , hg) of Ua X Ua occurs more 
than once in the IR (hI' ... ,h4) of Us, the poly
nomials P given by (4.1) are linearly independent. 

5. LINEAR INDEPENDENCE OF THE h.w.p. 

Let us define the functions Xi = (i), Yi = (1 i), 
Zi = (1 2 i), Wi == (1 23 i). The polynomials Xi' Yi' 
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Zi' Wi are functionally independent. The polynomial 
(4.1), when expressed in terms of the new functions 
Xi' ••• , wi,is 

(1)hl'-h2(12)h'-h3(123)hS'-h4(WI)m14(ZIW2 - Z2WI)m10 

X [WI(X2Ya - XaY2) + W2(X3YI - XIYa) 

+ W a(X1Y2 - x2Yl)f12 

X (Y1W 2 - Y2WIf13(XIW2 - X2WIfu 

X (X1Z2 - X2zl f s(ZI)mll 

X [(XIY2 - X2Yl)(ZlWa - ZaWI) 

- (XIYa - XaYI)(ZIW2 - Z2WI)f' 

X [XI(Z2Wa - ZaW2) + X2(ZaWI - zlwa) 

+ Xa(ZIW2 - Z2WI)f7 

X [Yl(Z2Wa - ZaW2) + YlZaWI - zlwa) 

+ YS<ZI W 2 - Z2WI)]m4 

X (YI)ms-013(YlZ2 - Y2ZI)m6(XI)m3-014-07-0S 

X (XIY2 - X2YI)m2-012-O. 

X [XI(Y2Za - YaZ2) + XlYaZI - yIza) 

+ XS<Y I Z2 - Y2ZI)]m1
• 

The first three factors may be omitted as they are 
common to all the polynomials having the same 
values for hI' ... , h4 and h~, ... , hg. P is of degree 
mi + m2 + ma = hI - h~ in the quantity Xl' Hence, 
a linear relation 

where a(Xa4' X24' XIa) are numerical coefficients, im
plies that the coefficient of X~l-hl' in :2 aP must also 
be zero. This coefficient is 

Q = (Y2Wa - YaW2f 12(W2 - Y2f13(W2)C14Y2(Wa - Za) 

- Ya(W2 - Z2f9(Z2Wa - ZaW2f7(Z2fS 

X (W2 - Z2)m10(Z2 - Y2)m6(Y2)m2-012-C. 

X (Z2 Wa - Za W2 + Y2Z3 - YaZ2 

+ YaW2 - y2wa)m'tY2Za - yaz2)m1 

X (YIt2-h2(ZI)h3(WIt., 

where Yi = YIYi , Zi = ZIZi' Wi = W1Wi • 1 aP = 0 
implies I aQ = 0, and the last three factors in Q may 
be omitted as they are common to all the distinct 
polynomials Q corresponding to all the distinct 
polynominals P given by (4.1) and having the same 
values for the h's. Q is a polynomial in W3 of degree 
CI2 + Cg + C7 + m4 = X 34 • The coefficient of W:·4 

in Q is 

R = (W2 - y2)013(W2)014(Z2)07+CS(W2 - Z2)m10 

X (Z2 - Y2)m4+m5(Y2)m'(Y~a - YaZ~ml. 

R is again a polynomial in W2 of degree mlO + Cl3 + 
C14 = X24' The coefficient of W:" in R is a polynomial 
T in Z2 of degree C7 + Cs + m4 + ms + mi = 
ha - h~ - xIa ' 

To prove the linear independence of the P's given by 
(4.1), we observe that no two P's have the same set of 
values for the parameters X24 ' XS4 ' and Xia • Let us 
divide all the P's into classes such that two P's belong
ing to a class have the same value for X34' and two 
P's belonging to distinct classes have distinct values 
for X34 • Each class is. divided into subclasses in a 
similar way so that two P's contained in a subclass 
have the same value for X 24' and two P's coming from 
two distinct subclasses have distinct values for X 24' 

We find that two P's belonging to the same subclass 
have distinct values for X13' We know already that 
1 aP = 0 implies 1 aQ = O. Treating Q as a poly
nomial in W 3 , the coefficient of each power of W3 is 
zero. (The functions Yi , Wi' i = 2, 3, are also 
functionally independent.) Hence, if X a4 is the maxi
mum possible value of X a4 in its range, then the co
efficient of W;34 in l aQ must be zero. Therefore, 
1 ajRj = 0, where the a/s are a subset of all the 
coefficients a(Xa4' X24, xu) and each a j is of the form 
a(X34 , X24 ' X I3). Again, since R j is a polynomial in W2 , 

the coefficient of W~24 in 1 ajRj , where X24 is the 
maximum value of X24 when X34 has the value XS4 , 

must be zero. That is, 1 ajkTk = 0 where the ajk's are a 
subset of the coefficients aj • But Tk is a polynomial in 
Z2 of degree ha - h~ - xia and all the Tk'S for the 
various possible k have distinct values for X ia . Hence, 
each ajk = O. Considering the next highest value 
X;4 of X24 ' when X34 has the value Xa4 and the co
efficient of (Wa)'''34( W2)"·4' in ! aQ is zero, leads to the 
vanishing of another subset of coefficients ajp = O. 
Similarly, fixing the value X 34 for X 34 and considering 
the possible values of X 24 in decreasing order) we get 
each aj to be zero. Again, repea~ing the same argument 
and giving values to X34 in decreasing order in its 
range, we get each coefficient a(x34) X24, X 13) = O. 
Hence, the P's given by (4.1) corresponding to distinct 
diagrams, i.e., having distinct sets of values for the 
parameters (X34 , Xu, X I3), are linearly independent. 
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!his work. presents some aspects ~f the static energy-depe~dent Boltzmann equation in plane geometry 
USIng a contInuous-energy formulation. In a first part, solutIons are found for a class of synthetic sepa
rable (b~t non.degen~rate) energy-transfer kernels. Such kernels are representative, for instance. of 
neutron melastlc sloWIng down. In a second part, the same problem is considered with the addition of a 
projection kernel (typical of neutron fission); it is shown that the solutions split into space-energy 
separable components and nonseparable "slowing-down transients." 

I. INTRODUCTION 

Little progress has been made in the solution of the 
energy-dependent Boltzmann equation, as opposed to 
the status of the one-speed transport equation, where 
Case's method of singular normal modes 1 has yielded 
considerable success. 

For a long time, energy-dependent investigations 
were specialized to finding exact solutions to the 
spatially dependent neutron slowing-down problem, 
with elastic scattering and without fission. 2- 7 

More recent work has been applied to the neutron 
thermalization domain: The energy-transfer operator 
has been approximated by a sum of degenerate 
(projection) kernels, which, in turn, allows the re
duction of the initial equation to a set of coupled one
speed transport equations.8- 15 Also, some work has 
been done on themultigroup formulation,16-18 but the 
discretization of the energy variable distorts the spec
trum of the Boltzmann operator: This is of prime 
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part on the author's Ph.D. thesis, Department of Nuclear Engi
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importance in the study of the time-dependent 
evolution.19 

Works trying to extend Case's method to the most 
general energy-dependent equation are somewhat 
limited in scope. 20 (The completeness theorem involved 
relies upon the Fredholm alternative for the inversion 
of operator equations, which is correct only when the 
energy-transfer kernel, or some iterate, is compact21; 
it fails for unbounded and noncompact kernels such as 
are found in neutron slowing-down theory.) 

This work presents some aspects of the energy
dependent, static Boltzmann equation, in plane 
geometry, with a continuous energy formulation. In 
a first part, solutions are found for a class of synthetic, 
separable, but not degenerate, energy-transfer kernels: 
Such kernels are representative, for instance, of neu
tron inelastic slowing down. A new energy transforma
tion is developed, which reduces the initial equation to 
a simple form, and an asymptotic evaluation of the 
Green's function is given. 

In a second part, the same problem is considered 
with the addition of a projection kernel (typical 
of neutron fission); it is shown that the solutions 
split into (1) space-energy separable components, 
representative of the neutron regeneration, and 
asymptotically dominant; and (2) nonseparable, 
"slowing-down transients" solution of the initial equa
tion without the fission-projection kernel. This gener
alizes the results of a previous work22 : In order to 
achieve completeness for the normal modes of the 
Boltzmann equation with fission and slowing down, 
one must introduce auxiliary modes which are solu
tions of the ordinary slowing-down equation. 

18 Proceedings of the International Symposium on Pulsed Neutron 
Research (JAEA, Vienna, 1965). 

20 R. J. Bednarz and J. R. Mika, J. Math. Phys. 4, 1285 (1963). 
U A. E. Taylor, Introduction to Functional Analysis (John Wiley 

& Sons, New York, 1958). 
21 B. Nicolaenko and P. F. Zweifel, Proceedings of the International 

Symposium on Neutron Thermalization and Reactor Spectra (IAEA, 
Vienna, 1968), p. 63. 
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n. THE BOLTZMANN EQUATIONl WITH 
A CLASS OF SYNTHETIC ENERGY

TRANSFER KERNELS 

A. Introduction of a Synthetic Scattering Kernel 

Many extensive solutions have been proposed to 
the problem of spatial neutron slowing down with· 
elastic scattering.2-7.23.24 Yet, little attention has been 
paid to the fast domain, where inelastic scattering is 
overwhelming dominant, especially for heavy nuclei: 
Most calculation schemes use the multi group (discrete 
energy) formulation. Such a multigroup formulation 
distorts the spectrum of the Boltzmann operator. The 
necessity for a continuous energy formulation has been 
widely recognized in the neutron thermalization 
domain, where a rigorous study of the spectrum of the 
Boltzmann operator is fundamental for the inter
pretation of the time-dependent evolution of the 
neutron field.19 This is also valid for the fast domain. 

With the assumption of plane symmetry, we are 
interested in the following slowing-down transport 
equation: 

01p 
I-' - (x, 1-', E) + 1p(x, 1-', E) ox 

= S [+OOf+1 KinCE' -+ E)1p(x, 1-", E') dE' dl-" 
2 JE -1 
+ ~f+1 1jJ{x, 1-", E) dl-" + Sex, 1-', E), 

2 -1 
(1) 

where 1p(x, 1-', E) is the angular neutron density, Ci is 
the mean number of secondaries emitted after an 
inelastic scattering collision times the probability of 
inelastic scattering, Ce is the mean number of second
aries emitted after an elastic scattering collision times 
the probability of elastic scattering, x is the position 
variable measured in optical units, E is the neutron 
energy, I-' is the cosine of the angle between the neutron 
velocity vector and the x axis, and Sex, 1-', E) is the 
source term. The kernel Kin(E' -+ E) gives the proba
bility that a neutron of energy E' will be slowed down 
to a unit energy interval about the energy E by in
elastic collision. Inelastic scattering is assumed iso
tropic in the laboratory system. 

Equation (1) contains two simplifying assumptions: 

compared to the inelastic energy degradation (which 
is valid for heavy nuclei). 

In no way does Eq. (1) assume constant cross 
sections throughout the whole energy range. Below the 
inelastic threshold energy Eo, the inelastic scattering 
term becomes a known isotropic source term; 

C f+1 lfXJ -2i dl-" Kin(E' -+ E)1p(x, 1-", E) dE', 
-1 Eo 

(2) 

and we are left with the solution of a classical spatial 
elastic slowing-down problem.2-7.23.24 Therefore, we 
are interested in solutions of Eq. (1) for energies 
greater than Eo. 

The exact shape of ~n(E' -+ E) is poorly known, 
and,as in thermalization theory, it is advantageous to 
introduce a synthetic kernel. The simplest approxima
tion is to assume 

Kin(E' -+ E) = f(E')g(E) , for E' > E, 

= 0, for E' < E, (3) 

where fee) and gee) are a priori arbitrary functions. 
The synthetic kernel (3) was first introduced by 
Okrent et al.,25 in connection with Weisskopf's statis
tical evaporation model. Recently, it was proposed as 
a synthetic kernel per se, by Cadilhac et al.,26 that is, 
a kernel adaptable to experimental data or more in
volved nuclear theory. Such a kernel has, in fact, only 
one arbitrary function, namely gee); this stems from 
the requirement of the conservation of the total 
inelastic cross section: 

[E' [E' 
Jo Kin(E' -+ E) dE = feE') Jo geE) dE = 1. (4) 

Defining 

h(E) = 1If(E), (5) 
this yields 

d 
geE) = - h(E). 

dE 
(6) 

In Weisskopf's statistical evaporation model, geE) 
assumes the shape 25 

(a) The cross sections are supposed to be constant geE) = Ee-EfT, (7a) 
above the inelastic scattering threshold (first excited 
level ~30 keY for heavy fissionable nuclei); where T is the "nuclear temperature," and 

(b) Above the inelastic threshold, the energy trans- [E 
fer due to elastic scattering is considered as negligible h(E) = Jo E' exp (-E'IT) dE'. (7b) 

23 B. Davison, Neutron Transport Theory (Oxford University 
Press, London, 1957). 

•• M. M. R. Williams, The SlOWing-Down and Thermalization of 
Neutrons (Interscience Publishers, Inc., New York, 1966). 

•• S. Yiftah, D. Okrent, and P. Moldauer, Fast Reactor Cross
Sections (Pergamon Press, Inc., New York, 1961), 

.6 M. Cadilhac and M. Pujol, J. Nucl. Energy 21, 58 (1967). 
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FIG.!' Typical shapes for (a) geE) and (b) h(E). 

Cadilhac's approach26 is more general; it consists in 
keeping geE) a priori arbitrary, and fitting it so that the 
approximate operator has the same action as the exact 
one on a particular reference energy spectrum. Mathe
matically, we need only know that 

geE) -+ 0, for E -+ 0+ , 

E-+ +00, 
h(E) is bounded for E -+ + 00. 

The latter fact is not trivial, but holds for all suggested 
physical models (see Fig. 1). Similarly, one can assume 
that geE) is positive for VEE [0, + 00]. 

B. Reduction of the Boltzmann Equation Through 
a New Energy Transformation 

We consider Eq. (1) with a synthetic inelastic 
slowing-down kernel: 

a 
fl - tp(x, fl, E) + tp(x, fl, E) 

ax 

= ~ f+ldfl' g(E)f
oo 

tp(x, fl', E') dE' 
2 -1 E h(E') 

+ S. f+l tp(x, fl', E) dfl' + Sex, fl, E). (8) 
2 -1 

A classical method in elastic slowing-down problems 
consists of looking for energy eigenfunctions of the 
slowing-down operator (namely, exponentials of the 
lethargy variable) and making an expansion of 
the neutron density in this set of eigenfunctions (that 
is, a Fourier-Laplace transformation of the lethargy 
variable, or a Mellin transformation of the velocity 
variable).23 

In the present case, the inelastic slowing-down 
operator has no eigenfunctions; the following equa
tion, 

).ep(E) = geE) [00 ep(E') dE' (9) 
JE h(E') , 

has no solutions [Volterra integral equation with a 
bounded kernel; h( 00) is finite, different from zero]. 

However, consider the adjoint to the inelastic 
slowing-down operator; the adjoint eigenfunction 
equation is 

ep+(E) = ~ [E g(E')ep+(E') dE' (10) 
h(E) Jo . 

Equation (10) admits the following solutions: 

ep+(E) = h(E»)'-I, V)', Re). ~ 1 (11) 

[keeping in mind that geE) = dh(E)/dE]. So, the ad
joint operator (Volterra integral equation with an 
un~ounded kernel) admits the set of eigenfunctions 
{h(El-l}. Therefore, let us make the "scalar product" 
of Eq. (8) by h(E»).-I; multiply both sides of the trans
port equation (8) by h(Ey-l and integrate over the 
whole energy range; defining 

ijJ(x, fl, ).) = loo tp(x, fl, E)h(E»)'-1 dE, 

one obtains 

o· 
fl ax ijJ(x, fl, ).) + ijJ(x, fl, ).) 

= ~ i:1ijJ
(X, fl', ).) dfl' + Sex, fl, ).) 

(12) 

+ ~ dfl' geE) h(E)l-l tp x, fl ; dE' dE. c 1+1 i oo i oo ( , E') 
2 -1 0 E h(E) 

(13) 

In the last (inelastic scattering) term of Eq. (13), 
change the order of integrations, use relations (l0) and 
(11), and obtain 

a 
fJ, ox ijJ(x, fl, ).) + ijJ(x, fl, ).) 

(14) 

So, if one defines the transformation.At by 

.Attp(x, fl, E) = f'tp(X, fl, E)h(E»).-l dE, (15) 

this transformation reduces the initial Boltzmann 
equation (8) to a pseudomonokinetic equation (14), 
where). is only a parameter appearing in the "multi
plication coefficient" {ce + (cdA)}-which can take 
complex values, as opposed to the classical one-speed 
situation. 
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The solutions of "one-speed" equations like (14) are 
perfectly well known. l The only problem is to find an 
inversion formula to the transformation .At,. 

.At, is always defined, provided that Re A > 1 and 
that "P(x, fl' E) is itself integrable over the whole 
energy range. Now define 

'rex, fl' E) = "P(x, fl, E)Jg(E). (16) 

Then .At, becQmes 

ip(x, fl, A) = Loo'r(X, fl, E)g(E)h(E)A-l dE. (17) 

Define the following change of variables: 

v = h(E). (18) 

Normalize h(E) such that h( (0) == 1. Then Eq. (18) 
defines a one-to-one mapping of 

E E [0, 00] onto V E [0, 1]. 

The mapping is one-to-one since the Jacobian of the 
transformation (18) is always different from zero: 

dh 
- = gee) 
dE 

=;f: 0 for E E ]0, 00[. 

In terms of the new variable V, the transformation 
.A(, can be rewritten as 

ip(X, fl, A) = f'r(X, fl, V)V.<-l dV. (19) 

This is similar to a classical Mellin transform in terms of 
the new variable V with the exception that the inte
gration range over V is restricted to [0, 1], instead of 
[0, + 00]. The inversion formula is well known27 : 

'rex, fl, V) = -. ip(x, fl' A)V-A dA, (20a) 
1 iC+iOO 

21Tl c-ioo 

the integration path being to the right of all singulari
ties of ip(x, fl, A). Also, 

"P(x, fl, E) = ~ ip(x, fl, A)h(E)-'< dA. (20b) (E)5.
C
+

iOO 

21Tl c-ioo 

We recall that, from the normalization of h(E), 

T(x, ft, V) == 0, for V> 1. 

This yields the following nontrivial property of the 

27 A, Erdelyi, Ed., Table of Integral Transforms, Vol. I (McGraw
Hill Book Co., New York, 1954). 
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FIG. 2. The Bromwich contour in the complex;' plane. 

transformation .At" which is shown in Appendix A: 

Theorem I: ip(x, fl' A) defined by Eq. (19) is uni
formly bounded in A, V A such that Re A ~ 1. As a 
consequence, the inversion formula (20a) yields an 
identically null function if V > 1. 

If V ~ 1, the integration path of the inversion 
formula (20a) can be shifted along a Bromwich con
tour defined in Fig. 2, the first singularity on the real 
axis being A = O. [This can be deduced from careful 
inspection of Eq. (14) and its well-known solutions.] 

c. Green's Function: Asymptotic Expressions 

Through the use of the transformation.At, defined in 
Eq. (15), the slowing-down transport equation (8) has 
been reduced to a "one-speed" equation (14). The 
latter equation can be solved for a wide range of 
boundary conditions (full-space, half-space problems), 
using classical methods such as singular normal modes 
expansions; for calculational details, we refer to the 
literature'! Then one uses formula (20) to invert the 
.At, transformation and obtain the neutron distribution. 
As an example, we quote the exact expression for the 
full-space isotropic Green's function solution of Eq. 
(8), with the following source term: 

Sex, fl, E) = is(E) . b(x). (2la) 

The angle-integrated Green's function G(lxl, E) is 

G(lxl,E) = gee! rC+iOO{Ie-IXI/ViW} S(A). h(E)-'< dA 
2m JC-iOO +VI N ;(A) 2 

+ -. - h(ErA dA -- dv, 
g(E)lc+ioo SO.) 11 e-Ixl/v 

2m c-ioo 2 0 N(v, A) 

(2ib) 
where {ViA)} are the roots of 

1 = (c + S) . V.(A) . tanh-1 _I_ 
e A' Vj(A) 

(21c) 
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with 

N(v, A) = v{ (1 - (Ce + ~)V tanh-
1 vf 

+ :2 (ce + ifv2
}, (21e) 

SeA) = .A(,S(E). (21f) 

In Eq. (21 b), the second term ofthe right-hand side 
corresponds to transport transients, and the first one is 
the (spatially) asymptotic component of the solution. 
The next problem is to find an asymptotic evaluation of 
the cumbersome contour integral in the complex 
A plane. At first sight, use of the saddle-point method 
seems to be appropriate for the evaluation of such an 
integral; this is especially true if one introduces an 
auxiliary "lethargy" variable u associated with the 
inelastic slowing down and defined by 

u = -log [h(E»). (22a) 

This is a one-to-one mapping of E E [0, + (0) onto 
U E [+ 00,0]. Then, one gets contour integrals very 
similar to those encountered in spatially-dependent 
elastic slowing-down problems,3-6.28 and classically 
evaluated by saddle-point methods. The position of 
the saddle-point ,1.0 is given by the following equa
tion28 : 

d(l/vo)(A) I u 
dA A=),O = j;j , (22b) 

where vo(A) is the solution of Eq. (2Ic) with the largest 
absolute value. Unfortunately, the solution of the set 
of coupled implicit equations (2Ic) and (22b) is 
impracticable, unless one resorts to numerical tabu
lation. 

Therefore, a mathematical method has been 
developed which yields an explicit asymptotic evalua
tion of formula (2Ib) valid for large distances, and 
which is briefly outlined in the next paragraph. 

One can first simplify the Green's function through 
the following remark: Consider the full-space Green's 
function G(x, ft, E) solution of the (.A(,-transformed) 
equation 

a 
ft - C(x, ft, A) + G(x, ft, A) 

ax 

= !(ce + £1) i+1C
(X,ft" A) dft' + !S(A)b(x). (23a) 

2 ,t-1 

28 Ref. 24, p. 498ft'. 

Introduce the following associated equation, where the 
.A(, transform of the source is constant: 

a 
ft ax F(x, ft, A) + F(x, ft, A) 

= Hce + ~)L:1F(x,ft', A)dft' + b~). (23b) 

Then, in terms of the energy variable, one gets the 
following relation between G(x, ft, E), F(x, ft, E),and 
S(E)~ 

G(x,ft, E) = gee) r1{s/g}(~) . F(x,ft, w) dw, (24a) 
Jv w g(w) w 

where 

v: = h(E), 

w = hee'), (24b) 

and where {S/g}(V/w) is the value of the function 
S(E)/g(E) for E such that h(E) = V/w. Relation (24) 
is nothing but the "Faltung theorem" for the inverse 
Mellin transform,29 similar to the convolution theorem 
for Laplace and Fourier transforms. Such a theorem is 
immediately extended to the inverse .A(, transformation, 
which is closely related to Mellin transforms. In view 
of relation (24), it is sufficient to find an asymptotic 
evaluation of the energy Green's function F(x, ft, E) 
[Eq. (23b»). 

The crux of the method consists in considering the 
inelastic scattering term in Eq. (23b) as an auxiliary 
source term: 

a 
ft ax F(x, ft, A) + F(x, ft, J.) 

= C
e J+1 F(x, ft', J.) dft' 

2 -1 

+ ! {b(X) + Ci f+1 F(x, ft', A) dft/}. (25) 
2 2,1. -1 

Then one applies a spatial Fourier transformation to 
Eq. (25), and obtains a simple expression for the 
Fourier transform of F(x, ft, A) in terms of the well
known solution of the one-speed Boltzmann equation 
associated to a multiplication' coefficient ce • At this 
stage, in contrast to the normal-modes approach, 
inverse .A(, transformation is immediate, and one is left 
with the asymptotic evaluation of F(x, ft, E) for large 
distances, knowing its x Fourier transform. Analytical 
details, being quite lengthy, are found in Appendix B, 
with the final asymptotic expression for the full-space, 
energy Green's-function solution of the inelastic 
slowing-down Boltzmann equation. 

21 Ref. 27, Vol. I, p. 308, relation 14. 
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m. ENERGY·DEPENDENT BOLTZMANN 
EQUATION WITH FISSION AND 

SLOWING·DOWN KERNELS 

The addition of a fission projection kernel to the 
transport equation is of prime importance when it 
comes to studying fast multiplying systems. Physically, 
the classical slowing-down problem of thermal reactor 
theory is changed to a situation with simultaneous 
neutron degradation and regeneration; this may allow 
self-sustaining modes. Mathematically, this implies 
that the sum of a fission and slowing-down operators is 
likely to have a discrete, regular eigenfunction, which 
is not true for the plain slowing-down kernel. 

Nevertheless, little work has been done up to now 
in studying simultaneous fission and slowing down in 
the transport equation. Diffusion approximations or 
multi group (discrete-energy) schemes have been the 
rule23-or the problem has been reduced to a plain 
slowing-down situation by assimilating the fission 
sources to a high-energy Dirac distribution.23 

We are interested in the following equation, where 
energy transfer occurs only through fission and in
elastic scattering: 

a 
" - tp(x, ", E) + tp(x, ", E) ax 

c J+1 = ~ tp(x, ,,', E) d,,' 
2 -1 

~ J+1 d ' (E)J '" tp(x, Il', E') dE' 
+ 2 -1 "g E h(E') 

+ CF x(E) d,,' tp(x, ,,', E') dE' J
+l f'" 

2 -1 ° 
+ td(x - xo)S(E). (26) 

The notation is the same as in Eq. (1); X(E) is the 
fission spectrum, and CF is the mean number of second
aries emitted after a fission collision times the 
probability of fission. In a previous work,22 we solved 
an identical problem with elastic slowing down. In this 
work, quite similar results will be found for Eq. (26). 
Define the global energy-transfer operator (') by 

(')ep(E) = cFx(E) LX) ep(E') dE' + ceep(E) 

+ C geE) roo c{>(E') dE' (27a) 
I JE h(E') 

Eigenfunctions of (') are such that 

(')ep.(E) = vepv(E). (27b) 

At this point, we note the conditions for a null integral. 

Lemma: The necessary and sufficient condition for a 
function epeE) E £1[0, 00] to have a null integral, 

50 CX) ep(E') dE' = 0, 

is that 

¢(l) == 0, 

where ¢().) is the .At, transform of epeE). [This stems 
from the set of IeciprocaJ formulas (IS) and (20b) for 
the .At, tIansform; ¢().) = s: ep(E)h(E»).-1 dE.] 

Coming back to Eq. (27b), its .At, transform is 

v¢v().) = (ce + ¥) ¢vC).) + cFX().)q;v(l). (28) 

Solutions of Eq. (28) belong to two categories: 

l. For solutions such that epv{l) :;I: 0, or 

L'" ep.(E) dE :;I: 0, 

there is a unique eigenvalue, 

(29a) 

to which corresponds a single regular eigenfunction of 
the operator (') : 

Je()') = cFX().) j[CF + CI( 1 -1) ] (29b) 

[keeping in mind that x(1) = S;' x(E) dE = I]. 
From Eq. (29), or from direct solution of Eq. (27b) 

(by reduction to a differential equation), one gets the 
following expression for Je(E): 

Je(E) = ~ X(E) + _C_I - g(E)h(E)-c;I(cF+CII 
CF + ci CF + Cj 

X f"'~ X(E') dE' (30) 
JE CF + Cj h(E')"F/(cF+c11 . 

The regular eigenfunction Je(E) of the energy-transfer 
operator in Eq. (26) corresponds to the asymptotic 
neutron energy spectrum. 

2. For solutions of Eq. (28) such that q;v(1) = ° or 
S: epv(E) dE = 0, then Eq. (28) reduces to 

1JQ;v().) = (ce + ¥) ¢v().), (31a) 

the solutions of which are singularSo: 

(Pv().) = d()' - ).0)' with ).0:;1: I, (31 b) 

(31c) 

30 L. Schwartz, TMorie des distributions (Hermann & Cie, Paris, 
1966). 
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These distributions correspond to the ordinary slowing
down operator. 

The regular eigenfunction :Ie(E), Eq. (30), and the 
continuum of eigendistributions defined in Eq. (31) 
form a complete set in V[O, 00]; this is expressed by 
the following theorem. 

Theorem II: Vep(E) E V[O, 00] has the unique decom
position 

epeE) = g . :Ie(E) + geE! rC

+
ioo 

A(J.)h(E)-i. dJ. 
27T1 )C-iOO 

with A(l) == O. 

Proof: Since S: Je(E) dE = 1, one must have 

g = Loo epeE) dE. 

Then, defining r(E), 

f(E) = epeE) - g. Je(E), 
one has 

ro.) = Looh(E)Hf(E) dE, (32d) 

r(t) = L'Xl feE) dE = O. (32e) 

Since the transport equation (26) is linear, its 
solution can be expressed as the one-speed solution 
due to g . Je(E) plus the solution due to a source r(E) 
of null integral. Call the former solution Je(E)' 
epE(X, /1,) and the latter eptAx, 1', E): 

'1j!(x, fl' E) = Je(E)epE(X, 1') + eptr(x, 1', E). (33) 

Explicitly, epE(X, fl) is the solution of 

o 
fl ox epE(X, fl) + epE(X, fl) 

= Ce + Ci + CFf+1 epE(X, 1") dfl' + ibex - xo) . g. 
2 -1 

(34) 
As to eptr(x, 1', E), 

LOO reB) dE = 0; o 
I' ox ept.(x, fl, E) + ept.(x, fl, E) 

and one must prove that reEl admits the representa-
tion 

feE) = geE! ("+iOOA(J.)h(Er). dJ.. 
27T1 )C-iOO 

The existence and uniqueness of such a representation 
is immediate, since reEl is ..At transformable: 

A(J.) = Loo f(E)h(E)"-l dE. 

Finally, from the lemma, 

A(l) == O. Q.E.D. 

Coming back to the transport equation (26), we see 
that if the source term were of the form 

See) = Je(E), 

then Eq. (26) would reduce to a one-speed equation, 
with a multiplication coefficient CF + Ce + cj , since 
the solution is separable into a function of space and 
angle times :Ie(E). 

For a general source term, the method consists in 
applying the expansion of theorem II to S(E): 

SeE) = g . Je(E) + feE), (32a) 
where 

g = LOO SeE) dE, (32b) 

feE) = geE! (c+ioor(A.)h(E)-i. dJ., 
27T1 )C-iOO 

(32c) 

= Cef+1eptr(X,I", E) dl" 
2 -1 

+ Sf+1dfllg(E)foo eptlX,fl', E') dE' 
2 -1 E heE') 

+ feE) o(x - xo). (35) 
2 

The crucial point is that eptr(x, fl' E) is the solution of a 
plain slowing-down equation without any fission term; 
since the integral of r(E) over the whole energy range 
is null, the same follows for eptr(x, fl' E). To prove it, 
take the ..At transform of Eq. (35): 

0-.1 
I' ox eptr(x, fl, J.) + 'f'tr(x, fl, J.) 

1( Ci)f+l J: ( '~) d' ro.)~· ) = - Ce + - 't'tr x, fl , I\. fl + - u{x - Xo • 
2 l ~ 2 

(36) 

Keeping in mind that r(I) == 0 and that the .A(,

transformed Eq. (36) is homogeneous in l, it follows 
that 

€Ptr(X, fl, l) == 0 for A = 1. 

The success of the decomposition of Eq. (26) into 
the associated Eqs. (34) and (35) had to be expected, 
since one has in fact made an expansion of the source 
See) with the set of "eigenfunctions" of the global 
energy-transfer operator. 
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The solutions of the one-speed equation (34) are 
well known1 ; Eq. (35) is a plain slowing-down equa
tion solved in Sec. II. Thus, the present problem is 
completely solved. 

The Milne problem and criticality problems involve 
only Eq. (34). But the full-space and half-space Green's 
functions involve both solutions of Eq. (34) (space
energy separable modes) and Eq. (35) (nonseparable 
transients). The space-energy separable components 
are proportional to the characteristic energy-mode 
Je(E); they are representative of self-sustaining 
modes in the fast-multiplying medium, and are as
ymptotically dominant. The nonseparable modes are 
"slowing down transient," solutions of an ordinary 
slowing-down equation; they are not classical one
speed "singular transport transients" (they may decay 
more slowly than e-'a:', as shown in Appendix B on 
the asymptotic evaluation of the slowing-down Green's 
function), and they represent the adjustment of the 
neutron field from the initial source-energy distri
bution to the final self-sustaining asymptotic spectrum. 
They are likely to delay the approach to equilibrium in 
integral experiments on fast systems (for instance, 
exponential experiments). The relative importance of 
space-energy separable modes and "slowing-down 
transients" is quite sensitive to the degree of criticality 
of the fast system. This, in turn, limits the validity of 
asymptotic transport theory for the energy-dependent 
Boltzmann equation, since its basic assumption is 
space-energy separability, which leads to the omission 
of all "slowing-down transients." 

Similar results have been found for the case of 
fission with anisotropic elastic slowing down.22 In 
conclusion, in order to achieve completeness for the 
normal-modes solution of the Boltzmann equation 
with fission and slowing down, one must consider 
fundamental separable modes reflecting the multi
plicative process, together with "slowing-down tran
sients," solution of an ordinary slowing-down equation. 
In a further paper, numerical results will be presented 
on the relative importance of asymptotic separable 
modes and "slowing-down transients," in the ap
proach to equilibrium in exponential experiments on 
fast-neutron-multiplying media. 

APPENDIX A: PROOF OF THEOREM I 

This theorem (Sec. 1I.B) states that iji(x, fl, J.), the 
.At, transform of 1fJ(x, fl, E), is uniformly bounded in 

A, for VA such that Re A ;;;:: I. 

Proof: 

iji(x, fl, A.) = 50
1 

\f(x, fl, V) V!Re).)-1 viIm). dV (Al) 

[cf. Eqs. (16)-(19)]; 

l¥i(x.,u, 04)1 ~ L11'¥(x.,u. V)I·\V(Re}.)-l1 dV, (A2) 

but 

o ~ V ~ l} => \V(Re).l-11 ~ 1. (A3) 
(ReA) - 1 ~ 0 

So 

l¥i(x,fl, A)I ~ f''¥(X,fl. V)I dV ~ M, (A4) 

where 

M = L''''1fJ(X,fl, E)I dE. (Q.E.D.) (AS) 

APPENDIX B: ASYMPTOTIC EVALUATION OF 
THE FULL-SPACE GREEN'S FUNCTION 

Using the notation of Sec. II.C, the full-space, 
energy Green's function F(x, fl, E) obeys the following 
.At,-transformed equation: 

o 
fl - F(x, fl, A) + F(x, fl, A) 

ox 

J
+l 

= ~ F(x, ,u', A) dfl' 
2 -1 

+ ! {o(X) + S J+1 F(x,,u', A) d,u'}, (25) 
2 A -1 

where the inelastic scattering term is considered as an 
extraneous source. Define 

J
+1 

F(/xl, A) = -1 F(x, fl', A) dfl'· (Bl) 

Then call Ge(lxl) the Green's function corresponding 
to the one-speed transport equation with the "multi
plication coefficient" ce (elastic scattering): 

o 'G ( ) + G ( ) Ce ~I+1G ( ') d' o(x) fl ;- e x, fl e x, fl = - e x,,u ,u + - . 
[IX 2 -1 2 

(B2) 
where 

(B3) 

The exact expression of Ge{lxl) is well known: 

1 dK 2 e-Ke 
''''' 1 11 e-,a:l/v Ge(lxl) = - _e __ + - dv, (B4a) 

2 dC e Ke 2 0 vN(ce , v) 

where Ke is the root of 

1 = ~ tanh-1 K K e· 
e 

(B4b) 
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and 

N(c e , ,,2) = {(1 - Ce" tanh-1 ,,)2 + 712;2C!}- (B4c) 

Now, apply a Fourier spatial transformation to 
Eq. (2S): 

(Bll) corresponds to the elastic scattering of the 
source. 

The next step is to find an asymptotic expression 
for the spatial behavior of FOxl, E). Apply an inverse 
Fourier transformation tel Eq. (BII): 

F(lxl, E) = Gllxl) . !5(u) + Ct • geE) 
(BSa) 271 

(BSb) 

We get 

(iKp + l)P(K,p, A) 

= ~ r+F(K, 1", A) dp' +! {I + ~ F(K2
, A)}. (BSc) 

2 )-1 2 A 

Since Eq. (BSc) is homogeneous in both variables K and 
A, this yields 

F(K2
, A) = GeCK2){1 + ~ F(K2

, A)} (B6) 

and 

FrK2 ),) = Ge(K2) (B7) 
\, 1 - (ci/),)Ge(K2) 

In Eq. (7), let us isolate the term Ge(K2): 

F(K2,),) = G
e
(K2) + cl{GeCK~}2 CBS) 

A - CtGe(K2) 
Recall that2S 

GeCK2) = dK! 1 + {I dv • 
dCe K; + K2 Jo (1 + K2v2)N(ce, ,,2) 

(B9) 

At this stage, the inverse .A(, transformation of Eq. 
(BS) is immediate; keeping in mind that 

.A(,{g(E)h(E)-P} = roo g(E)h(E»).-P-l dE = _1_ , 
Jo ), - p 

(BI0) 
we obtain 

F(K2, E) = GeCK2)!5(U) 
+ clg(E){Oe(K2Wh(E)-C10e(K\ (Bll) 

where ~(u) is a Dirac distribution, and u is the 
"lethargy" defined in Eq.(22a), 

u == -log [heEl]. (22 a) 

In relation (BIl), the exact inverse .A(, transforma
tion has been successfully performed for the energy 
Green's function of the infinite medium; this expres
sion is valid for all energies. The first term in Eq. 

X L+ooOO {Ge(K2WeUCiOe(KI)e+lKZ dK. (B12) 

In Eq. (BI2), the first term Ge(ixl) • b(u) is perfectly 
well known [Eq. (B4)]. One is left with the evaluation 
of 

R(lxl, E) = Ci

2

g(E) r+oo {Ge(K2)}2e{UCI0e(KIl+iKzl dK. 
71 J-oo 

(BB) 
Make the fOllowing change of variable: 

ik = K. (B14) 

Equation (BI3) becomes 

R(lxl,E) = Cig(~) f+iOO{GeCk2)}2e{UCiOe(l:')-kZ} dk, 
2m J-iOO 

(B1S) 
where [see Eq. (B4) and (B9)] 

Ge(k?) = dK: 1 + e d" 
dCe K; - k2 Jo (1 - k2,,2)N(ce , ,,2) 

= dK: 1 + Q(k2). (B16) 
dCe K: - k2 

Equation (BIS) involves a contour integral along the 
imaginary axis for a function of the complex variable 
k; the latter is analytic everywhere, except for 

(1) the cuts [+1, +00] and [-00, -1] on the real 
axis, since these are cuts for Q(k2) in Eq. (B16); 

(2) the essential singularities k == ±Ke on the real 
axis; this is due to the exponential blowup of the term 

exp uciGe(k
2
), 

which behaves as e1/HKe in the neighborhood of the 
essential singularities ±Ke. 

Let us now shift the integration contour in Eq. (BIS) 
from the imaginary axis to the real one. For positive 
values of x, the corresponding Bromwich contour lies 
in the positive half-plane, since for Re (k) > 0 and 
x > 0, one has I e-k '" I -+ O. Then, for x > 0, 

R(x, E) = Cig(~) {r + r {Ge(k2We{UCiOe(kt>-l:Z} dkl 
2m JD Jo J 

(B17) 
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+ix. 

c D 

-I +ke 
o 

-ke +1 

-ix 
FIG. 3. The Bromwich contour for R(x, E) - x> O-in the k 

complex plane. 

(see Fig. 3). It is clear that the contribution of the 
contour D along the cut [+ 1, + 00] involves modes 
all decaying faster than e-a:; these are transport-spatial 
transients. All modes decaying more slowly than 
e-1a:1 are yielded by the contour integral C around the 
essential singularity + Ke; this is indeed the spatial 
asymptotic component one is looking for. 

So, define 

Ras(x, E) = Ci2g(~) 1. {G ik2We{UCiOeCk21-ka:) dk. (BI8) 
m X 

From Eq. (B16), 

is 

{Ge(k
2W 

= (dK!)2 1 + dK!. 2Q(k2) {O(k2)}2. 
dc (K2 - k2)2 dc K2 _ k2 + e e e e 

(BI9) 

O(K2) is an analytic function on the contour C and 
within the domain surrounded by C. Using the three 
components of {Ge(k2)}2 in Eq. (B19), we can split 
Ras{x, E) into three parts: 

Raix, E) = R~~{x, E) + R~2~(X, E) + R~3~(X, E). 

Since the procedure of next calculations is quite 
similar for these three parts, we outline them for 
R~I(x, E): 

RClI(x E) = clg(E) 
as' 27Ti 

this can be rewritten as 

RCll(x E) = cig(E).! L(k, u} 
as. 27Ti X (Ke _ k)2 

X exp --'--- - kx , 
{ 

UCj dK~ 1 } dk 
2Ke dCe Ke - k 

(B21) 

where we have defined 

L(k. u) = {dK!}2 1 
dCe (Ke + k)2 

x exp [(uci/2Ke)(dK!/dce) 

x (lIKe + k) + uc i O(k2»). (B22) 

L(k, u) is an analytic function of k on the contour C 
and within the domain surrounded by C. This analyti
city of L(k, u) enables us to replace it by L(Ke • u) in 
the contour integral (B21), and obtain an asymptotic 
evaluation of R(~~lx, E) in the same way, valid for 
large x: 

L(K u) = _1_ {dK!}2 eUC!{(1{4Kel)(dKel{dcel+Q(Kezl} • 

e. 4K! dCe 

(B23) 

R~;(x, E) '"" Ci2g(~) L(Ke, u) 
7Tl 

f, 
e{UCi'CdKe2/dcel'1/CKe-kl-ko:l 

x 2 dk. (B24) 
C (Ke - k) 

The idea is then to reduce the contour integral in 
(B24) to a classical inverse Laplace transform in x; for 
this purpose, put 

Ke - k = p, 

UCi dK! ot=_·-
2Ke dCe 

Then Eq. (B24) reduces to 

(B25) 

(B26) 

R(I)(x E) '"" e-Kea: • L(K2 u)· cjg(E) f ert
/

p 

ePa: dp 
as , e' 2' 2 m - p 

(B27) 

(with counterclockwise integration, this time). 
In Eq. (B27), one recognizes the following inverse 

Laplace transform: 

1 ~ ert
/

p 1 iC+iOO ert
/

p 

-. -2 ePa: dp = -. -2 ePa: dp. (B28) 
2m C p 2m c-ioo p 

But, from Bateman's Table of Integral Transforms,31 

-. p-V-lert/PePO: dp = ot-V,2x+v/2Iv[2(otx}Z], 1 iC+iOO ~ 

27Tl c-ioo 

(B29) 

where Iv is the hyperbolic Bessel function of order 
V.27 One then obtains the final expression for R~~I(x, E), 
for large x > 0: 

R~~(x, E) '"" cjg(E)L(K!, u)· e-Kea:(xlot)!Il[2(otx)~1 
(B30) 

31 Ref. 27, Vol. I, p. 245, relation 35. 
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A similar procedure can be applied to R~;)(x, E) and 
R~~)Cx, E); one uses the following set of inverse 
Laplace transforms: 

(B31a) 

So, omitting the detailed calculations, one can 
write the final expression for FasC/xl, E), the spatially 
asymptotic part of the infinite-space, energy Green's 
function, as 

Fas(lx/, E) 

1 dK
2 

e-
Ke ''''' = - _0 • __ • o(u) + cig(E) 

2 dCe Ke 

X exp {uci[(1/4K!)(dK!/dce) + O(K!)J}e-Ke ''''' 

x {!(l. dK:)2(~)! I 1[2( IX I x /)!] 
4 Ke dCe a 

1 dK 2 

+ _ . _e. O(K!)Io[2(alxl)!] 
Ke dCe 

! 
+ (O(K;»2 C:J I1[2(alx/)!]}. (B32) 

Q(K2) is defined in Eq. (BI6), Ke in Eq. (B4), a Cwhich 
is a function of u) in Eq. CB26). The expression (B32) 
holds for intermediate and large distances; numerical 
calculations have shown it to be quite accurate at 
distances beyond 2-3 mean free paths, in typical fast 
systems. It is readily seen that Fas(/xl, E) is split into 
two parts: one which decays as e-Ke''''1 and corresponds 
to plain elastic scattering of the source term; the 
second one, Ras(ixl, E), which includes an inelastic 
scattering effects. Recalling that 

loCO) = 1, hCO) = 0, 

and that hyperbolic Bessel functions are monotonically 
increasing, we see that Ras{/xl, E) decays more slowly 

than exp C - Ke Ixl). More precisely, making an asymp
totic expansion of the hyperbolic Bessel functions,21 

we obtain the following expression for Ras(/xl, E): 

Ras(lxl, E),,,,,-+oo 
""' cig(E)eUCI{(1/~Ke 2) (dKe 2/dce )+fI(Ke 2») 

X 1/C41T)!(alxl)te-Ke '''''+2(<% ,,,,p! 

X {!(l. dK~)2. (~)! + 1- dK; Q(K;) 
4 Ke dCe a Ke dCe 

+ {Q(K:WC:I)!}' (B34) 

In Eq. (B34), the leading term is 

exp [-Ke Ixl + 2(1X Ixl)!]. (B35) 

Since a is linearly increasing with the "lethargy" 
U [see Eq. (B26)], FasClxl, E) will decay with space 
more slowly for low energies than for high energies. 
This has been verified by numerical calculations, 
which agrees also with the measurements of apparent 
relaxation lengths in the natural uranium exponential 
experiment32

; in this case, one has nearly a pure 
slowing-down situation, and apparent relaxation 
lengths for high-energy neutrons (~1.0 MeV) are 
systematically smaller than for low-energy neutrons 
(~O.5 MeV). 
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We consider the model of a relativistic boson field, interacting in a local way with a nonrelativistic 
nucleon field. This model was studied by Nelson, who proved that after an infinite nucleon self-energy 
renormalization, the total energy becomes a self-adjoint operator. In this paper we prove that the 
asymptotic limits of the boson field exist. 

1. INTRODUCTION 

The model of a relativistic boson field interacting 
by a Yukawa coupling with a nonrelativistic nucleon 
field was studied by Nelson. l By introducing a 
momentum cutoff in the interaction, he obtains a 
self-adjoint cutoff energy operator. Using a canonical 
transformation due to Gross, Nelson is able to 
separate out a nucleon self-energy term which di
verges as the cutoff is taken away. He then proves that 
the rest of the energy operator converges to a self
adjoint operator as the cutoff tends to infinity. The 
field theoretic properties of this model was studied by 
Cannon in his thesis.2 

The object of this paper is to study the asymptotic 
limits of the quantum fields of this model. The 
method used is somewhat related to the method in 
two earlier papers3 with the same title as this one. 
Here, the fact that we are dealing with a boson field 
leads to some complications, but these complications 
are already dealt with in a paper on a general class of 
cutoff boson interactions.4 The basic idea of the 
method used to establish the existence of asymptotic 
fields is an adaption of Cook's method, and it was 
first used by Kato and Mugibayashi.5 

2. DESCRIPTION OF THE MODEL 

Our Hilbert space Je is the tensor product of the 
space of nucleon wavefunctions and the Fock space 
of the boson field. The nucleons will be nonrelativistic 
particles interacting with the relativistic boson field 
in a local way. For the sake of simplicity we will take 
the nucleons to be fermi particles, although we could 
just as well impose boson statistics or no statistics at 
all on the nucleons. 

An element f in Je is represented by a sequence 
{In} of functions liPI"", Pn I Xl' ..• ,XN) of 

• On leave at Palmer Physical Laboratory, Princeton University. 
1 E. Nelson, J. Math. Phys. 5,1190 (1964). 
2 J. T. Cannon, Ph.D. thesis, Princeton University, 1968. 
3 R. Heegh-Krohn, J. Math. Phys. 9, 2075 (1968); 10, 639 (1969). 
4 R. Heegh-Krohn, Commun. Math. Phys.12, 216 (1969). 
• Y. Kato and N. Mugibayashi, Progr. Theoret. Phys. (Kyoto) 

30, (1963). 

n + N variables Pi' Xi in R3 such that In is sym
metrical in PI"", Pn and antisymmetrical in 
Xl' ... , XN' N is the number of nucleons, and this 
number will be kept fixed. The inner product in Je is 
given by 

(f, g) =Jon!{' -jJn(PI"'" Pn I Xl"'" XN) 

X gn(PI, ... , Pn I Xl' ••• , XN) 

X dpl' .. dPn dX I •.• dxn. 

Let M and # be two strictly positive constants. M 
is the nucleon mass and # the mass of the boson. Let 
11 be the Laplacian in three dimensions regarded as a 
self-adjoint operator on its natural domain of defini
tion, DIl C L 2(R3), and let w(p) = (p2 + #2)1, for 
pER3. 

The free-energy operator Ho is then given by 

(HO!>nCPI' ... , Pn I Xl' ... , XN) 

= L~ WCPi) - 2~ it I1;J/nCPI" ", Pn I Xl'" " xN), 

where l1i is 11 operating on Xi . 

Ho is obviously positive and self-adjoint on its 
natural domain of definition Do. Introducing the 
boson-annihilation operator a(p) by 

[a(p)!ln(PI, ... , Pn I Xl, ..• , XN) 

= (n + l)ln+1(P' PI' ... , Pn I Xl' ... , XN) 

and the boson-creation operator a*(p) as the formal 
adjoint of a(p), we get that,for hE L2(R3), the oper
ators 

a(h) = f h(p)a(p) dp and a*(h) = f h(p)a*(p) dp 

are closed operators with domains containing the 
domain of Hi, and a(h) and a*(h) are adjoints of each 
other. We have the following well-known estimate for 
f in the domain of Ht: 

lIa#(h)fll ~ (1/#) IIh1l 2 11(Hk + 1)/11, (1) 

where a# denotes a* or a. 

185 
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On the domain of H~ we have the following com
mutation relations for g and h in L2(R3): 

[a(g), a(h)] = [a*(g), a*(h)] = 0, 

[a(g), a*(h)] = f g(p)h(p) dp, 

and, for hand w(P)h(p) in L2(RS), 

[Ho, a#(h)] = a#(±wh), 

where + goes with a* and - with a. 
If we define the nucleon annihilation-creation 

operators V'#(x) in a similar way, we get the symbolic: 
expression for the free-energy operator 

Ho = f w(p)a*(p)a(p) dp - 2~ f V'*(x)dV'(x) dx. 

The boson field rp(x) is given by 

rp(x) = 2-t(27T)-t J [eip"'a(p) + e-ip"'a*(p)]w(p)-t dp, 

and the momentum cutoff field is given by 

rpTt(x) = 2-t (27T)-t 

x r [eip"'a(p) + e-ip"'a*(p)]w(p)-t dp. 
J1pI9 . 

By the remarks above, rp,lx) is a self-adjoint oper
ator with domain containing the domain of Ht. The 
interaction is formally given by 

v = g J rp(x)V'*(x)V'(x) dx, 

where g is a real constant. 
If we define the cutoff interaction by 

VTt = g f rpk(X)V'*(x)V'(x) dx, 

then Vk is a symmetric operator with domain con
taining the domain of Hj, and using (1), we find fori 
in the domain of Hj that 

IIVdl1 ~ ek II(Hi + 1)/11, (2) 
where 

ek = (N/I')2-t (27Trt [ r w(prl dPJ!. 
Jlpl~Tt 

Set 

and 

Ek = _NMg2(27T)-3 f [2Mw(p)2 + p2W(p)]-l dp. 
Jlpl~k 

Since Ht is infinitesimally small with respect to 
Ho, we get from (2) that,for any k and any positive 

E, there exists a constant b such that, for all I in Do, 

II Vdll ~ E II Hoi II + b 11/11. (3) 

Hence, Hk is a self-adjoint operator with domain Do 
for all k. 

Nelson proved the following theorem: 

Theorem 1: There is a unique self-adjoint H on Je 
such that,for all real t and all I in Je, 

lim e-it<HrEk>j = e-itHf 
k-+oo 

The convergence is uniform on bounded sets in t, 
and H is bounded below. 

For the proof of this theorem and also for more 
details on the model, we refer to Nelson's paper. l 

3. THE ASYMPTOTIC BOSON FIELD 

Let Dt be the domain of Hi. By (3), H,. = Ho + V,. 
is a self-adjoint operator with the same domain, Do, 
as Ho. Therefore, eitHk, as well as eitH 0 , leaves Do and 
Dt invariant. For h E L2(R3), we define 

af,lh) = e-itHkeitHoa#(h)e-itHoeitHk. (4) 

a!.t(h) is unitarily equivalent to the closed operator 
a#(h); hence it is closed. Since the domain of a#(h) 
contains Dt , and Dt is left invariant by e-itHo and 
eitHk , we see that the domain of a!.t(h) contains Dt . 

Let rp and V' be in Do and let h be in L2(R3). 
Consider the function of one variable t given by 

(rp, a!.lh)V') = (e-itHoeitHkrp, a#(h)e-itHoeitHkV'), (5) 

and the function of two variables sand t given by 

(e- isH 0eisH krp, a#( h )e-itH 0eitH k1p) 

= (a#(h)*e-iSHoeiSHkrp, e-itHoeitHkV'). (6) 

For s = t, the function (6) coincides with the 
function (5). Since eitHk leaves Do invariant, we find 
that (6) is differentiable both with respect to sand t. 
The partial derivatives are given, respectively, by 

(e-isHoiVkeiSHkrp, a#(h)e-itHoeitHkV') 
and 

(a#(h )*e--iSHoeiSHkrp, eitHoiVTteitHkV'). 

V,. is a symmetric operator with domain containing 
Do; hence Vk is closable, and so e-isHoiVkeiSHkrp is 
strongly continuous in s. a#(h) and a#(h)* are closed 
operators with domain containing Do, and so 
a#(h)e-itHoeitHkV' and a#(h)*e-iSHoeiSHkff! are strongly 
continuous in t and s, respectively. Hence both the 
partial derivatives are continuous in sand t, yielding 
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that (5) is a differentiable function of t, that is, 

d # 
dt (cp, ak.t(h},p) 

= (e-itHoiVkeitHt, a#(h)e-iiHoeitHk"P) 

+ (a#(h)*e-itHoeitHkcp, e-~tHoiVkeitHk"P)' 

It is well known that the commutation relations of 
Ho and a#(h) may be given in the form 

Proof: We see that A(f) is the operator of multi
plication by !!l f(x.) and hence the first part of the 
lemma follows immediately. The second part follows 
from Lebesque's lemma on dominated convergence. 
This proves the lemma. 

Since 

eitHoa#(h)e-itHo = a#(h±t), (7) is a uniformly bounded continuous function of x and 
t, it follows from (10) and Lemma 1 that [Vk' a#(h±t)] 
is a bounded operator on Je that depends in a strongly 
continuous way on t. Hence we may integrate (9) and 
get 

where + goes with a* and - with a, and ht(p) = 
eitw(p)h(p). 

By using (7), the formula for the derivative may be 
written as follows: 

d ( # (h» ('v, itHk #(h) itH/c ) - cp, ak t "P = I ke cp, a ±t e "P dt . 
+ (a#(h:J:t)*eitHkcp, iVkeitH~). 

Let hand g be in L.iR3) and "P in Do, we then have 
the following well-known estimate: 

where c depends only on p.. Consulting the definition 
of Vk , we get by this estimate that for h in L2(R3) , 
VA: maps Do into the domainofa#(h), and a # (h) maps 
Do into the domain of Vk • Hence the formula for the 
derivative may be written as follows: 

:t (cp, af.t(h)"P) = -i(cp, e-itH/c[Vk' a#(h±t)]eitH~). 
(9) 

Using the commutation relations for a#(h), we see 
that 

[Yr., a#(h)] 

= ±2-t (2'1Tr!f[ r e±iP"'h(p) dP]"P*(X)"P(X) dx, 
J1PI:5k 

(10) 
where + goes with a* and - with a. 

Lemma 1: LetfE Loo(R3), and define 

.AU) = ff(X) "P*(x) "P(x) dx. 

Then A(f) is a bounded operator on Je such that 

IIA(f)1l :5: N IIfli 00 • 

Moreover, if {in} is a uniformly bounded sequence 
in Loo(RS) which converges to / almost everywhere, 
then A(/n) converges strongly to A(f). 

(cp[a~ih) - a#(h)]"P) 

= -i( cp, fe-i.Hk[Vk' a#(h±,)]eiSHk"P ds), 

where the integral is a strong integral. Since the integral 
on the right-hand side gives a bounded operator, we 
get the following formula for h E L2(R3): 

a(,tCh) - a#(h) = - iJ:e-i.Hk[Vk' a#(h±,)]ei.H/c ds, 

(11) 
where the integral is a strong integral. 

For hE Co, we get from (10) that [VA:' a#(h±.)] is 
independent of k for k large. From Theorem 1, we 
therefore get that 

e-iBHk[Vk' a#(h±s)]eiSH/c 

= e-iS(H/c-E/cleVk, a#(h±.)]eis(Hk-E/c) 

converges strongly to e-isH[V,a#(h±s)]eiSH and the 
convergence is uniform on bounded sets in s, where 
we have introduced [V, a#(h)] = [Vk' a#(h)] for k 
large. Hence we get from (II) that, for h E Co, 

strong lim (a!.t(h) - a#(h» 
k-+oo 

= -i fe-i8H[v, a#(h±s)Jei8H ds, (12) 

where the integral is a strong integral. 
We now define, for h E L2 , 

arCh) = e-itHeitHoa#(h)e-itHoeitH . 

Lemma 2: For h E Co, we have 

af(h) - a#(h) = -ife-isH[v, a#(h±.)]eiSH,ds, 

where the integral is a strong integral. 

Proof" By (12), afih) converges strongly on D! 
and, by Theorem 1, etlIHk-Ek) converges strongly to 
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eitII. Hence, 

eit(IIk-Ek)aff.ih) = a#(h±t)eit<IIk-Ek) (13) 

converges strongly on D! as k tends to infinity. Since, 
on the other hand, a#(h±t) is closed and eit(IIk-Ek ) con
verges strongly to eitII , we get that eitII maps D! into 
the domain of a#(h±t), and the strong limit on D! of 
(13) is a#(h±t)eitII. Multiplying to the left in (13) by 
e-it(IIk-Ek), we find, on D!, that a/!,eCh) converges 
strongly to arCh). 

It follows from Lemma 1 and the formulas (10) 
and (11) that, for h E Co, aff,t(h) - a#(h) is uniformly 
norm-bounded in k. By the observations above, 
aff.tCh) - a#(h) tends strongly to arCh) - #(h) on 
D!; hence, by uniform boundedness of aff,lh)
a#(h), and Eq. (12), we see that this proves Lemma 2. 

We now define Lo to be the dense subspace of 
L2(R3) consisting of those Coo functions with compact 
support which vanish in a neighborhood of the origin 
in R3. 

Theorem 2: For h E Lo, aI/(h) tends strongly on D! 
to the limits a!(h) as t tends to ± 00, such that 
arCh) - a#(h) converges in norm to the bounded 
operator a! (h) - a#(h). Hence, the a! (h) are closed 
operators with the same domain of definition as #(h). 

Moreover al (h) is the adjoint of a± (n), and a_Cn), 
a~(h), a(n), a*(h), a+(h), and a!(h) all have the same 
domain of definition. 

H and a~ (h) satisfy the same commutation relation 
as do Ho and a#(h), in the sense that 

eitIIa!(hefitII = a!(h±t)· 

Proof" We start by proving that, if aI/(h) - a#(h) 
converges in norm, then the strong convergence on 
D! follows by observing that D! is contained in the 
domain of a#(h). By Lemma 2, the convergence in 
norm of aI/(h) - a#(h) is equivalent to the norm con
vergence of the integral 

fe-iSII[V, a#(h±s)]eiSH ds. 

By Lemma 1 and Eq. (10). we see that the norm of the 
integrand may be estimated by 

2-l(27Tr~ N s~p If e±i[w(p)t+Px1h(p) dPj, 

and this tends to zero faster than any inverse power of 
t since h is in Lo. Hence the integral converges in 
norm to a bounded operator as t tends to ± 00. This 
gives us the norm convergence of arCh) - a#(h), and 
from this norm convergence we also get that a~ (h) is 
the adjoint of a± (1/). 

The domain of a#(h) is the closure of the subspace of 
Je generated by states with a finite number of free 
bosons, under the norm 1I'lJ!11# = Ila#(h)'lJ!11 + 11'lJ!11. 
From the fact that a*(h) is the adjoint of a(n) and the 
commutation relations, we see that the norms defining 
the domains of a*(h) and a(h) are equivalent. Hence 
the two operators have the same domain. The rest 
of the domain relations follow from what we have 
already proved, namely that a!(h) - a#(h) is a 
bounded operator. 

To get the commutation relations for H and a~ (h), 
we observe that 

eitII[af(h) - a#(h)]e-itII= af_tCh±t) - eitHa#(h)e-itII. 

The left-hand side conve~ges in norm to 

eitIIa~(h)e-itII _ eitIIa#(h)e-itII, 

as s tends to ± 00. The right-hand side converges 
strongly on Dl to 

a~(h±t) - eitIIa#(h)e-itH 

since we already know from the proof of Lemma 2 
that e-itII maps D! into the domain of a#(h). This 
gives us the commutation relation and hence the 
theorem is proved. 

It would of course be interesting to know if the 
asymptotic limits a! (h) satisfy the commutation rela
tions. But here we meet with the difficulty that we do 
not know enough about the range of a! (h) to form the 
product a~(g)a!(h). As a corollary of Theorem 2 we 
get, however, the following weak form of the commu
tation relations. 

Corollary: For g and h in Lo, and qJ and 'lJ! in the 
intersection of the domains of a#(h) and #(g), we have 

(a~(g)*qJ, a~(h)*'lJ!) - (a~(h)qJ, a!(g)'lJ!) = ±(g, h), 

where + goes with al and - with a± , and 

(a~(g)*qJ, a!(h)'lJ!) - (a!(h)*qJ, a~(g)'lJ!) = o. 
Proof Since arCh) and a#(h) have the same domain 

and are unitarily equivalent, and, by Theorem 2, 
#(h) and a#(h)* have the same domain of definition; 
we see that at(h) satisfies the weak form of the com
mutation relations as given in the corollary. By 
Theorem 2, arCh) converges strongly to a! (h) on the 
domain of a#(h). This proves the corollary. 
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A theoretical study of the phenomenon of spontaneous emission has been carried out, using as a model 
the Wigner-Weisskopf atom in a one-dimensional radiation field. The calculation is performed within 
the framework of the Prigogine theory of nonequilibrium statistical mechanics. When the model is solved 
exactly to first order in the coupling parameter IX and the evolution in time of the diagonal elements of the 
density matrix p is studied, it is found that the relaxation to equilibrium is characterized in part by a 
sequence of slowly damped oscillations. This result seems to be in agreement with the observation made 
by Zwanzig, namely, that exponential decay in time seems not to be universal, and may, in fact, be hidden 
behind some other kind of time dependence. An approximate theory is developed alongside the exact 
one, and corresponding terms in each treatment are compared numerically. It is found that, for small 
values of the coupling parameter IX (IX ~ 0.1) and for sufficiently large values of T, defined as T = IXEt 
where E is frequency and t is time, the approximate theory gives a satisfactory representation of the exact 
solution to first order in IX. The importance and relevance of the model introduced by Van Hove and 
coworkers, in which nonexponential behavior was also observed, will be noted but not stressed in this 
paper, as this relationship will be developed in considerable detail in a subsequent contribution. Finally, 
the possible relevance of the theory to a problem of interest in magnetic resonance is mentioned. 

I. INTRODUCTION 

The problems considered in this paper have been 
suggested in large measure by an article of Zwanzig.1 

In his 1960 Boulder lecture, Zwanzig studied the 
properties of an equation which has the form of what 
is now usually called the Prigogine-Resibois master 
equation.2 Zwanzig's discussion is mostly formal, in 
the sense that the example considered is chosen so that 
the operators in the master equation can be replaced 
by functions, without reference to any particular 
physical model. Some of the conclusions reached, 
however, are rather disquieting in that the explicit 
results which he calculates seem not in accord with 
most of the assumptions which are usually made in 
developing the theory of nonequilibrium processes 
from the master equation. In particular, Zwanzig's 
analysis leads to the result that exponential decay 
in time seems not to be universal, and may indeed 
be hidden behind some other kind of time dependence. 
His other main suggestion-namely, that effects 
which are proportional to the inverse of N, the number 
of degrees of freedom of a large system, may become 

1 R. W. Zwanzig, "Statistical Mechanics of Irreversibility," in 
Lectures in Theoretical Physics (Boulder, 1960), W. E. Brittin, B. W. 
Downs, and J. Downs, Eds. (Interscience Publishers, Inc., New 
York, 1961), Vol. III. 

2 I. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience 
Publishers, Inc., New York, 1962); P. Resibois, "A Perturbative 
Approach to Irreversible Statistical Mechanics," in PhYSics of Many
Particle Systems (Gordon & Breach, Science Publishers, Inc., New 
York, 1966), Vol. I. 

important after a certain length of time-will not be 
discussed in this paper. These effects, which are 
always ignored in usual statistical-mechanical calcu
lations, are clearly related to the problem of recur
rences. A separate paper by the authors will treat this 
problem explicitly for the same model which is studied 
below. 

Nonexponential decay can appear within the con
text of certain mathematical models studied by means 
of the formalism of Prigogine and coworkers.2 •3 The 
model chosen here is the Wigner-Weisskopf atom: 
a two-level quantum system in interaction with a 
massless boson field. 4 This system may be considered 
as a very special case of the well-known Lee model.5 

It retains the main features of the Lee model for the 
purpose of the discussion of spontaneous emission
the decay of the two-level system from its excited state 
to its ground state in the presence only of the zero
point boson field. If one performs the appropriate 
calculations, one finds that the differences between the 
various models are simply ones of complication. In 
this paper, a one-dimensional system is treated; this 
is a simplication which in no way detracts from the 
generality of the results, inasmuch as the "collision 

3 R. Balescu, Statistical Mechanics of Charged Particles (Inter
science Publishers, Inc., New York, 1963); P. Resibois, Electrolyte 
Theory (Harper and Row, New York, 1968). 

• V. F. Weisskopf and E. P. Wigner, Z. Physik 63,54 (1930). 
5 S. S. Schweber, An Introduction to Relatillistic Quantum Field 

Theory (Harper and Row, New York, 1961). 
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operator" developed in Sec. III needs only to be 
multiplied by 417 to obtain the three-dimensional 
result. The model does indeed contain most of the 
difficulties involved for the study of the interaction 
between one single object (the two-level system) and 
an infinite number of degrees of freedom, although it 
cannot be thought of as a model for a great number of 
mutually interacting objects. The concept of tempera
ture is not relevant to the system-it is effectively at 
zero temperature-but nonetheless there is genuine 
irreversibility involved, at any rate in the limit of an 
infinite system. 

The possibility of using the now well-developed, 
formal theory of Prigogine to investigate and, hope
fully, to clarify the serious questions raised by 
Zwanzig, always within the framework of a well
defined model, justifies, we feel, the study which 
follows. In Sec. II, we present a complete, mathe
matical specification of the model under study. In 
Sec. III, we review those aspects of the theory of the 
Prigogine-Resibois master equation which are relevant 
to the problem at hand. In Sec. IV, the purelyexpo
nential solution will be derived and its discrepancies 
from the more exact solution, containing nonexpo
nential terms, will be pointed out. The reasons for these 
discrepancies will be traced in Sec. V, and in Sec. VI 
a numerical comparison of the two solutions will be 
presented. Finally, in Sec. VII, we summarize the 
principal results of our calculation and then suggest 
several conclusions which might be drawn from the 
numerical work presented in Sec. VI. In particular, it 
will be suggested that the model treated below may 
have considerable relevance to some physical situa
tions. 

II. THE WIGNER-WEISSKOPF MODEL 

The Wigner-Weisskopf model consists of a two
level fermion and a massless boson field in interaction. 
The term in the Hamiltonian for the bosons is chosen 
as for a set of harmonic oscillators in the second 
quantization notation: 

Hbos = ! [!liw;.(a!a;. + 1)]. (1) 
;. 

Here A labels the possible modes of oscillation and w;. 

is the corresponding frequency. The creation and 
destruction operators at and a;., respectively, are 
defined by their matrix elements in the occupation 
number representation: 

(n;.1 a;. 1m;.) = [2(n;. + l)]!bKr(m;. - n;. - 1), (2a) 

(m;.1 a! In;.) = [2(n;. + l)]!bKr(m;. - n;. - 1), (2b) 

where a state In;.) is the state with nA (n = 0, 1,2, ... ) 
photons in the Ath mode. The c5Kr( ••• ) is a Kronecker 
delta. 

For the fermion, there are two quantum states 
which may be written 10 and 12). Then, if El is the 
energy of 11) and E2 that of 12), the fermion term in the 
Hamiltonian is 

where the operators IX and IX* are 

IX = 11) (21, 

IX* = 12) (11. 

It is readily checked that 

(3) 

(4a) 

(4b) 

For the interaction between the fermion and the 
mode A, we choose simply 

(5) 

where the coefficient hi of the first term must be the 
complex conjugate of the coefficient of the second 
term to insure hermiticity. Non-energy-conserving 
interactions, such as would be proportional to IXO;. or 
lX*ai, will not be admitted. The full Hamiltonian is 
then 

H = EIIXOC* + E21X*<X + 1 [tliwia!a;. + 1)] 
A 

+ I (h!lX*aA + h;.lXa!). (6) 
;. 

The matrix elements of this Hamiltonian are to be 
taken between states of the system given by 

Ii; {nA}) = Ii) II In;.), 
;'eA 

with i = 1, 2 and with n;. = 0, 1, 2,'" for each 
mode A. 

We must still choose h;. so as to specify completely 
the problem. This we shall do by making the model 
resemble as closely as possible the situation of an 
electron in an atom interacting with a field of electro
magnetic radiation. Since there is but one dimension, 
the field must be scalar, and we shall describe it by a 
potential1>(x, t), satisfying the wave equation 

021> 1 021> ----=0. ox2 c2 ot2 

This equation has a solution 

1> = -! [qit)1>;'(x) + q!(t)1>!(x)], 
;. 
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where 

and 
4>ix) = ceik

;.",. 

The quantity c is a normalization constant to be 
determined by imposing a boundary condition. In 
particular, by considering a system of length L, we 
find 

and 

where the n;. range over the integers. 
The energy associated with the field described by 

4>(x, t) is 
V = t ~ [q;.qi + qiq;.]k~c2L. (7) .. 

But Eq. (1) may be written as 

H bOB = ! ~ nw .. [a;.at + aia .. ]. .. (8) 

Comparison of Eqs. (7) and (8) yields as a suitable 
normalization 

q .. = a;., 
4>..<x) = c(Il/Lw;)ieik;.X. 

where H is the Hamiltonian. Equation (12) has the 
formal solution 

(13) 

The calculations of this paper will be performed in 
the occupation number representation, for which we 
shall use the so-called (11, N) notation6 : 

where 
11 = n - m, N = !(n + m) 

for any operator A. Here n, m, 11, and N are shorthand 
for the set of occupation numbers corresponding to 
each degree of freedom of the system. In this notation, 
the diagonal elements of p appear as the quantities 
Po(N). 

The solution (13) is to be expressed as a perturba
tion series based on the splitting of the Hamiltonian: 

where HI is the perturbation. Let us define 

J(t) = eiHot/Tip(t)e-iHotITi. 

Then, the equation of evolution of/(t) is 

?l = ! [eiHotlTiH e-iHot.'Ti J(t)] at in I , , 

(14) 

(15) 
To complete the analogy, one sets the interaction 

V .. = -e4>;., (9) which yields the iterative solution 

where e is a kind of one-dimensional charge. it 
Jet) = f(O) + (inrl odt'[eiHotITiHle-iHot/Ti,}(O)] 

If one now compares Eq. (9) with Eq. (5), one 
obtains that 

Ih .. 12 = nce2r2Ik;.I{L 

in the "dipole" approximation, with 

r = (11 x 12). 

(10) 

It is readily seen that the quantity e2r2{cn is dimen
sionless and corresponds to the fine structure constant 
of electrodynamics. Accordingly, we set 

IX = e2r2{cn. 
We then obtain 

Ih .. 12 = IXn
2c2 Ik;.l/L. 

This completes the specification. 

III. THE PRIGOGINE-RESmOIS MASTER 
EQUATION 

(11) 

We shall begin with the Liouville-von Neumann 
equation for the density matrix p: 

~: = i~ [H, p] = ill; [Hp - pH], (12) 

This, with Eq. (14), gives the desired perturbative 
solution 

pet) = ! J e-iHo(t-t,)/Ti[H
1

, e-iHo(t,-tz)//i 
n~O Tn 

X [HI"" [HI,e-iHotn/llp(O)eiHotn/Ti] ... ] 

(17) 
where 

From Eq. (17) we shall derive the "generalized 
master equation" for the system by considering the 

• P. Resibois, Physica 17, 541 (1961). 
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diagonal elements of pet). Equation (12) gives 

at(nl pet) In) = (ili)-l(nl [Ho, pet)] In) 

+ (ili)-l(nl [HI' pet)] In). 
That is, 

atpo(N, t) = (i1i)-I(NI [Ho, pet)] IN) 

+ (ili)-I(NI [HI' pet)] IN). 

Since Ho is diagonal in this representation, the first 
term of the right-hand side vanishes. Using Eq. (17), 
we have the result 

atpo(N, t) = (ili)-I~O Lm(NI [HI, e-iHO(t-tl)/li 

X [HI'··· [HI, e-iHotm/lip(O)eiHotm/li] ... 

eiHo(t-t1)!1l] IN). (18) 

Some new notation is required to simplify subse
quent operations on Eq. (18). Let us note that 

(nl [HI' A] In') = I)(nl HI In") (n"l A In') 
n 

- (nl A In") (n"l HI In')], 

where we have used the completeness of the set of 
quantum states. This expression in the (v, N) notation, 
with v and N corresponding to nand n' and 

v' = n" - n', 
is 

1 [(HI)v_.{N + tv')A.{N + tv' - tv) 
v' 

- (HI)..{N + tv' - iv)Av_v,(N + tv')]. 

By a change in the summation index of the second 
term, one may write this in the form 

1 ('1'1 Jel(N) Iv') Av,(N) (19) 
v' 

with a new operator JeI(N) , which acts on the N
variables of everything to its right. The new operator 
JeI(N) is defined by its matrix elements 

('1'1 JeI(N) Iv') = r(HI)v_AN)rfV - rfV'(HI)v_v,(N)r/, 

where the displacement operators 'YJ act thus: 

'YJ1(N) = feN + tv). 

Further, we note that if G is a diagonal operator, 
then, using the notation of Eq. (19), we have 

(nl [HI, eGtAe-Gt ] In') 

= 2 (vi JeI(N) Iv') (N + tv'l eGt IN + tv') 
v' 

x (N + tv'l A IN -~v') (N - tv'l e-Gt IN - tv') 

= 2 (vi Jel(N) Iv')§(v', N, t) (N + tv'l A IN -tv'), 
v' 

(20) 

say. One can put 

G = -iHo/1i 

and then use Eq. (20) in Eq .. (18) to give 

atpo(N, t) 

= (ili)-l lo 1:. fTm(OI JeI(N) 1'1'1) ~(VI' N, t - tI) 

X ('I'll JeI(N) 1'1'2) •.. (vml JeI(N) IVm+1) 

(21) 

where 

I=I··· 1· 
N m VI Vm+l 

In terms of the multiple summation over the '1'
variables, we shall distinguish between those where at 
least one v-variable has assumed the value zero (for 
every degree of freedom), and those where each v has 
a nonzero value. Then, the right-hand side of Eq. (21) 
can be split into two terms as follows: 

atpo(N, t) 

= (ilirlm~of~ V~l fTm(OIJeI(N)G(t - tI)··· 

G{tf-l - tf)JeI(N) 10);rr 

X (01 G(tf - tf_I)JeI(N) ... G(tm) 1'1'".+1) PVm+l( N, 0) 

+ (ilirlm~o V~l Lm (01 JeI(N)G(t - (1) ••• 

JeI(N)G(tm) Iv m+1)irr PvmjN,O). (22) 

In this expression, we have introduced the diagonal 
operator G, given by 

('1'''1 G( r) Iv") = §(v", N, r). 

The operator products are to be expanded using the 
completeness notation: 

1 = I Iv") (1·"1· 
v 

The suffix "irr" is shorthand for "irreducible," and 
has the sense, usual in this kind of work, that the 
intermediate v-variables in the expansion of an 
operator product may not assume the value zero. 

Equation (17) can now be rewritten using the nota
tions of Eq. (19) and (20): 

Po(N, t) = Jo V~l Lm(OI G(t - tI)Jel(N) ... 

JeI(N)G(t".) l1J m+1) PVm+l(N, 0). (23) 
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Equations (22) and (23) combine to yield 

0tPo(N, t) = (ilO-1 ~ r (01 Je1(N)G(t - t1) ••• ,=0 JTf 
G(t'-1 - t,)Je1(N) 10\rr Po(N, tf) 

+ (inrIm~o ~ ITm (01 Je1(N)G(t - tl ) ••• 

JeI(N)G(tm) IV)irr p.(N, 0). 

With a few convenient changes of the t-variables, 
this becomes the generalized master equation 

0tPo(N, t) =J:dTC(T)po(N, t - T) + ~(t, {p.(N, Om, 

(24) 
with 

C(T) = (in)-lt~ fTt_l(OI JeI(N)G(t - tI) ... 

G(tt_I)JeI(N) 10)irr (25) 
and 

~(t, {p.(N, O)}) 

= (i1i)-1 I L f (01 JeI(N)G(t - tI) ... 
m=O.*O Tm 

JeI(N)G(tm) IV)irr p,,(N, 0). (26) 

Equation (26) is the term usually called3 the 
"destruction term," and it can be shown for a wide 
class of initial conditions p.(N, O)-in particular, 
those which correspond to correlations built up only 
by the mechanical interactions between the degrees of 
freedom of the system-that it is a rapidly decreasing 
function of t. In the calculations of this paper, ~ will 
be set rigorously equal to zero by the expedient of 
choosing an initial condition such that only diagonal 
elements of p(O) may be nonzero. 

The form of Eq. (24), a multiple convolution, 
enables one to readily take its Laplace transform 

1p(z) = {dteiztC(t) 

00 

= (in)-1 L(ili)-f (01 JeI(N)[RO(z)JeI(N)]f 10)irr> 
f~O 

(27) 
where 

(28) 

The solution to Eq. (24), for the case that ~ = 0, can 
be expressed in terms of this operator 1p(z). Operating 
on Eq. (24) by 

gives 
-Po(N,O) - iZPo(N, z) = 1p(z)Po(N, z) 

on using the convolution theorem. In this equation, 

Po(N, z) = {dteiztpo(N, t). (29) 

The relation inverse to Eq. (29) is 

Po(N, t) = (27r)-1 fedze-izt po(N, z), (30) 

where C is a contour in the z plane parallel to the real 
axis and above all singularities of the integrand. With 
Eq. (30), the solution to Eq. (24) is 

Po(N, t) = -(27TrIJe dze-izt[1p(z) + iZ]-lpO(N,O). 

(31) 

This important result shows that, at least if ~ = 0, 
the dynamics of a system of many degrees of freedom 
is contained in the inverse operator [tp(z) + iZ]-I. The 
study of this operator for the model specified in Sec. 
n and the case of spontaneous emission will be the 
object of the remainder of the paper. 

With the Hamiltonian, Eq. (6), the matrix elements 
of the operators RO(z) and JeI(N) can be readily 
calculated. Only the results will be stated here: 

(vi RO(z) Iv) 

=i (E(Np + tvp) - E(Np - t1'p) + t v;.w). - zf· 
(32) 

This is a diagonal operator. The (v, N)-variables are 
given suffices p for the fermion states and A for the 
states of the Ath mode of the bosons. Further, 

nE(n) = EI<5Kr(n - 1) + E2<5Kr(n - 2), 

where <5Kr is the Kronecker delta. Then, 

(1'1 JeI(N) Iv') 

= L (vi Je~(N) Iv') 
). 

= L {<5Kr(Np + Hv~ - 3»· [<5
Kr(vp - v~ - 1) 

). 

X h!(2N). + v~ + l)t<5Kr(v~ - v). - 1) 

+ oKr(vp - v~ + l)h;.(2N). + v~ + l)t 
X <5 Kr(v). - v~ - 1)]1(-· 

- oKr(N p - t(v~ + 3» . [OKr(Vp - V~ - 1) 

X h!(2N). - V~ + 1)toKr(v~ - v). - 1) 

+ OKr(Vp - V~ + l)h;.(2N). - V~ + l)t 
X OKr(v). - V~ - 1)]1]·-·'}. (33) 
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The lowest-order term in the series (27) for 1JI{z) is that for which f = I, the f = 0 term vanishing identi
cally, since 

(01 Je1(N) 10) = O. 

With Eqs. (32) and (33), this lowest-order term becomes 

1JI(z) = (ili)-2 (01 Je1(N)RO(z)Je1(N) 10) 

= (ili)-2 I I I (01 Jei(N) Iv) (vi RO(z) Iv) (vi Je~(N) 10) 
v"o;' p 

= (ili)-2II I {bKr(Np + Hv p - 3»[bKr(vp + l)hi(2N;, + v;, + 1)!bKr(v;, - 1) 
v .. o;. p 

+ bKr{vp - 1)h;,(2N;, + v;, + 1)!bKr(v;, + 1)]1]V 

- bKr(Np - Hvp + 3»[bKr(vp + l)hi(2N;. - v;, + 1)!bKr(v;. - 1) 

+ bKr(vp - l)h;.(2N;. - V;, + l)lbKr(v;. + 1)]1]-V} 

X i-1[E(Np + fVp) - E(Np - fVp) + I v~co~ - Z]-l 
~ 

X {bKr(Np - t)[bKr(vp - l)h:(2Np + 1)l bKr(vp + 1) 

+ bKr(vp + l)h,.(2Np + 1)!bKr(vp - 1)]1]-V 

- bKr(Np - t)[bKr(vp - l)h:(2Np + 1)!bKr(vp + 1) 

+ bKr(vll + l)hp(2N p + 1)!bKr(vp - 1)]1]V}. (34) 

When Eq. (34) is multiplied out, one finds two 
contributions, expressible diagrammatically as shown 
in Fig. 1. These contributions may be added up to 
yield 

z _ ~ {_2_ . h 2. 2iz 
1JI( ) - f (ili)2 1;.1 Z2 _ (co;. _ E)2 

X [( N;, + l)bKr(N p - 2)(1 - 1];:2.2) 

+ N ;.bKr(N p - 1)(1 - 1]~.-2)]}. (35) 

In this, E = E(2) - E(I) and 

rA'f(Np , N;) = f(N p + fi, N;. + !j). 

We now use Eq. (35) to obtain the solution Eq. (31) 
for the problem of spontaneous emission. This 
problem uses as initial condition 

In Laplace transform notation, Eq. (31) may be written 

Po(N,O) = [1JI{z) + iz]p(N, z). 

o o -PROPORTIONAL TO 

Kr Kr Kr Kr 
8 ( lip + I ) 8 (II). - I ) 8 (lip - I) 8 (II). + I ) 

FIG. 1. The diagrammatic representation of the two contributions 
totp(z). 

That is, 

Po(N,O) 

= izp(N, z) + [4z/(i1i)2] I {lh;,12. [Z2 - (CO;. - E)2]-1 
;. 

X [(N;, + 1)r5Kr(Np - 2)[p(N, z) - p(Np - 1, 

N;, + 1, {Np }, z)] 

+ N;.bKr(Np - 1)[p(N, z) - p(Np + 1, 

N;, - 1, {Nil}' z)]}. (37) 

We shall write as X' the following choice of the N
variables: Np = 2, Np = 0 for all modes ft. With this 
choice, Eq. (37) becomes 

1 = iZp(X', z) + [4zj(ili)2] 

where 

X L {lh;.12 . [Z2 - (co;. - E)2rl 
;, 

X [p(X', z) - PI().' z)]}, (38) 

PI().' z) = p(Np = 1, N;. = 1, Nil";' = 0, z). 

Then, with the choice of N-variables in the argument 
of p above, Eq. (37) becomes 

. _ 4z 2 1 
0= lZPI(A, z) + {ili)2 ·\h;.\ . Z2 _ (co;, _ E)2 

X [PI().' z) - pCX', z)J. (39) 

Now, in the case of an infinite system, summations 
over the modes A. can be replaced by integrals over the 
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wave number k, with the following correspondences: 

27T I _J+oo dk, 
L;. -00 

w., = c Ikl. 
Here L is the length of the system, which will tend to 
infinity, and c is the phase velocity of the bosons 
(velocity of light). With the choice of Eq. (11) for 
Ih.,12, Eq. (39) yields, in the limit L - 00, 

PI().., z) = o. 
Hence, Eq. (38) becomes 

1 = izp(.J'f, z) 

_2iZotC
2
J+oodk. Ikl 2. P(.N',Z). (40) 

7T -00 Z2 - [c Ikl - E) 
That is, 

1 4IXC2 (00 k )-1 
p(.N', z) = iZ( 1 - ~ Jo dk· Z2 _ (k _ E)2 . 

(41) 

The integral in Eq. (41) is divergent and may be 
written as 

- 1..- [In (Z2 - (ck - E)2)];;o 
2e2 

- ~[In (~) + 27TiJ' (42) 
2zc2 E + z 

where that branch of the log function is chosen such 
that 

In [E - ZJ = 0, for Z = o. 
E +z 

The divergence of the integral in Eq. (41) is the 
well-known ultraviolet divergence7 and can be 
avoided in various ways. The simplest way is to cut 
off the divergent part of the integral at a finite upper 
limit, but this procedure is most inconvenient here. 
We shall instead modify the coupling constant Ih.,12 by 
removing its dependence on Ikl: We replace the factor 
Ikl by its resonant value Ele. It can be noted that this 
is effectively what is done in the Born approximation 
of time-dependent perturbation theory in quantum 
mechanics for such problems. A further "justification" 
is that when this modification is made, the first term of 
Eq. (42) simply drops out, inasmuch as 

_ 4IXcE (oodk. 1 
7T Jo Z2 - (ck - E)2 

= 2otE[ln (~) + 27TiJ. 
1TZ E + Z 

(43) 

1 M. L. Goldberger and K. A. Watson, Collision Theory (J. Wiley 
& Sons, New York, 1963). 

Z PLANE 

-E +E 

FIG. 2. The complex z plane, showing the branch points at z = ±E, 
and the cuts along the real axis. 

The second term is thus quite unaltered, and in Sec. 
IV it will be seen that it is this term only which con
tributes in the conventional theory to the solution, 
Eq. (41), in the limit of long times. We may hope, 
therefore, that our procedure preserves a good 
physical description of the system while ignoring 
the thorny problem of the ultraviolet divergence. 

Accordingly, Eq. (41) becomes 

p(.N', z) =:- 1 - - In -- + 2m . 1 [ 21XE( (E - Z) .)J-1 
IZ TTZ E + Z 

That is, 

Po(.N', t) = - 1- ( dz 
27T Jo 
-izt[. + 2IXiE I (E - Z) 4 EJ-l X e IZ -- n -- - IX • 

7T E+z 

(44) 

The integrand of Eq. (44) has branch points at Z = 
±E, and so we shall define the integrand on the cut 
plane shown in Fig. 2. 

There is a further singularity, the location of which 
may be determined by setting the real and imaginary 
parts of the denominator separately equal to zero. 
For Z = x + iy (x,y real), the imaginary part is 

x + IXE In [(E - X)2 + lJ = 0, for x = o. 
7T (E + X)2 + y2 

The real part for x = 0 is 

2IXE -1 ~ 2yE J y + - tan 2 2 + 41XE. 
7T -E 

The real part vanishes for only one value of y, obtain
able by graphical means, or else by expanding in 
powers of IX. To order 1X2, one obtains 

161X2E 
y = -41XE - -- + .... 

7T 
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Thus, there is a pole with residue 
-i(l + 4OC/11' + ... ) 

at 
z = -4iocE - 16ioc2E/11' + .... 

Therefore, adding together the contributions from the cuts and this pole, Eq. (44) gives 

poeoN', t) = (1 + ~) exp [ - (4OCE + 16:
2
E)t] 

_ J... rOO

dX {12OCE cos xt + [2x + (4ocE/11') In I(E - x)/(E + x)l] sin xt 
211' JE . 36oc2E2 + [x + (2ocE/11') In I(E - x)/(E + x)l]2 

_ 40cE cos xt + [2x + (4(1"E/11') In I(E - x)/(E + x)IJ sin xt} (45) 
4oc2E2 + [x + (2ocE/11') In I(E - x)/(E + x)IJ2 

• 

IV. THE EXPONENTIAL SOLUTION 

In this section, the customary, purely exponential, 
solution to our problem will be derived by making an 
"asymptotic" approximation. This approximation is 
valid for long times, by which we shaH mean times of 
the order of (OCE)-l. It is shown in many places (see, 
for example, Ref. 2) that, for long terms, the function 
e(t) of Eq. (25) will be very small, and so the master 
equation, Eq. (24),may be simplified to 

0tPo(N, t) = L'JdTe{-T)po(N, t) 

= tp( +iO)Po(N, t), 

where tp( +iO) means that tp(z) is evaluated in the limit 
that z ~ ° from above, down the imaginary axis. 
Using Eq. (35) for tp(z), we obtain from this simplified 
master equation the result 

0tPo(oN', t) 

= _ 4iOCC
2
Joodk . zk I (X) 

2 2 Po, t 
11' 0 Z - (ck - E) %=+iO 

and 
0tP1(A., t) = 0, 

both in the infinite-system limit. 

(46) 

If in the integrand of Eq. (46) one sets z = +i€ 
(€ > 0) and 

ck - E = b, 

then one may note that 

lim 2 € = b(b), 
.-+011'(€ + [;2) 

where 15 is the Dirac delta function. Then, Eq. (46) 
becomes 

dtPo(Jf', t) = -4occ2loodk. k . b(ck - E)po(.N', t) 

= -4ocEpo(.N', t). (47) 
Hence, 

Po(X, t) = e-4aEt (48) 

with the given initial condition. Equation (48) is the 
usual exponential solution. 

If the integral appearing in Eq. (46) is evaluated 
before proceeding to the limit z = +iO, then 

- -- dk· -----4iocc2Loo kz 
11' 0 Z2 - (ck - E)2 

= iZ{2OC In [Z2 - (Cf-l - E)2
J 11' Z2 _ E2 

+ 2;:[ln (! ~ ;) + 211'i]}, 

where f-l is an upper cut-off for the divergent part of the 
integral. It is seen that for z = +iO the first term on 
the right-hand side vanishes, as was remarked in Sec. 
III for the justification of the use of the modified 
Ih;.12. The second term yields -4ocE, in accord with 
Eq. (47). 

If one compares the approximate solution, Eq. (48), 
with the solution obtained by an exact treatment of the 
master equation, Eq. (45), there are certain notable 
features. First, the exponent in the first term of Eq. 
(45) agrees with that in Eq. (48) only to first order. 
Ina'smuch as the theory developed so far considers the 
dynamical operator tp(z) to its lowest order only, this 
is not, perhaps, very worrying. More serious is the 
presence of the second term in Eq. (45), which leads to 
the kind of nonexponential decay discussed in the 
previously quoted paper of Zwanzig, l in which he 
showed that this decay was slower than an exponential 
one. This clearly implies that, for sufficiently long 
times, this contribution will dominate, that is, it, not 
the exponential term, should be the long-time asymp
totic solution of the master equation. An even more 
distressing feature is that the second term in Eq. (45) 
is not definite in sign, and so presents the possibility 
of obtaining a negative value for a quantity which by 
its physical nature must be nonnegative, being a prob
ability for the occupation of a quantum state. 
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An examination of the assumptions of the asymp
totic theory casts some light on these difficulties. In the 
approach elaborated by Prigogine and George,S the 
inverse operator [V'(z) + iZ]-l is expanded as 

[V'(z) + izr1 = ~ L -. - . 1 00 [-V'(z)]n 
IZ n~O IZ' 

In the regime of long times, one then assumes that all 
the singular,ities of V'(z) lie in the lower half-plane of z. 
Then, since the contributions of these singularities to 
the inverse Laplace transform integral will all he 
damped by decaying exponentials, only the multiple 
pole at the origin need be considered. But, in Sec. III, 
we have seen that the singularities of V'(z) are not 
confined to the lower half-plane. The contributions 
from the cuts are evaluated along the real axis, and it is 
they which cause the breakdown of the asymptotic 
solution. Besides, the first term of Eq. (45), arising 
from the pole of [V'(z) + iz]-l, is indeed reproduced to 
first order by the asymptotic theory as given in this 
section, and will no doubt be reproduced to higher 
order by the more refined asymptotic theory of 
Prigogine and George (this will be seen to the next 
order in the following section). The absence of the 
second term of Eq. (45) from the solution, Eq. (48), 
is thus explained. 

The possibility of negative values of Po(.N', t) re
mains, however. It is customary? to ignore this 
problem by claiming that the contributions from the 
cuts are in any event very small and probably non
physical, since they appear to be proportional to a 
higher power of rx than the exponential term. This 
should be a reason for neglecting these contributions 
in a treatment where only the lowest order of V'(z) is 
considered. Alternatively, it has been claimed9 that, 
by considering higher orders in V'(z) , one obtains 
further contributions to the solution, which, on being 
added to what one has already, yield a positive definite 
result. But the approach in the paper of Henin is so 
different that it is difficult to see whether or not exactly 
the same problem is being discussed. In any event, the 
second term in Eq. (45) has a very complicated 
dependence on rx, so that it is not clear what part of it, 
if any, should be retained in our present approximation 
scheme. In the next section, this point will be clarified, 
and the reason for the confusion in the approximation 
will be pointed out. 

8 I. Prigogine, F. Henin, C. George, and F. Mayne, Physica 82, 
1828 (1966); F. Henin, I. Prigogine, and C. George, Physica 32,1873 
(1966); I. Prigogine and F. Henin, "Kinetic Equation, Quasiparticies 
and Entropy," in Statistical Mechanics, T. A. Bak, Ed. (W. A. 
Benjamin, Inc., New York, 1967); c. George, Bull. Acad. Sci. Beig. 
53,623 (1967); Physica 37,182 (1967); 39, 251 (1968). 

• F. Henin, Bull. Acad. Sci. Beig. 54, 585 (1968); F. Henin and M. 
De Haan, Physica 40, 399 (1968). 

V. THE DISCREPANCY BETWEEN THE EXACT 
AND THE STRICTLY EXPONENTIAL 

SOLUTION 

So far the independe~t parameters of the solution 
that we have obtained to the master equation have 
been taken as rx, a dimensionless coupling constant, 
and t, the time, usually scaled by the frequency E 
and thus occurrin~ in the combination Et. However, 
a little thought shows that this is a poor choice. Since 
the lowest-order term of e(t), Eq. (25), is proportional 
to rx, we may write 

e(t) = rxC(t), 

where C(t) has a term independent of rx. Then the 
master equation can be written 

o lilt A 

- Po(N, rxt) = dTe(T)po(N, rxt - T), 
o(rxt) 0 

where now t always occurs in the combination rxt. Of 
course, t may be associated with higher powers of rx. 
This means that in the master equation t is scaled by 
rx. Thus, if one tries to keep rx and t as independent 
parameters and then to consider only the lowest-order 
terms in rx, the higher-order terms in t are thrown 
away with those in rx. But, since it is the ai111 of our 
calculations to examine the full time-dependence, this 
is unsatisfactory. It is clear that the proper procedure 
is to consider as independent, dimensionless param
eters rx and, say, rxEt = T. In this way, one may 
consistently retain all dependence on T, and disregard 
all but the lowest-order dependence in rx. 

Let us return to Eq. (31) and carry out this scheme. 
We shall suppress, for convenience, the N-dependence 
in the following manipulations. Conjugate to T = rxEt, 
we define the variable ~ = z/rxE and then make the 
further definitions: 

poet) = Po(T/rxE) = p(T), 

p(~) = LoodTeiSrp(T) = dE LOOdtei(IlEsltpo(t) 

= rxEp(rxE~). (49) 

Now, from Eq. (31), 

[V'(z) + iz]p(z) = -PoCO). (50) 
Hence, 

Further, if we put 

(51) 
then 

(52) 
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For the moment, we shall assume that all the 
quantities in Eq. (52) can be expanded as power series 
in Cl, this with a view to retaining only the lowest
order terms. It can be seen at once that the lowest term 
of tp(~) is indeed independent of Cl. We write 

00 

"p(~) = ,l Clntp(n)(~), (53a) 
n=O 

00 

p(~) = ,lClnPn(~) (53b) 
n=O 

with the coefficients of Cl in these series independent of 
Cl. The equating of coefficients of powers of Cl when the 
relations, Eqs. (53), are substituted in Eq. (52) yields 

[tp(O)(~) + i~]po(~) = -PoCO), (54a) 

tp(l)(~)pO(~) + tp(O)(~)Pl(~) + i~Pla) = O. (54b) 

For the case of spontaneous emission, Eq. (44) 
may be written 

[2i;E In (~ ~ :) - 4ClE + iz ]p(Z) = -1. (55) 

This has the form of Eq. (50), although the full 
operator tp(z) has not been written down. We may thus 
use the results of Eq. (54), with 

p(~) = ClEp(ClE~) 
and 

"p(~) = 2i In (1 - Cl~) _ 4. (56) 
TT 1 + Cl~ 

Now, "p(~) can be expanded as a series in Cl: 

"pa) = -4 - (4iITT)[Cl~ + !Cl3~3 + ... ] (57) 

for I~I < Cl-1 • So, then tp(O)(~) = -4 and 

tp(l)(~) = -4i~/TT + a term from the next term in 
the series for tp(z). 

We shall, for the moment, ignore the term for the Cl2 

term in tp(z), but merely note that consistency demands 
that it be included here. 

With the values found for tp(O)(~) and tp(I)(~), Eq. 
(54) beomes 

(-4 + i~)po(~) = -1 (58a) 
and 

-(4i;!n)po(;) + (-4 + i;)Pl(;) = O. (58b) 
That is, 

peT) = (1 + ~)e-4T-16O:T;,r 

and 
PI(~) = (4 - i~)-2 . (-4i~/TT). 

Inverse Laplace transformation yields 

p0(-r) = e-4T, 

pI(T) = (4/TT)' e-4T(1 - 4T). 

where the expansion 
00 

peT) = ,lClnpn(T) 
n=O 

(59a) 

(59b) 

corresponds to Eq. (53b). In terms of Cl and t, Eq. 
(59a) becomes, to the order calculated, 

Po(t) = p(ClEt) 

= e-4
o:
Et [1 + (4Cl/TT)(1 - 4ClEt)]. (60) 

To first order in Cl, this IS equal to 

poeT) = [1 + 4Cl/TT] exp (-4ClEt - 16Cl2Et/TT). (61) 

We have so far ignored the restriction of Eq. (57); 
that is, for the expansion to be valid, one must have 
I ~I < 11 Cl. Now, this restriction is clearly not satisfied 
for all values of ~ on the contour C of the inverse 
Laplace transform integral, and so the results, Eqs. 
(59), cannot be considered trustworthy. However, 
for small Cl, the parts of the contour where I~I > I/Cl 
will be distant from the origin, and so (in particular, 
for T not too small) will yield contributions to the 
integral which will be incoherent and may be unim
portant. It can be seen, too, that the expansion of 
"p(~) in powers of Cl is effectively the same expansion as 
that performed in the asymptotic theory of Prigogine 
and GeorgeS and does indeed yield agreement to the 
next order in Cl, with the exponent obtained in the 
exact solution [Eqs. (45) and (61)], as remarked in 
the preceding section. 

Whether or not Eq. (60) is a good approximation to 
the exact solution, Eq. (45), cannot, of course, be 
settled by the kind of arguments posed in the preceding 
paragraph. We are seeking a consistent approximation 
in terms of the parameters Cl and T, and must therefore 
express Eq. (45) itself in terms of these, bearing in 
mind, of course, that pICT) in Eq. (59) may be con
sistently included only if something of the oc2 term in 
tp(z) is accounted for, and this is certainly not so in 
Eq. (45). This latter equation then becomes 

_ ~ [O:d~ (12 cos (T/~) + 2[~I + (2/n) In 1(; - oc)/(e + oc)1] sin (Tm 
2TT Jo 36e2 + [1 + (2eITT) In I(e - Cl)/(e + Cl)l]2 

_ 4 cos (TIe) + 2[~1 + (2ITT) In I(e - oc)!(~ + oc)l] sin (Tm). (62) 
4e + [1 + (UITT) In I(e - Cl)/(e + Cl)I]2 
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The reason for the confusion in our approximation 
scheme and for the breakdown of the series expansion 
for "P(e) is now apparent from the integral term in Eq. 
(62). The reason is that this term is nonanalytic in IX at 
IX = O. Were the integrand a well-behaved function, 
the integral would clearly be proportional to IX in the 
lowest order, and the solution, Eqs. (59), would hold. 
But, as it is, we must ask whether the integral in Eq. 
(62) is for small IX comparable to the expression 
(4IXj17)e-4r , which is, to appropriate order in IX, the 
correction to the purely exponential term e-4r-16.rh, in 
Eq. (60). The arguments adv'lnced earlier would sug
gest that this will be so if T is not too small. The 
answer to this question is considered in the next section. 

VI. NUMERICAL COMPARISON 

In this section, we describe briefly the results of 
several numerical experiments which have been 
performed which relate to the various questions raised 
in the preceding paragraphs. To first order in IX, the 
difference between the approximate solution, Eq. (60), 
and the exact solution, Eq. (62), may be computed 
directly. For convenience of notation, we denote the 
approximate correction to the strictly exponential 
term as Pn(Ttt, where 

Pn(r}A = (4IX/17)· e-4
•
Et = (4IX/17)· e-4r

• (63) 

Similarly, we denote the exact correction to the ex
ponential terms as Pn(T)E' where 

T __ 2- r"de(12 cos (Tie) + 2[e-1 + (2/17) In I(e - IX)/(e + IX)I] sin (Tie) 
PnC )E - 217 Jo 36e + [1 + (U/17) In I(e - IX)/(e + IX)\]2 

_ 4 cos (Tie) + 2[e-
1 + (2/17) In Ice - IX)/ce + IX)I] sin (rle)'). (64) 

4e + [1 + (U/17) In I(e - IX)/(e + IX)I]2 

In Figs. 3-5 we present the results obtained upon 
computing Pn( T)E and Pn( T)A for three representative 
values of the coupling parameter IX, corresponding to 
weak coupling (IX = 0.20), intermediate coupling 
(IX = 0040), and strong coupling (IX = 0.80). It is 
evident from the study of these figures that the 
profile of the. exact correction term is charac
terized by oscillations which gradually damp out with 
increasing T. Since all three figures were constructed 
to span a range of T values from 0.0 to 5.0, it is seen 
immediately that the smaller the coupling parameter, 

.... ---
0.00 

-0.10 

0.0 1.0 2.0 

the more rapid are the oscillations. Phrased differently, 
the oscillatory character of Pn(Th persists longer for 
strongly coupled systems than for weakly coupled 
systems. 

On the other hand, one notices that the profile of the 
approximate correction term Pn(T)A decreases monot
onically with increasing T. Since the structures of the 
curves representing Pn(T)E and Pn(T)A are so different, 
we employ the following device to aid in their com
parison: We look for that value of T beyond which the 
absolute value of the particular correction term under 

3.0 
• 

a = 0.20 

4.0 5.0 

FIG. 3. Comparison of the exact (indicated by a dashed line) vs approximate (ind,icated by a solid line) corrections to the strictly exponential 
solution for IX = 0.20. 
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3.0 
T 

4.0 5.0 

FIG. 4. Comparison of the exact (dashed line) vs approximate (solid line) corrections to the strictly exponential solutiori for IX = 0.40. 

consideration, say IPn(T)I, finally falls below a certain 
predetermined value. We then assert that any differ
ences between the two curves, which occur in regions 
characterized by a value of IPn(T)1 less than this pre
assigned value, can be neglected. The use of such a 
device corresponds to a kind of "high-resolution" 
versus "low-resolution" probe for determining the 
success or failure of the suggested approximation 
scheme, as will become clear in the next paragraph. 

Two values of IPn(T)1 were chosen as representative, 
0.25 and 0.025. The criterion suggested above was 

applied to the curves obtained for the following six 
values of at: 0.01, 0.10, 0.20, 0.40, 0.60, and 0.80. In 
the previous section, it was suggested that, for small 
(J. and for T sufficiently large, the calculation of Pn(T)E 
and Pn(T)A should yield results of comparable orders 
of magnitude. Examination of Table I reveals that this 
is approximately true, that is, the apparent differences 
between the approximate and exact correction terms 
are least important when the coupling parameter is 
small. This information (on the range of values of (J. 

and T for which the approximate theory provides a 

0.60~------r-------~------~------~------'---' 

0.40 

..-.. ... · · · · 0.20 ! 
o • 

Cl... : 

0.00 

I 
I 
I 
I . . 

. , , 
, . , , , , , , . , , , . 

a = 0.80 

0.20~----~~----~~~--~~----~~0~----'5~0--~ 0.0 1.0 2.0 3.0 4. . 
T 

FIG. 5. Comparison of the exact (dashed linei vs approximate (solid line) corrections to the strictly exponential solution for IX = 0.80. 
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TABLE I. Comparison of exact vs approximate correction terms. 

\PD(T)\ < 0.25 \PD(T)\ < 0.025 
Approxi- Approxi-

ex. mate Exact mate Exact 

0.01 T>O T>O T>O T>O 
0.10 T>O T>O T > 0.40 T > 0.50 
0.20 T > 0.05 T>O T > 0.55 T > 3.25 
0.40 T > 0.18 T > 0.28 T > 0.75 T>7 
0.60 T > 0.28 T > 0.38 T > 0.85 T> 10 
0.80 T > 0.35 T > 0.45 T > 0.93 T > 20 

reasonable representation of the exact solution) will, 
be utilized in a detailed way in a subsequent paper 
when the present calculation is extended to deal with 
more general situations (see Sec. VII). 

VII. DISCUSSION 

In this last section, we summarize and discuss the 
principal results obtained in this paper and then 
mention several areas of study, related to the present 
problem, which are now under investigation by the 
authors. 

Perhaps the most interesting result of this work is the 
apparent confirmation of the Zwanzig sugge.stion, 
that exponential decay in time may be hidden behind 
some other, more complicated kind of time depend
ence. Indeed, for the model under study here, which 
has been solved exactly to first order in the coupling 
parameter iX, a rather complicated nonexponential 
behavior is observed when one studies the decay in T 

of the diagonal elements of the density matrix p. 
Again, this behavior is illustrated in Figs. 3-5 for three 
representative values of IX. 

The approximate theory, developed in Sec. IV, 
compares favorably with the exact theory for small 
values of iX and for T sufficiently long. Even though the 
actual structure of the two correction terms PD(T)E 
and PD(T)A is quite different, provided one is looking 
at the behavior of these two terms relative to a certain 
preassigned "decay level," the data given in Table I 
indicate that PD(T)E and PD(T)A can be considered of 
comparable magnitude for oc < 0.20. 

It can be said that the approximate correction term 
is, in some sense, more "physical" than the exact 
correction term. This is because PD(T)E oscillates 
about zero and, hence, there exist values of T for which 
the correction term is negative. As indicated earlier, 
there are really two comments one can make con
cerning these negative values of PD(Th. 

The first suggestion relates to the possibility that the 
contributions from the cuts are numerically small 
compared to other, purely exponential contributions 

to the full solution, Eq. (62). An examination of the 
full solution, Eq. (62), for a coupling of oc = 0.10 
reveals that, relative to the term e-4T (1 - I 6OCT/7T) , 
the correction PD(T)E is indeed negligible if one ne
glects all contributions for which \PD(T)E\ < 0.025. 
Incidentally, from Table I we know that this corre
sponds to a value of T ~ 0.5. If one did not insist on 
this requirement, then even the full solution would 
eventually exhibit negative values, since, as may be 
inferred from Figs. 3-5, oscillatory behavior persists 
long after the exponential-type solutions have died 
away. In applications of the theory to problems of 
physical interest, the appropriate cut-off will be deter
mined by the sensitivity of the instrument and the 
measurement being performed. 

The second possible suggestion to account for 
negative contributions to PD(T)E is the observation 
that, in fact, the above calculation has been performed 
only to lowest order in the coupling parameter oc. As 
a consequence, there may well be contributions from 
other higher-order terms which add in such a way as to 
cancel out the over-all effect of these anomalous, 
unphysical contributions to PD(T)E' This, as nearly as 
we understand it, is the suggestion of Henin.9 The 
importance of this suggestion is that it relaxes the 
requirement that the correction term PD(T)E must 
necessarily be small as compared to other terms in the 
full solution. The straightforward way to check this 
suggestion, within the framework of the present model, 
is to extend the calculation to the next higher order in 
the coupling parameter and see if there is any evidence 
for this kind of cancellation. This work is now in 
progress. 

There is yet a third possible explanation for the 
al'parently unphysical behavior of the exact correction 
term. This explanation relates to the recent work of 
Lebo",:itz and Percus.10 These authors investigated 
the time evolution of the distribution function of a 
labeled particle in a one-dimensional system of hard 
rods of diameter a. They discovered that if one ex
panded the inverse of the Laplace transform of the 
velocity autocorrelation function as a power series 
in n = pl(l - ap), then the resulting series, of the 
form Lz Bznz/zz-l, diverged for I ~ 2 and when z --+ O. 
This result was in contrast to the one obtained when 
the problem was solved exactly. In the latter case, an 
explicit closed expression for the time-displaced, self
distribution function Ps was obtained. With regard to 

10 J. L. Lebowitz and J. K. Percus, Phys. Rev. 155, 122 (1967). 
11 L. Van Hove, "Master Equation and Approach ts> Equilibrium 

for Quantum Systems," in Fundamental Problems in Statistical 
Mechanics, E. D. G. Cohen, Ed. (North-Holland Pub\. Co., Amster
dam, 1962),Vo\. I; L. Van Hove and E. Verboven, Physica 27,418 
(1961); A. Janner, L. Van Hove, and E. Verboven, ibid. 28, 1341 
(1962); E. Verboven and L. Buyst, ibid. 29, 653 (1963). 
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the present investigation, perhaps the Lebowitz
Percus result is an indication of the fact that, even 
though our calculation is exact to first order in rl, it 
has still been carried out within the framework of a 
perturbation-type expansion, and, as such, would 
necessarily suffer from the kind of difficulties men-
tioned in the preceding paragraphs. ' 

Nonexponential behavior has also been observed in 
the model introduced by Van Hove and coworkersll-
namely, the evolution to quantum-statistical equilib
rium of an electron interacting with a collection of 
randomly distributed, static, elastic scattering centers. 
As it will be the chief purpose of one of the papers in 
this series to investigate in detail the relation between 
our model and the one introduced by Van Hove, we 
shall not enter into a detailed discussion here. Suffice 
it to say that the model of Van Hove was also in
vestigated in the limits of weak, intermediate, and 
strong coupling, and both exponential and nonexpo
nential behavior was exhibited by the diagonal part of 
the transition probability density, depending on the 
coupling. 

Calculations similar in spirit to that of this paper 
have been performed by Rubin.12 He has considered 
in detail the mechanics of a single heavy particle in a 

11 R. J. Rubin, J. Math. Phys. 1,309 (1960); R. J. Rubin and P. 
Ullersma, ibid. 7,1877 (1966); R. J. Rubin, J. Am. Chern. Soc. 90, 
3061 (1968). 

lattice, a problem with many similarities, both physical 
and formal, to that treated here. Error bounds have 
been calculated for the expression of the momentum 
autocorrelation function as a pure exponential in 
several cases, including that of a finite system. 
Further, Ullersma,13 in the context of an exactly 
solvable model for Brownian motion, has examined 
the circumstances under which a bound electron in 
an electromagnetic field may be described by a 
Langevin equation (implying essentially exponential 
behavior) and has given exhaustive sets of conditions 
which are needed for such a description. 

Finally, we mention that the theory presented in this 
paper might possibly be applied to clarify certain 
aspects of the Ernst method for enhancement of 
sensitivity in magnetic resonance.14 Indeed, a pre
liminary study has revealed that the above theory, 
properly generalized, may well provide a basis for a 
more fundamental understanding of pulse experi
ments in magnetic resonance. 
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Frequency Spectrum of a One-Dimensional Lattice with 
an Isotopic Impurity 
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The frequency spectrum of a one-dimensional lattice with a substitutional isotopic impurity is calcu
lated directly and compared with previous calculations for the correction to the spectrum of a perfect 
lattice. The calculation makes use of certain properties of the delta function to facilitate the derivation of 
the frequency spectrum. Minor corrections to previous results are presented. 

I. INTRODUCTION 

In the past ten years several calculations have been 
made of the correction ~g( w) to the frequency 
spectrum g( w) for a one-dimensional lattice in the 
harmonic approximation when one of the lattice 
particles possesses a mass which is different from all 
the rest (isotopic substitutional impurity). The prin
cipal calculations have been presented by Mahanty, 
Maradudin, and Weiss,! Litzman,2 and Maradudin.3 

All of these have been special cases of a more general 
calculation of additive functions of the normal-mode 
frequencies. It is the purpose of this paper to present 
a more direct and intuitively obvious calculation of 
the spectrum for the defect lattice and to compare this 
calculation with previous results. 

The equations of motion for the lattice of N particles 
with an isotope impurity are 

d2cp(n, t) 
m dt2 = K[cp(n + 1, t) + cp(n - 1, t) - 2cp(n, t)], 

n #p, 

M d
2cp

(;, t) = K[cp(p + 1, t) + cp(p - 1, t) - 2</>(p, t)]. 
dt 

(1) 

The displacement from equilibrium of the nth 
particle is given by cp{n, t), where K is the spring 
constant, M is the mass of the impurity particle, and 
m is the mass of each of the remaining lattice particles. 
In addition, we require that the periodic boundary 
condition be satisfied, i.e., 

</>(n, t) = cp(n + N, t). (2) 

For the special case in which M = m, the equations 
may be solved by assuming solutions of the form 

1 J. Mahanty, A. Maradudin, and G. Weiss, Progr.Theoret. Phys. 
(Kyoto) 20, 369 (1958). 

3 O. Litzman, Czech. J. Phys. 9, 692 (1959). 
8 A. Maradudin, Phonons and Phonon Interactions, T. Bak, Ed. 

(W. A. Benjamin, Inc., New York, 1964), p. 424. 

ei (n8-wt). They lead to a dispersion relation 

W = nisin (!?1)I, n = 2(K/m)!, (3) 

and an equation for the determination of the allowed 
values of 0, 

[sin (tNO)]2 = O. (4) 

From this we conclude that O(k) = 2nk/N, where k 
is an integer which is eventually identified as the 
wavenumber. Equation (4) can also be used to confirm 
that the frequencies are doubly degenerate for this 
model and k can be restricted to the first Brillouin 
zone so that 

w(k) = n sin (!O(k», 0 ~ O(k) ~ '11'. (5) 

For the impurity problem, the usual methods of 
solution lead, with slightly more difficulty, to a similar 
dispersion relation 

w = nisin (to)I, n = 2(K/m)t, (6) 

and, with considerable calculation,4.5 to an equation 
for the determination of the allowed values of 0, 

sin (NO/2)[sin (tNO) - E tan (to) cos {NOI2)1 = 0, 

(7) 

where E = 1 - (M/m). It is clear that the antisym
metric modes (those having a node at the impurity) 
are unaffected, while the symmetric modes are altered 
by the presence of the impurity. ~or the antisymmetric 
modes, O(k) = 2nk/N as before, while, for the sym
metric modes, O(k) is determined by 

tan (NO/2) = E tan (to), (8) 

which can be solved by numerical methods. A linear 
relationship between O(k) and k no longer holds; but 
Eq. (8) can be used to find the frequency spectrum 
through a differential relationship between O(k) and k. 

4 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955). 
5 J. Hori and T. Asahi, Progr. Theoret. Phys. (Kyoto) 17, 523 

(1957). 

203 



                                                                                                                                    

204 EARL T. KINZER 

In Sec. II this calculation is performed and discussed 
and in Sec. III it is compared with previous results. 

II. THE FREQUENCY SPECTRUM 

Bowers and Rosenstock6 have shown that the 
frequency spectrum may be represented as a sum of 
15 functions 

g(w) = II (j(w - w(k». (9) 
N lc 

Using well-known properties of the 0 function, we can 
write Eq. (9) in terms of e as 

g(w) = II (j(O - e(k»/I dw I . (10) 
N lc dO 8~8(lc) 

If we define ~(k) = 21Tk/N, Eq. (10) can be written 

gem) = II 15(; - ;(k»/(I dw II dO I) . (11) 
N k de d~ .H(lc) 

Making use of another property of the 0 function, we 
obtain 

( / 
dw // dO /)-1 . g(w) = N de d~ t (j(~ - ;(k». (i2) 

We can also write 

1.I 15(; - ;(k» = ~ I 0(; - ~(k»ll~(k), (13) 
N lc 21T k 

where ll~(k) = 21Tllk/N = 21T/N. As Nbecomes large, 
the sum in Eq. (13) tends to an integral, i.e., 

1 1 111 - I o(~ - ~(k»ll~(k) ~ - b(~ - x) dx. (14) 
21T k 21T 0 

Thus we have, for the in-band frequencies, 

= 0, w> 0', (J 5) 

where 0' is the largest real solution of Eq. (8). If, 
however, one of the frequencies is modified to such an 
extent that wed) > 0' (a localized mode), the corre
sponding term in Eq. (12) must be handled separately. 
The frequency spectrum is then given by 

1 
= - o(w - wed»~, 

N 
m> 0'. (16) 

In this case, the maximum frequency has been shifted 
out of the band of allowed frequencies for the perfect 

• W. Bowers and H. Rosenstock, J. Chern. Phys. 18, 1056 (1950). 

lattice and appears as a localized mode frequency 
associated with the defect. 

As examples, we treat first the perfect lattice, 
obtaining the well-established result, and then the 
same lattice with an isotopic substitutional impurity. 

For the perfect lattice, we have 

w = 0 Isin (to)I, 0 < 0 < 1T, (17) 

and, in this range of 0, we obtain 

/ ~; / = to cos te = tc0
2 

- (
2

)1- • (18) 

To obtain de/d~, we refer to Eq. (4) which implies that 
O(k) = 21Tk/N. From the definition of ~(k), we see 
that e(k) = ;(k), and the values of ~ become dense in 
the range 0 < ~ < 1T so that IdO/d~1 = 1 in this range. 
Since the calculation is identical for the symmetric and 
the anti symmetric modes, the spectrum is given by 

g(w) = (2j1T)(02 - w2r*, w ~ 0, 

= 0, w> n, (19) 

where the factor of two in the numerator comes from 
counting each frequency twice. 

For the lattice with an isotopic defect, we again have 

w = 0 Isin (to)I, 0 ~ 0 ~ 1T, 

and, as before, 

(20) 

(21) 

To obtain dO/d~, we recall that the anti symmetric 
modes are unaffected and, for these modes, dO/d~ = 1. 
For the symmetric modes we refer to Eq. (8), which 
can be written as 

tan (tNO) - € tan (to) = O. 

Although the equation cannot be solved explicitly for 
0, an implicit differentiation can be performed pro
viding 0 is made single-valued. This is done by con
sidering the solutions, for integer values of k, of the 
equation 

tan (tNe - 1Tk) - € tan Wi) = O. (22) 

In effect, we have restricted the tangent functions to 
their principal ranges [tan (to) was already so re
stricted by the condition 0 ~ 0 ~ 1T]. In terms of 
~ = 21Tk(N, we have 

tan (tN)(O - ~) - tan (tIJ) = O. (23) 

On differentiating Eq. (23) with respect to ~ and 
solving for dO(d~, we obtain 

I dO I = (1 - ~ 1 )-1. (24) 
d~ N cos2 (te) + €2 sin2 (te) 
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In terms of w, Eq. (24) becomes 

I ~: 1= (1 - ; 0.2 + (E~ _ 1)W2)1. (25) 

When - 00 < E ~ 0, Eq. (8) has iN distinct real 
solutions for integer values of k. When ° ~ E ~ 1, 
Eq. (8) has iN - 1 distinct real solutions for integer 
values of k and one complex solution which corre
sponds to a frequency greater than the maximum 
frequency of the perfect lattice. As Montro1l4 has 
noted, the defect frequency corresponds to () = 
7T + iz and, for large N, is given by 

wed) = 0.(1 - E2)-l. 

Thus, for -00 ~ E ~ 0, 

g(w) = 7T-\o.2 - W2)-!, w ~ 0., 
= +7T-1(o.2 _ w2rl 

(26) 

X {1 - (E0.2/N)[0.2 + (E2 - 1)W2]-I}, (27) 

= 0, 

and for ° ~ E ~ 1, 

w~ 0.', 

w> 0., 

g(w) = 7T-1(o.2 - w2)-l, w ~ 0., 

= +7T-1(o.2 _ w2r! 

X {1 - (E0.2/N)[o.2 + (E2 - 1)W2]-1}, (28) 

w~ 0.', 
= +N-1!5(w - 0.(1 - E2)-l), w 2 0., 

where 0.' denotes the largest real solution of Eq. (8). 
From the derivation, it is clear that g(w) for the 

perfect lattice can be written variously in the equiv
alent forms 

g(w) = 27T-\o.2 - w2rt, w~Q, 

= 0, w> 0., (19) 

g(w) = 27T-I(Q2 _ w2)-1, w~ 0.', 

= 2N-1!5( w - 0.), w> 0.', (29) 
and 

g(w) = 7T-l(o.2 _ W2)-!, w~ 0., 
= +7T-1(o.2 _ W2)-t, w~o.', 

= + N-1!5( w - Q), w> 0.', (30) 

where 0.' is the second largest allowed frequency. It 
is also clear that, in each case, S~ g(w) dw = l. 
Making use of these results, we are in a position to 
analyze the frequency spectrum for the lattice with an 
isotope defect. 

For the case - 00 ~ E ~ 0 we see that, as N tends 
to infinity, Eq. (27) tends to Eq. (19); the correction 

tends to zero as N-l. As E -+ ° (perfect lattice), Eq. 
(27) also tends to Eq. (19); the correction tends to 
zero as E. For the case ° ~ E :::;; 1, as N tends to 
infinity, Eq. (28) tends to Eq. (19); the corrections go 
to zero as N-I. As E -+ 0, Eq. (28) tends to Eq. (30); 
the "spike" corresponding to the defect frequency re
joins the passing band of frequencies in its role as 
maximum allowed frequency and the other correction 
term tends to zero as E. 

Thus, the spectrum g(w) is a continuously varying 
function of the parameter E in the sense that Eq. (27) 
changes in a smooth fashion, as E is varied, into Eq. 
(28). As the value of E = ° is approached through the 
negative range of E, a "spike" appears because the defect 
frequency separates from the rest of the frequencies 
and appears as a localized mode frequency above 
the passing band of the perfect lattice. As E is further 
increased, the "spike" separates from the passing band 
more and more and, as € -+ 1, the "spike" moves to 
infinity, indicating the loss of a mode of motion by the 
system. 

III. PREVIOUS RESULTS 

In order to compare the results of this calculation 
with those of other authors, the correction 6.g(w) to 
the spectrum must be calculated. We can ignore the 
contribution to the spectrum of the antisymmetric 
frequencies since they are unaffected by the defect and 
thus make no contribution to 6.g(w). For the sym
metric frequencies in the perfect lattice, Eq. (12) can 
be written either as 

go(w) = 2N-l(Q2 - w2)-t I o(~ - ~(k» (31) 
k 

or 
go(w) = 2N-l(Q2 - w2rt 

X I o(~ - Hk» + N-1o(w - Q), (32) 
k' 

where the sum now contains one less term. For the 
lattice with a defect, we have, for - 00 ~ € :::;; 0, 

gl(W) = 2N-l(Q2 - w2)-1 

X {1 - €Q2N-1[Q2 + (€2 _ 1)W2]-1} 

X I o(~ - Hk» (33) 
k 

and, for ° :::;; E :::;; 1, 

gl(W) = 2N-l(Q2 
- w2rt 

X {1 - EQ2N-1[o.2 + (E2 - 1)W2]-1} 

X I o(~ - ~(k» + N-1(w - 0.(1 _ E2)-t). 
k' 

(34) 

In calculating 6.g(w) = gl(W) - go(w), we must be 
careful to pair the "spikes" which correspond to each 
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frequency in the perfect lattice and its counterpart in 
the defect lattice. Subtracting Eq. (31) from Eq. (33), 
we obtain, for - co ~ E ~ 0, 

~g(w) = _d)ZN-l(02 _ WZ)-t 

x [02 + (E2 - 1)W2]-12N-1 L t5(~ - ~(k» 

k (35) 

and, for 0 ~ E ~ 1, subtracting Eq. (32) from Eq. (34), 
we have 

Llg(w) = _E02N-1(02 _ WZ)-t 

x [02 + (E2 - 1)w2]-12N-1 2 r5(~ - ~(k» 
k' 

+ N-1t5(w - 0(1 - E2)-t) - N-1r5(w - 0). 

(36) 

As we let N become large, the sums become inte
grals as before and we find, for - co ~ E ~ 0, 

Llg(w) = -(E02/N7T)(02 - (2)-t[02 + (E2 - 1)w2r\ 
WS 0', 

= 0, w> 0', (37) 

and,forO~ E~ 1, 

Llg(w) = -(EOz/N7T)(OZ - WZ)-t[OZ + (EZ - 1)w2
]-\ 

wsO', 
= +N-1b(w'- 0(1 - E2)-t) - N-1r5(w - 0), 

w> no', (38) 

where 0' denotes the largest real solution of Eq. (8). 
It is a natural temptation to subtract Eq. (19) from 

Eq. (27) and Eq. (30) from Eq. (28), and thus easily 
obtain an expression for ~g(w). Such a procedure 
would lead to incorrect results, because the actual 
subtraction must be done with the spectra expressed in 
their true representation as sums of r5 functions. 

Our results are substantially in agreement with those 
of other authors, although with important differences 
in that previous results contain an additional term 
- (2N)-lb( w - 0) in Eq. (37) and show the last term 
in Eq. (38) as -(2N)-lb(w - 0). The initial result, 
by Mahanty, Maradudin, and Weiss,l is in error due 
to an improperly performed contour integration 
around a branch point leading to their Eq. (All). We 
have not endeavored to determine where Litzman2 

went astray. It should be noted, however, that his 
result was derived after discarding significant terms in 
a sum which led him to the large-N limit of our Eq. 
(8). He was further restricted to values of w for which 
w -> 0 and hence the subsequent derivation is only 
pertinent to terms involving wed). Since he was there
fore restricted to N-l = 0 and w > 0, it is somewhat 
startling that he obtained any result at all. 

The third derivation, by Maradudin,3 is actually 
correct except for the last step in which a discontin
uous function is (improperly) differentiated on an 
interval containing the point of discontinuity. In 
fact, in a general discussion earlier in his paper, 
Maradudin has essentially stated the correct result. 
Another expression, presented by Takeno,7 does not 
contain the term -N-1r5(w - 0) for the case 0 S 
E ~ 1 and is in error as to the valid range of w for the 
term proportional to E. Ludwig8 has criticized the 
result of Takeno on the basis of an argument con
cerning the normalization of the various terms in the 
frequency spectrum; however, the argument is clearly 
incorrect. To see this, one need only recall that the 
term proportional to E is bounded and consider the 
behavior of the spectrum as E ~ O. 

7 S. Takeno, Progr. Theoret. Phys. (Kyoto) Suppl. 23. 94 (1962). 
.8 W. Ludwig, Theory of Crystal Defects, B. Grubner, Ed. (Aca

demic Press. New York. 1966). p. 57. 
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~he Faddeev equat!ons for t~e one-dimensional system consisting of three i~ntical particles inter
actll:lg through a-functIOn potentials are s.hown t? be exactly solvable. The scattering solutions in the form 
of half-off-shelI rearrangement and elastic amphtudes are constructed explicitly and the ground state of 
the system is derived. 

I. INTRODUCTION 

Faddeev1 has provided a rigorous, general formu
lation of the three-body problem in nonrelativistic 
quantum mechanics. In the Faddeev approach three
particle scattering amplitudes are determined from 
the off-shell two-particle transition operators by 
coupled integral equations. In recent years many 
numerical calculations2 based on various simplifica
tions of the Faddeev equations have been performed 
for systems of physical interest. The results of these 
calculations, which have given the broad features of 
experiment, have been encouraging. On the other hand, 
an interesting question, which has not received much 
attention,3 is whether the Faddeev equations admit 
exact solutions for particular, special systems. As in 
the case of two-particle systems and the SchrOdinger 
equation, such exact solutions should elucidate the 
structure of the Faddeev equations as well as pro
viding useful tests of approximation procedures. 

The problem of a one-dimensional system of three 
identical (but distinguishable) particles interacting 
through ~-function potentials is exactly solvable. The 
bound and scattering states for this system have been 
found by McGuire4 and by Yang' by special methods. 
McGuire's method of solution is based on the reduc
tion of the three-body problem to an equivalent 

1 L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39,1459 (1960) [Sov. Phys.
JETP 12, 1014 (1961)]; Mathematical Aspects of the Three-Body 
Problem (Daniel Davey and Co., Inc., New York, 1965). 

2 For a review of calculations in nuclear and particle physics using 
separable potentials, see K. M. Watson and J. Nuttall, Topics in 
Several Particle DynamiCS (Holden-Day, Inc., San Francisco, 
1967~; for an application to atomic physics using Sturmian ex
panSIOns, see J. Ball, T. C. Y. Chen, and D. Y. Wong Phys. Rev. 
173, 202 (1968). ' 

• The Faddeev equations in three dimensions for the case of 
potentials of vanishing ran.ge. have. been considered by several 
a~thors. In the zero-range hml~ the ~ntegral equations differ only 
shghtly from those of the one·dlmenslonal problem discussed here. 
~owever, there is the additional complication that the kernels are 
smgular. See, for example, Application of Mathematics to Problems 
in Th.eoretical Physics, F. Lur\!at, Ed. (Gordon and Breach, Science 
Publishers, Inc., New York, 1967). 

• J. B. McGuire, J. Math. Phys. 5, 622 (1964). 
• C. N. Yang, Phys. Rev. Letters 19, 1312 (1967)· Phys. Rev. 168 

1920 (1968). " 

problem in geometrical optics. Yang's algebraic 
method rests on the assumption that an exact solution 
may be represented as a linear combination of a 
finite number of planewaves (Bethe's hypothesis). 

In this paper we show that the Faddeev equations 
are exactly soluble for the system considered by 
McGuire and Yang. An outline of our approach is as 
follows. In Sec. II McGuire's solution for the scatter
ing wavefunction is recalled. Using the separable 
property of the o-function interaction and following 
Lovelace,6 we reduce the Faddeev equations to a 
pair of coupled one-dimensional integral equations in 
Sec. III. In Sec. IV off-shell, three-particle elastic,and 
rearrangement amplitudes are constructed from 
McGuire's solution of Sec. II. These amplitudes are 
then shown to satisfy the Faddeev equations of Sec. 
III. The proof depends on the cancellation of the 
two-body branch cut in the kernel of the integral 
equations by a compensating factor in the exact 
amplitudes. This property of the exact amplitudes 
(which is probably peculiar to this problem) is 
apparently the counterpart of Bethe's hypothesis used 
by Yang and McGuire in their derivations. Some 
remarks on the high-energy limit of the amplitudes 
and the validity of the Born approximation are also 
included. The bound state of the three-body system 
is found in Sec. V by considering the homogeneous 
form of the Faddeev equations. 

F or completeness the probabilities for rearrange
ment and elastic scattering are derived from the exact 
amplitudes in Appendix A and shown to agree with 
the results of Yang and McGuire. In Appendix B, the 
bound state found in Sec. V is identified as the ground 
state of the three-body system. 

n. McGUIRE'S SOLUTION 

The three-body system of interest consists of three 
identical (but distinguishable) particles moving on a 
line and interacting through equal-strength, attractive 

8 C. Lovelace, Phys. Rev. 135, BI225 (1964). 
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r,;,=o 

FIG. 1. Regions of the three-particle configuration space. 

b-function potentials. We shall use the usual Jacobi 
coordinates, which are defined in terms of the mo
menta k i and the positions Xi of the three particles, by 
relations 

h = !(k j + k i - 2k'r), kij = tcki - k j ), 

qk = t(x; + Xi - 2-'"k)' 'ij = Xi - Xj 

(i, j, k being any cyclic permutation of 1, 2, 3), 
and we take the center of mass at rest: 

kl + k2 + ka = 0. 

The Hamiltonian is 

H = Ho + VI + V2 + Va, 

where the kinetic energy is 

Ho = fp~ + k;k, 
and the two-body interaction Vi is 

Vi = - gb(r jk) 

with g the strength of the Dirac b function. For con
venience we have chosen units such that the masses 
of the particles mj = t, and Planck's constant Ii = 1. 

In an interesting paper,4 McGuire has found the 
solutions of SchrOdinger's equation for this system 
by elementary methods. The solutions are most easily 
exhibited in the configuration space of the three 
particles (Fig. 1). If the center-of-mass coordinate is 
ignored, the configuration space is a plane which is 
divided symmetrically into six segments by the lines 
'12 = 0, '23 = 0, and 'al = 0, which constitute all 
those points where the particles interact. 

From ray-tracing arguments McGuire shows that a 
solution 'I" of H'Y = E'Y is a linear combination of 
six possible planewave types, corresponding to the 
six possible permutations of the initial momenta of 
the three particles 

'I" = ! Ciik exp (ik1xi + ik2Xj + ikaxk). (1) 
perm (1.2,3) 

Classically speaking, Eq. (1) assumes that the 
three particles may only exchange momenta during the 

scattering process; no new momenta are generated by 
collisions. The coefficients Cijk are chosen in each ofthe 
six segments of configuration space so that the total 
wavefunction'Y is continuous everywhere and so that 
its gradient has the correct discontinuity across the 
lines of interaction r12 = 0, '23 = 0, and r31 = 0. The 
complete specification of a particular solution there
fore reduces to the enumeration of the thirty-six 
coefficients which determine the amplitudes of the 
six different wave types in each of the six regions of 
configuration space. 

To construct the amplitudes which appear in the 
Faddeev equations of Sec. III, we need the scattering 
solution of SchrOdinger's equation which describes 
one of the particles incident on a bound state of the 
other two. For definiteness 'we label the free particle 
in the initial state as particle 3. For the attractive 
b interaction there is just one bound state of the two
particle system with binding energy _!g2 and wave
function 4>a('12) = (ig)!e-!glrul. Then, if particle 3 
has momentum Pa initially with respect to the center 
of mass of particles 1 and 2, the wavefunction de
scribing the three-body system before collision is 

(2) 

The scattering solution 'I" P ('12' qs) of Schrodinger's 
equation (see Table I) is a 

H'YP3 = E'YP3 ' 

with energy 

which satisfies the boundary conditions 

'I" P3 f'.J "PPa + outgoing waves, 

for large distances from the origin in configuration 
space as given by McGuire. In the first column the 
exponents of the six possible wave types are listed. 
Each row then gives the coefficients of a particular 
wave type in the various regions of configuration 
space. 

TABLE I. Wavefunction for rearrangement scattering. 

I II III IV V VI 

-!gr12 + iqap3 T. TIT. 
-tgr31 + iq.p. R. RIT. 
-!gr.a + iqlPI ToRI 

tgrI2 + iq3pa TITo 
tgr31 + iq2P' R1T. 
!gr.3 + iqlPl T.Rt R2 
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The reflection coefficients Ri and the transmission and may be expressed as 

coefficients Ti of the table are defined by v: = _(2/g2) IXi) (xii, (7) 

Ti = Si/(1 + Si)' Ri = Ti - 1 = -1/(1 + Si), 

(3) 

where the parameters Si are given in terms of the 
relative momenta in the intial state by 

SI = 2ik23/g and S2 = 2ikI3/g. 

Since in the initial state k23 - k13 = -k12 = -tig 
and k23 + k 13 = 3pa, we have the relations 

SI - S2 = 1 
and 

(4) 

so that in fact all the amplitudes of the table may be 
expressed in terms of a single parameter SI' which is 
fixed by the incident momentum Pa and the strength g 
of the two-particle interaction. 

The probabilities for elastic and rearrangement 
scattering are easily deduced from the table; the 
reader is referred to McGuire's paper and Appendix 
A of this paper for further details. 

III. FADDEEV-LOVELACE EQUATIONS 

With the usual definition of the three-particle transi
tion operators for elastic and rearrangement scatter
ing,6 

(5) 
where 

Vi = Vj + Vk and G+(E) = (E + i€ - H)-I 

is the full resolvent operator, the Faddeev equations 
may be written in the form7 

uta = Va + t2Gtut + taGtuta, 

uta = Va + t1Gtuta + taGtuta, (6) 

Ut3 = t1Gtuta + t2Gtuta' 

The free Green's operator for this problem is 

Gt(E) = (E + i€ - !p~ - k7k)-1 

and the two-particle transition operators (acting in 
the three-particle space) are defined by 

ti(E) = v: + V:Gt(E)ti(E). 
Now, since 

(rifl Vk Ir;j) = - gb(rij)b(r;j - rij) 

= - gb(rij)b(r;j), 

the two-particle b-function interaction is separable 

7 The inhomogeneous terms of our Eqs. (6) are different from 
Lovelace's Eqs. (3.9). But Eqs. (6) of this paper are easily obtained 
from Eqs. (3.9) of Lovelace's by expressing U;{J in terms of U:{J in the 
second of Lovelace's Eqs. (3.9). 

with the form factor 

IXi) = (ga/47T)! f dk jk Ik jk )· (8) 

The two-particle transition operator (acting in the 
three-particle space) then take the familiar form6 

t;(E) = L:IXiPi)T(E + i€ - !P~)(PiXil dpi' (9) 

In this case the propagator 

2 2-JE 
T( E) = - '""2 2 IE . 

g v - zg 
(10) 

has a pole at -JE = iig associated with the single 
bound state of the attractive () potential, which has 
binding energy EE = _tg2. Furthermore, with the 
appropriate normalization of the form factor, the 
bound state rfoi of particles j and k is given in general 
by the relation 

with 
Gt(E) IXiPi) = l4>iPi)' 

E = _lg2 +!PL 
(11) 

which is easily verified in this particular problem, 
since 

l4>i) = L: (-ig2 - k7k)-1(ga/47T)! Ik ik ) dk ik 

or 
(r

jk 
l4>i) = _(!g)!e-hlr121. 

If we define the half-on-shell amplitudes 

Xii(Pi' Pj) = (XiPil Gt(E)U~(E)Gt(E) IXiPj), (12) 

with 
E = -ig2 + !p~, 

and the "potentials" 

with 

E = _lg2 + !p~, 
substitute the separable form Eq. (9) for Ii in Eqs. (6), 
and use the identity of the particles, the Faddeev 
equations (6) are reduced to the following form: 

X a3(P3, P3) 

= 2 L:Z(p;, P; E)T(E - !p2)X2a(p, Pa) dp, (15a) 

X2a(P~, Pa) 

= Y2a(P~, Pa) + L:dPZ(P~' P; E)T(E _ !p2) 

x [X2S(p, Pa) + Xas(p, Pa)]. (15b) 
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The kernel and the inhomogeneous term are obtained with 
explicitly from Eq. (10) for the propagator and the t = (i(pi _ p2) _ !g2)!. 
definitions (13) and (14): Similarly, 

gS 1 
Z(Pi,Pi;E)=- . 2 2 

471' E + IE - Pi - Pi - PiP; 
and 

Yo' _ ga ig + 2t 
2aCP2' Pa) - [(. + 2 )2 + (' )2] , 

71' t Ig t \P2 - Pa 
with 

(16) 

(17) 

From the relation (11) and the definition (12), we 
note that the amplitudes X2a and Xaa , when taken 
fully on shell, are equal to the usual on-shell re
arrangement and elastic scattering amplitudes 

X2a(P~, Pa) = (<p2p~1 uta I <PaP3), if Ip~1 = IPal, 
and (18) 

Xaa(P~, Pa) = (<PaP~1 ut31<PaPa), if Ip~1 = IPal· 

IV. EXACT SOLUTION OF THE FADDEEV
LOVELACE EQUATIONS 

In this section the unknown amplitudes X2a and 
X33 are constructed from the wavefunction of Table I 
and are shown to satisfy the Faddeev-Lovelace 
equations (15). 

First, we see that the half-off-shell amplitudes X2a 
and Xaa may be expressed in terms of the scattering 
state IPa +), which is the scattering solution of the 
complete SchrOdinger equation describing particle 3 
incident on the bound state of particles 1 and 2. Since 
the integral form of SchrOdinger's equation is 

Ips +) = (1 + G+(E)vs) 1<P3PS), 

provided that E = _!g2 + ipi, we have, using Eqs. 
(5), (11), and (12), 

X33(P~, P3) = (XaP~1 Gt(Vl + V3) Ips +), 
X23(P~, P3) = (x2p~1 Gt(Vl + V2) Ips +). (19) 

Now (r12Qsl Pa +) = 'Y ps(r12 , Q3) of Table I and it is 
straightforward to form X2a and X3a from Eqs. (19). 
For example, 

Xaa(p, Pa) 

= ( 3/4 )1foo dk12 g 71' 2 2' 
-00 E - k12 - iPa + IE 

X fOO foo dr
12 

dqae-ik12r12-iPaQ3 
-00 -00 

(20a) 

X2a(p, Pa) 

= ig2(ig) ( T2Rl + TIT2 + T2Tl + T2Rl + R2 
271' 2t 2t + P + 2ps 2t + ig - P + Pa 

+ 1 + T2 ). (20b) 
2t - P - 2Pa 2t + ig - Pa + P 

We remark parenthetically that these amplitudes 
when taken on shell according to Eqs. (18) yield cross 
sections which agree with the results of McGuire and 
Yang. This is demonstrated in Appendix A with the 
aid of the asymptotic form of the Lippmann-Schwin
ger equation. 

In order to show that the amplitudes (20) provide 
the exact solution of the Faddeev equations, we are 
faced with the difficulty of performing the integrations 
in Eqs. (15); the branch cut of the propagator 'T is 
apparently troublesome. The essential step here is to 
realize that the exact amplitudes (20) contain an 
implicit factor which exactly cancels the propagator in 
the kernel of the integral equations. With some algebra 
the amplitudes (20) may be rewritten as 

X ( ) 
_ ~ 'T-1(t2)F(p) 

as p, Ps -
271' (p - Pl)(P - P2)(P - Ps) 

and 

X ( ) 
_ ~ 'T-

I (t2)G(p) 
2a p, Pa - , 

471' (p - PI)(P - P2)(P - P3) 
where 

(2la) 

(21b) 

F(P) = (p - Ps)RIT2 + (p - PI)T2T1 + (p - P2)T2, 

G(p) = (p - Pa)(R1T2 + TIT2 + 1) 

+ (p - pJT2 + (p - Pt)(T2T1 + T2RI + R2), 
and 

P2 = -t(Ps - ig) and PI = -t(Pa + ig). 

It is now straightforward to verify that the ampli
tudes (21) satisfy the integral equations. We outline 
the proof for the first of the coupled equations, Eq. 
(15a). After substitution of Eq. (21b), the right
hand side of Eq. (15a) becomes 

(g4J3271'2) L: G(p)[(p - Po)(p - Po)(p - PI) 

x (p - P2)(P - Pa)]-l dp. 

The poles at Po = -ips + t and Po = -ips - t 
arise from the kernel (16). The integration is per
formed by completing the contour in the upper half 
of the complex P plane. There are three contributions 
to the integral from the three simple poles at Po, P3 , 
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and b . After some lengthy algebra, using the relations 
(3) and (4) to express all terms containingpa in terms 
of S1' and rearranging terms, the result of the integra
tion may be shown to equal Xsa as required. 

The interesting question of the validity of the Born 
approximation for rearrangement collisions8 may be 
considered in the context of our exactly soluble model. 
From either Eq. (20b) or Eq. (2Ib), we have 

I 
g (2S1 - 1)(SI - 1) g 

X2a(P2Pa) VI=V3 = - 47T SI(S1 + 1) ,-.., - 27T 

at high energies (palarge). The Born approximation for 
rearrangement is obtained from the first term of Eq: 
(S) : 

(<P2P21 (Va + VI) I <PaPa) IV1=V3 

at high energies. So for this simple system the Born 
approximation 'yields the correct high-energy behavior 
of the rearrangement amplitude. Note, however, that 
the lowest-order approximation from the Faddeev 
equations (6) is 

(<P2P21 Va I <P3Pa) = 47T(SI ~ l)SI ,-.., 0 

at high energies, which is incorrect. Nevertheless,when 
the Faddeev equations are iterated once, the resulting 
approximate solution is 

(<P2P21 (Va + t l GoVa) I <PaPa) , 

which does give the correct high-energy behavior. 

V. THREE-BODY BOUND STATE 

Each of the exact three-particle amplitudes of Eqs. 
(20) and (21) has a pole at Pa = ig associated with a 
three-body bound state of binding energy EE = 
-tg2 _ !p~ = _g2. 

The existence of this bound state may be confirmed 
by considering the homogeneous form of the Faddeev 
equations (6). Equations (IS) are then replaced by a 
single homogeneous equation: 

X(p) = 2 L:dP'Z(P, p', E)-r(E - !p,2)X(p'), (22) 

with 
E = !p; - 192. 

The amplitude X(p) is related to the three-body 
bound state II> by [c.r. Eqs. (19)] 

X(P) = (PXal GO(V1 + V2) 111»· (23) 

8 R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121, 319 
(\961); K. R. Greider and L. R. Dodd, ibid., 146, 671 (1966); K. 
Dettmann and G. Leibfried, ibid., 148, 1271 (1966). 

Following our discussion of the scattering equations, 
we assume that X contains a factor which exactly 
cancels the propagator: 

X(P) = -r-1(E - fP 2
) W(P). (24) 

Equation (22) then becomes 

g 2(E - £p2)t 
W(p) = - - --'-----'~-

7T 2(E - !l)t - ig 

f 00 W(p') d P' 
x . 

-00 E _ PP' _ p2 _ p,2 
(2S) 

This equation has been previously formulated by 
Eyges,9 whose approach to the three-body bound 
state problem is similar to Faddeev's. 

The exact solution Wo(p) = (p2 + g2)-1 for energy 
E = _g2 has been found by Jasperse,l° and may 
easily be checked by contour integration. The con
sistency of this solution with the bound-state wave
function of McGuire4 and Yang,5 

(r12 , r2a , r 3I I II»~ exp [-tg(lrI21 + Ir2al + Ir3ID], 

is also easily checked with the help of Eqs. (23) and 
(24): 

Equation (2S) has a polar kernel and therefore may 
be transformed to an equivalent equation with a 
symmetric kernel. In Appendix B, it is shown that the 
transformed kernel is real and square-integrable for 
three-body energies less than the two-particle binding 
energy, E < _tg2. The general theory of Weinbergll 

is also applied to show that the above solution Wo 
for binding energy E = _g2 corresponds to the ground 
state of the system. 
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APPENDIX A 

In this appendix the probabilities for elastic and 
rearrangement scattering are found from the formal 
theory. The Lippmann-Schwinger equation for the 
scattering state is 

Ip3 +) = l<PaPa) + (E - Ho - V3 + i€)-l V31p3 +). 
The elastically scattered component of the wave

function is then 

(<P3Qal Pa +) 

= (qal Pa) + L: dq;(qal (E - !Pi + i€)-I Iq;) 

x (q~<P31 Va IPa + ). 
• L. Eyges, J. Math. Phys. 6, 1320 (1965). 

10 J. R. Jasperse, Phys. Rev. 159, 69 (1967). 
11 S. Weinberg, Phys. Rev. 131, 440 (1963). 



                                                                                                                                    

212 L. R. DODD 

But, 

(qal (E - !P: + i7)-1 Iq~) 
= -(2ij3Pa)eiV3Ia3-Qa' I 

= -(4rrij3Pa)(qal Pa)(Pal q~), 

for qa > q~. Thus, for qa large and positive, 

2( -E)!jg made, Eq. (22) takes the form 

W(x) = L: K(x, y;p)W(y) dy, 

where 

(Bl) 

(CPaqal Pa +) = (qal Pa)[1 -"" (4rrij3Pa)(PaCPal valPa + )]. and 

From Eq. (19) and Eq. (11) the matrix element in the 
square brackets is equal to Xaa(Pa, Pa), which is found 
explicitly by putting P = Pa in Eq. (20a) or Eq. (21a). 
Thus the probability for transmission of particle 3 
through the bound state of I and 2 is 

1 - - Xaa(Pa, Pa) = -- = IT2Tli . I 4rri /2 / SI - t /2 2 
3Pa SI + 1 

By similar manipulations of the Lippmann-Schwin
ger equation the following results are obtained. The 
probability for reflection of particle 3 from the bound 
state is 

11 - (4rrij3pa)Xaa( -Pa,Pa)12 = O. 

The probability for rearrangement where particle 3 
replaces particle 2 in the bound state, particle 2 
emerging with momentum equal to the incident 
momentum of particle 3, is 

/
_ 4rri X2a(pa,pa)/2= /_ SI-

1 /2= IT2R112. 
3Pa SiSI + 1) 

The probability for rearrangement where particle 2 
emerges with momentum equal in magnitude but in 
the opposite sense to the incident momentum of 
particle 3, is 

1-(4rri/3pa)X2a(-Pa,Pa)1 2 = O. 

The rearrangement probabilities where particle 1 is 
free in the final state are, of course, equal to those 
given above. The above probabilities, obtained from 
the formal theory, may be checked directly using the 
wavefunction of Table I. For example, consider the 
common border of regions II and IV at large distances 
from the origin, which corresponds to a configuration 
where particles 1 and 3 are together and particle 
2 is distant from them. The wavefunction is 
T2e-!g'12+iqav3 + RIT2eia2v2. 

The first term is very small along the line '13 = 0 at 
large distances from the origin so that the probability 
for rearrangement is IRIT212 as required. 

APPENDIX B 

If the kernel of Eq. (25) is symmetrized12 and the 
substitutions x = p( - E)-!, Y = p' ( - E)-!, and p = 

with 

and 

k(x, y) = (2jrr)(x2 + l + xy + 1)-1. 

We seek solutions of the equation for values of 
p > I which correspond to three-body energies 
E < -!g2,which is the two-particle binding energy. 

The dimensionless form of Eq. (Bl) shows that the 
number of three-body bound states is independent of 
the strength g of the two-particle potentials. Also, 
with the aid of the inequality 

(B2) 

valid for all x and p > 1, it is easy to show that 

Tr [KKt] ~ (p - 1)-2L: L:[k(X, y)]2 dx dy 

(B3) 

showing that the kernel is compact. 
Following Weinberg,1l·12 we consider next the eigen

value problem for the kernel, for fixed p: 

The solutions of Eq. (Bl) occur for those values of 
p for which An(P) = 1. The spectrum of the kernel is 
discrete, real, and bounded from above. 

From the properties of the spectrum and Eq. (B3), 
we have the sum rule 

00 

I A!(p) = Tr [K2] = Tr [KKt] ~ 1.49 X (p - 1)-2. 
n=l 

(B4) 

Also, if Al is chosen as the largest of the eigenvalues, 

for any rp. Choose rp = 'f)-! Wo where Wo(x) = 
(1 + X 2)-1 is the solution of Eq. (25) of Sec. V. 

12 R. Newton, Scattering Theory of Waves and Particles (McGraw
Hill Book Co., Inc., New York, 1966),Chap. 9. 
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Then, since 

A1(,u) >- (Wo, 1)-1(2)Wo)/(Wo, 1'j-l(,u)WO) 

Combining the inequalities (B7) and (B4), we have the 
(BS) result that 

ro 

.2 A~(,u) >- 0.49 x (,u - 1)-2, for ,u >- 2, 
= 1 + (Wo, [1)-1(2) _1)-l(,u)]Wo)/(Wo,1)-l(,u)WO) 

= 1 + (2 - ,u)(Wo, Wo)(Wo,1)-l(,u)WO)-l. (B6) 

n=2 

showing that Al is the only eigenvalue which may be 
larger than unity for,u >- 2 and, therefore, there is at 
most one bound state with energy E ~ _g2. But from 
Eq. (BS) 

But, from Eq. (B2), 

(Wo, 1)-I(,u)WO) >- (,u - l)(Wo, Wo)' 

Thus, for ,u >- 2, 

A1(,u) ;;> (,u - 1)-1. 

Kq;(2) = q;(2) when ,u = 2 (Le., when E = _g2), 

so that 1)-i(x; 2)(1 + X2)-1 is the solution ofEq. (Bl), 
(B7) which corresponds to the ground state of the system. 
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The problem of finding solutions for the weakly nonlinear quantum oscillator is investigated in the 
Heisenberg representation in one dimension. The perturbation method developed makes allowance for 
the nonisochronous nature of nonlinear oscillations and avoids at any level of approximation the secular
ity-terms increasing without bound as t - oo-intrinsic to the usual type of iteration scheme. The treat
ment of the general quantum equation (d2/dt 2 + w2)x(t) = if(x), for the Heisenberg position operator 
x(t), is first motivated by the classical analog. The iteration equations for the quantum case are derived, 
and the case f(x) = x3 is studied fully to order €, and partially to order €2. 

1. INTRODUCTION 

Considerable interest and effort has been directed 
toward solving the quantum field theory, whose 
field operators obeys 

(Ll) 

This is the self-coupled scalar-field problem, usually 
called the "cp3" theory.1 It is one of the simplest 
nontrivial field theories (nontrivial means it allows 
for scattering and production) and as such would 
seem to offer a logical first theory to try to solve fully. 

As part of a program to shed light on the nature 
of a solution to this theory, this paper presents a 
further study of the nonlinear harmonic oscillator in 
one-dimensional quantum mechanics. 2 In particular, 
a method is presented which generates successive 
approximations to a solution for the position operator 
x(t), which must satisfy the equation 

(:t: + w2 )X(t) = EX3(t). (1.2) 

This method differs from the previous method 
presented by one of the authors in avoiding from the 
start any secular behavior in solutions to the hierarchy 
of approximation equations and in giving quite 
directly the "renormalized" frequency and the modi
fied amplitude of the fundamental harmonic-which 
are q-numbers as previously argued-as power series 
in E. It also allows systematic calculation to arbitrary 
order in E, whereas with the previous method it is not 
clear how to proceed to higher order. 

In Sec. 2 the method, as developed by Bogoliubov 

• Research supported in part by the National Science Foundation 
under grants GP8734 and GP7328. 

1 The <P" current model was introduced by P. T. Matthews, Phil. 
Mag. 41, 185 (1950). A similar problem, the <po current model. was 
studied by C. A. Hurst, Proc. Cambridge Phil. Soc. 48, 625 (1952); 
W. Thirring, Helv. Phys. Acta 26,33 (1953). 

° S. 0. Aks, Fortsch. Physik 15, 661 (1967). 

and Krylov3 for classical systems, is applied to the 
classical equations of the type 

(:t: + w2)X(t) = Ef(x(t) (1.3) 

to demonstrate its salient features in a familiar case. 
In Sec. 3 we present a systematic formulation of the 

approximation scheme leading to quantum solutions 
of Eq. (1.3). Finally, in Sec. 4, this scheme is applied 
to the case f(x) = x3 and full results to first order in 
E are given, along with partial results to order E2. 

2. THE METHOD OF BOGOLIUBOV AND 
KRYLOV FOR CLASSICAL NONLINEAR 

OSCILLATORS 

Bogoliubov and Krylov3 have developed a very 
useful method for developing approximate solutions of 
(c-number) nonlinear differential equations of the 
form 

( d2 + w2)x = EF(X dX) 
dt2 

' dt ' 

where E is a small parameter. In this section we give 
a short survey of their work in which those aspects of 
the method that carryover to the case of nonlinear 
quantum equations of motion are stressed. 

In the case of quantum mechanics, interest is almost 
exclusively limited to nonlinear terms which depend 
on x alone; thus we restrict attention (in this section) 
to the c-number equations 

(:t: + w2)x = Ef(x). (2.1) 

The method of Bogoliubov and Krylov reduces to 
finding an approximation of the form 

x = p cos 1p + ! EnUnCp, 1p). (2.2) 
n~l 

3 N. Krylov and N. Bogoliubov, Introduction to Non-linear 
Mechanics (Princeton University Press, Princeton, N.J., 1947), p. 41. 

214 
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The quantities 1p and p are taken to satisfy the 
equations 

dp = o. 
dt 

(2.3) 

(2.4) 

The latter equation takes this simple form as a result 
of the assumption that the nonlinear driving term is 
independent of dx/dt. The solutions of these equations 
are each determined up to an additive constant which 
is found using the initial conditions. If we give the 
differential equation the usual interpretation, then 
the equation describes the motion of an anharmonic 
oscillator. The additive constants are then related to 
the initial phase and amplitude of the motion of the 
fundamental frequency term P cos 1p. 

The following results are obtained from Eq. (2.2): 

dx d1p . ~ n d1p GUn 
- = - P - sm 1p + 4.., e - - , 
dt dt n~I dt G1p 

The complete dependence of Eq. (2.5) on e is obtained 
by substituting Eq. (2.3) into Eq. (2.5). 

The right-hand side of Eq. (2.1) can also be ex
pressed in powers of E as 

if(x) = ef (p cos 1p + 1 EnUn(p, 1p») 
n>I 

= ef(p cos 1p) + 1 E
n

+1Un(p, 1p) dnf (p cos 1p). 
n~l dxn 

(2.6) 

In accordance with Eq. (2.1), the equations to be 
satisfied by UI, U2,'" are found by equating like 
powers of E in Eq. (2.5) and (2.6). The equations take 
the form 

where 

fo(p, 1p) = f(p cos 1p), 

df 2 
fI(p, 1p) = Ul - (p cos 1p) + bI(p) P cos 1p 

dx 

and similarly for the others. 
In solving these equations, two additional criteria 

are imposed by Bogoliubov and Krylov. The first 
condition requires that (in nth order) the coefficient 
bn(p) is to be chosen so that the right-hand side of 
Eq. (2.7) is free of terms proportional to cos 1p. The 
presence of such terms would lead to secular behavior 
in Un (i.e., Un would then contain trigonometric 
functions with coefficients which are polynomials in 
t). (For further details on secular behavior see the 
monograph by Bogoliubov and Mitripolsky4; for a 
shorter discussion of the problem, particularly as it 
relates to quantum mechanical problems, see the 
paper by S. 0. Aks.2) From Eq. (2.3) it follows that 
bn(p) is the nth-order correction to the fundamental 
frequency of the oscillation and, as expected, it 
depends on p. 

The second condition on the solutions of Eq. (2.7) 
is that each Un be orthogonal to cos 1p in the sense 
that 

This means that P is the full amplitude of the funda
mental-frequency term. 

With these conditions, the method of Bogoliubov 
and Krylov becomes a systematic procedure for 
finding nonsecular approximate solutions of Eq. (2.1). 
The approximations thus obtained depend on two 
parameters, P and the integration constant associated 
with the amplitude (2.3). They are, in principle, 
found using the initial conditions which are imposed 
on the solution. It should be noted that the actual 
determination of p (for an nth-order approximation) 
may involve solving a very complicated algebraic 
equation. To find p in nth-order, it may be useful, in 
view of the assumption that E is small, to expand p as 

The initial conditions are handled in this way in the 
case of quantum mechanics. 
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The monograph by Bogoliubov and Mitropolsky4 
contains a number of applications of the approxima
tion procedure described above and the interested 
reader is directed there for further information. The 
presentation here is offered primarily as a pattern for 
the approximation scheme which is introduced in the 
next section for use in connection with problems in 
quantum mechanics. 

3. THE APPROXIMATION THEORY FOR 
QUANTUM-MECHANICAL NONLINEAR 

OSCILLATORS 

In this section we develop a method analogous to 
the method of Bogoliubov and Krylov for application 
to q-number equations of the type 

(::2 + w 2)x = f/(X), (3.1) 

where the q-number x is taken to satisfy the initial 
condition 

[X(O), d:~O)J = in. (3.2) 

In analogy with the work of Bogoliubov and Krylov, 
we seek approximate solutions of the form 

x(t) = pe-if!ta + a teif!tp 

+ .2 fn[S,;{t; N, a) + Sn(t; N, at)]. (3.3) 
n2:1 

The following definitions and conditions are placed 
on the parameters appearing in Eq. (3.3): 

(a) a, at: a and at are the usual annihilation and 
creation operators, respectively; thus they satisfy the 
commutation relation 

[a, at] == aat - ata = f. 

(b) N:N = ata; Nis the standard number operator. 
(c) p: p = pt, P = peN), dpjdt == 0; p is a sym

metric operator which depends only on N and is 
constant in the time t. 

(d) Q: Q = ot, 

0= w + L €nB,,(N); 
n'::::l 

Q is a symmetric operator, depending on N, which 
equals w when € = 0 is satisfied. 

(e) Sn(t; N, a): Sn is function of the variable t, 
N, and a in special order; i.e., Sn is written in the form 

Sn(t; N, a) = L Sn.k(t; N)ak. 
k2:0 

4 N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods 
in the Theory of Non-linear Oscillations (Hindustan Publishing Corp., 
Delhi, 1961). 

(f) Sn(t; N; at): Sn = SJ; thus Sn is also in special 
order and can be written in the form 

where the asterisk (*) denotes complex conjugation. 
Condition (d) is of particular importance in what 

follows and is directly analogous to the condition 
expressed in Eq. (2.3) for the c-number case. The 
requirement that 0 is dependent on N was established 
in a previous paper2 for the case where I(x) = x 3• 

We shall show that this is, in general, a consistent 
assumption. As in the method of Bogliubov and 
Krylov, the role of the quantities Bn(N), n = 1, 2, 
3, . : .. , is to remove secular behavior. We note that 
secularity arises in the approximation procedure 
through auxiliary equations of the form 

(:t: + cx.2)/ = p(ae-ilXt, eilXta t) 

= q(-)(a, a t)e- ilXt + eilXtq(+)(a, at) 

+ terms with other dependence on t. 

The secularity comes from the inhomogeneous terms 
which are solutions of the homogeneous equation 
and these terms occur when the number of factors 
of the form ae-ilXtis greater or less, by unity, than the 
number of factors eilXtat . In such terms the number of 
creation operators is greater or less by unity than the 
number of annihilation operators; hence q(-)(a, at) 
can be written as q<-)(N)a; q(+)(a, at) can be written 
as atq<+)(N). In renormalizing the frequency to avoid 
secular behavior, such inhomogeneous terms are 
brought to the left-hand side of the equation and are 
then lumped with the frequency terms as contributions 
to the quantities Bn , n = 1, 2, .... This is the basis of 
the requirement that 0 depends only on N. 

The dependence of p on N was also established in 
the paper mentioned above.2 The special ordering 
conditions on Sn and Sn are introduced for technical 
reasons which become evident in the following. We 
remark that any function of the creation and annihila
tion operators can be rewritten in this special order; 
a proof of this is given in the Appendix. 

The choice of a concrete representation of the 
commutation relation [a, at] = f is of some interest. 
We note that in the c-number case, when Eq. (2.3) is 
integrated, there occurs an integration constant which 
plays the role of an initial phase, whereas the analog 
of the integration constant is omitted in Eq. (3.3). 
Suppose that an initial phase cP, dependent on Nand 
symmetric, is included in Eq. (3.3) which then 



                                                                                                                                    

PERTURBATION THEORY FOR WEAKLY NONLINEAR OSCILLATOR 217 

becomes 

x(t) = pe-HOH,jJ)a + atei(OtH>p + ~ En(Sn + Sn) 
n>1 

= pe-iO\e-i<Pa) + (e-i<Pa)teiOt + ~ En(Sn + Sn). 
ne:1 (3.4) 

The commutator of e-i<Pa and its adjoint is given by 

[e-i<Pa, (e-i<Pa) t] = e-i<Paa t e+i<P _ at e+i<Pe-i<Pa 

= e-iqJ(N + I)e+-i<P - N 

=N+I-N 

= I. 

We have made use of the fact that cp is a function of 
N to obtain this result. It follows that e-i<Pa and 
(e+i<Pa)t are new creation and annihilation operators, 
respectively; thus the inclusion of a phase dependent 
on N induces an equivalent (but trivially related) 
representation of the commutation relations of a and 
at. Consequently, the choice of a concrete representa
tion for a and at amounts to a choice of the phase 
constant. 

Starting with Eq. (3.3), we evaluate the following 
quantities: 

~ n(dSn dSn ) +,.::..E -+-, 
ne:1 dt dt 

(3.5) 

(3.6) 

+ ~ En[(W2 - Q2)Sn + Sn(w2 - n2
)]. (3.7) 

n>l 

- 2wB1pe-iOta - ateiOtp2WB1] 

+ E2[ (d2S2 + Q2S ) + (d2

S2 + S Q2) 
dt2 2 dt2 2 

- (2wB2 + Bi)pe-iOt - at emtp(2wB2 + Bi) 

- 2wB1S1 - S12WBl] 
+ ... 

+ En[ (d~~n + Q
2Sn) + (d~~n + Sn Q2

) + ... J 
+ . . . . (3.9) 

It should be noted that each term of Eq. (3.9) is in 
special order. 

The inhomogeneous term if(x) in Eq. (3.1) is also 
expanded in powers of E. We denote 

Yo(t) = pe-mta + a teiOtp, 

Yn(t)=Sn+Sn, n=1,2,"', 

and expand if(x) as follows: 

The notation Y1 0 dfldx is employed to denote the 
modified chain rule for use in the case of non
commuting quantities. As an example of the use of 
the notation, we consider the case f(x) = Xk. Then, 

dxk 

Y10 dx = Y1 Xk-
1 + XYlX

k
-

2 + ... + X k
-

1Y1' 

The result obtained is not, in general, in special order. 
In order to reexpress such terms in special order, we 
make use of the equations 

ag(N) = g(N + l)a (3. lOa) 

and 

h(N)at = ath(N + 1), (3.10b) 

where it is assumed that g and h are power series in N. 
Let us suppose that ifhas been expanded in powers 

of E and has been placed in special order. We denote 
the resulting expansion by 

The completed expansion of Eq. (3.7) in powers of f() [F ( ) + F,- ( )] 
E X = E 0 Yo 0 Yo 

E is obtained by using Eq. (3.4d): 

w2 - Q2 = -2EWB1(N) 

- €2(2wB2(N) + BJ(N)2) - . .. (3.8) 
and 

where the terms Fi(yO) and Fi(yo), i = 1, 2, ... , are 
in special order, as defined in conditions (e) and (f), 
respectively. 

The equations to be satisfied by the quantities Sn 
and Sn, n = 1, 2, ... , can now be found by com
paring coefficients of similar powers in E in Eq. (3.1) 
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by using Eqs. (3.9) and (3.11). The results are 

(3.12a) 

A similar set of equations holds for Sn' n = 1, 2, ... , 
but the equations are not written out since the solu
tions are obtained from the solutions of Eqs. (3.12) 
by taking adjoints, in accordance with condition (f). 

As in the method of Bogoliubov and Krylov for the 
c-number case, two conditions are placed on Eqs. 
(3.12). The quantity Bn appears first in Eq. (3.12c) 
for Sn and is determined by the requirement that the 
right-hand side of the equation is to be free of terms 
proportional to e-inta. By choosing Bn so as to remove 
such terms from the equation, we arrive at an equa
tion whose solution does not show any secular 
behavior. It is useful to note that Bn may be readily 
found once Bl through Bn_1 and SI through Sn_l are 
known; thus, the renormalized frequency is essenti
ally known to one order in E better than the apprmii
mation for the solution of the equation of motion. 

The other condition requires that the solution of 
the equations for Sn' n = 1, 2, .. " be without 
terms which are solutions of the homogeneous 
equation. Therefore, all terms of the approximate 
solution which are proportional to e±if.lt are contained 
within the zeroth-order approximation pe-inta + 
ateintp. As in the c-number case, this condition means 
that p is the full amplitude of the lowest-frequency 
contribution to the approximate solution. Conse
quently, the first condition determines the renormal
ized frequency and the second condition determines 
what is equivalent to, in the one-dimensional systems 
being studied here, wavefunction renormalization. We 
have made the provision in the approximation 
procedure for the renormalized frequency and 
amplitude to depend on the number operator N as 
is suggested by the results of a previous paper noted 
above.2 

We stress that the ultimate dependence of the 
renormalized frequency and amplitude on N is a 
consequence of the inhomogeneous term of Eq. (3.1) 
and is forced by the requirement that the approxi
mations we look for are free of secular behavior. It is, 
of course, always possible [contrary to the previously 
considered case where f(x) = x 3] that the renormal-

ized frequency and amplitude are trivial functions of N 
raised to the zero power, or, in other words, c
numbers. In the next section, we apply the approxi
mation method described here to concrete examples, 
and we find that this supposition is fortuitous. 

We close this section with a remark on the evalua
tion of the quantity p. To this point, no use has been 
made of the initial condition embodied in Eq. (3.2). 
We are, therefore, free to use it to determine p. To 
this end, we require that the Kth-order approximation 
given by Eq. (3.3) is to satisfy Eq. (3.2) with an error 
of at most order €K+1. It should be noted that the 
amplitude p is also found in the method of Bogoliubov 
and Krylov, in the c-number case, by employing the 
initial conditions and at the same state of the calcula
tion. We add that the actual determination of p in 
either the c-number or q-number cases involves 
practical difficulties. For example, in the c-number 
equation withf(x) = x 3, the evaluation of p involves, 
for a first-order approximation, the solution of a 
cubic equation. For a second-order approximation in 
€, p is a root of a fifth-degree polynomial. Conse
quently, although the approximation procedure laid 
out above is systematic in that it may, in principle, 
be carried to any order in €, it, along with most other 
approximation methods, is limited to the calculation 
of only the first few orders in €. 

Applications of the approximation scheme devel
oped above are carried out in the next section. 

4. THE EXAMPLE f(x) = x3 

We now specialize the discussion to the case 
f(x) = x3• This is the quantum version of the first
order correction to a physical pendulum, based on 
the approximation sin (J = (J - l(J3 rather than 
sin (J = (J. It is also a case which generalizes directly 
to the self-interacting field theory with a Acfo4 inter
action Lagrangian. The method developed in Sec. 3 
is employed to find the first- and second-order correc
tions in € to the frequency Q (i.e., the operators Bl 
and B2) and the first-order correction to the amplitude 
p and the "position operator." To this end we first 
determine the function Fo of Eq: (3.11) in the expan
sion of f To determine Fl will require a knowledge 
of S1' Thus, 

(4.1) 

We must carry out the product yg and arrange the 
result in normal order. The terms containing a higher 
power of a than of at are then represented by the 
function Fo. The hermitian property of y~ guarantees 
that the remaining terms give Fo. Since the operators 
p and n are assumed to be functions of the operator N, 
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let us use the notations 

and 
P = peN) = PN 

0= O(N) = ON' 

The special-ordering theorem, Eqs. (3.10), implies the 
following kind of result: 

apN = PN+1a, 
eiflNta t = a teiflN+1t. 

(4.2a) 

(4.2b) 

Using this theorem, we bring the term yg into normal 
order, obtaining 

Y
3 _ {p P P e-i<(}N+(}N+l+(}N+2)ta3 
0- N N+1 N+2 

+ [pNP~_IN + p~N + 1) 

+ PNP~+1(N + 2)]e-iflNta + h.c.}. (4.3) 

We can immediately identify Fo as 

where 

Fo(Yo) = PNPN+1PN+2e- i<JiNta3 

+ [N P~-1 + (N + 1)p~ 
+ (N + 2)p~+1]pNe-i(}Nta, 

<l>N = ON + ON+l + ON+2' 

(4.4) 

In order to find SI and Bl , we must consider Eq. 
(3.l2a). Thus, 

(~ + O~)SI = Fo(Yo) + 2wBIPNe-i(}Nta. (4.5) 
dt2 

The value of Bl follows from Eqs. (4.4) and (4.5) due 
to the condition that the right-hand side of Eq. (4.5) 
contains no terms proportional to the fundamental. 
Thus, 

Bl = -(2wrl[N P~-1 + (N + 1)p~ + (N + 2)P~+2]' 
(4.6) 

Then the equation for SI simplifies to 

( 
d2 + (2) S -i<JiNt 3 (47) dt2 N 1 = PNPN+1PN+2e a . . 

The expansion of SI in powers of a from Condition 
(a) (Sec. 3), when substituted here, gives 

~ (~ + 0 2 
) S ak = G e-i<JiNta3 (4.8) k d 2 N l.k N , 

k=O t 

where GN = PNPN+IPN+2' The linear independence of 
the monomials ak (in the Hilbert space) leads to a 
reduced set of equations: 

(4.9a) 

(4.9b) 

In light of the condition that PN be the full amplitude 
of the fundamental frequency contribution, the 
solutions of Eqs. (4.7) are 

where 

S1.k = 0, k ~ 0, k :;l: 3, 

S13 = DNGNe-i<JiNt, 

DN = (O~ _ <I>~)-I. 

(4.10a) 

(4.10b) 

We require that O~ - <1>1 is a nonsingular operator 
which is reasonable for sufficiently small values of 10. 

Thus, we have obtained the first-order approxima
tion to the operator x and the frequency 0 in terms of 
the amplitude p. An explicit representation of S1 and 
Bl in terms of N requires a knowledge of the explicit 
form of the amplitude PN' An adequate approxi
mation for p, to order 10, will be found by satisfying 
the commutation relation to order 102• But to maintain 
continuity, we proceed first to a determination of B2 • 

Referring to Eq. (3.11) and the preceding remarks, 
we have 

F1(yo) + F1(yo) = [Y1 0 dx]<Yo) 

= YIY~ + YOY1YO + Y~Y1' (4.11) 
where 

Yl = SI + SI' 
We have seen that SI is of the form 

SI = SI(t; N, a) = DNGN exp (-i<l>Nt)a3, 

and in conjunction with the form of Yo and the special
ordering theorem, we can collect, from the right-hand 
side of Eq. (4.11), the terms which contain powers of a 
in special order as opposed to those which contain at. 
The terms in a give Fl ; those in at give Fl . The result 
is as follows: 

F1(yo) = (DN + DN+1 + DN+2)GNPN+3PNHe-i'YNta5 

+ {[N P~-1 + (N + l)p~]GN 

where 

+ N PN-IPN+2GN-l + (N + 4)PNPN+3GN+1 
+ [(N + 4)p~+3 + (N + 3)P~+2]GN}e-i<JiNta3 
+ {N(N - 1)P~-2P~-IDN-2 
+ N(N + 2)P~-IP~+1DN-l 
+ (N + 2)(N + 3)p~+1p~+2DN}PNe-iflNta, 

(4.12) 

'Y N = <PN + ON+3 + 0NH' 

The coefficient B2 is determined from Eq. (3.12b): 

(
d

2 2) dt2 + ON S2 = F1(yo) + 2wBl S1 

+ (B: + 2wB2)PNe-iflNta. (4.13) 
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This coefficient must be chosen so that the right
hand side of Eq. (4.13) contains no term proportional 
to e-iONta as in the case of BI . Since the 2BI SI term 
contains only e- i

<fiN ta3 , this requirement becomes 

[N(N - I)Pt-2Pt-1DN- 2 + N(N + 2)Pt-lPt+1DN-l 

+ (N + 2)(N + 3)pt+1p~+2DN)pNe-illNta 
+ (2eoB2 + BDpNe-iflNta = O. (4.14) 

From Eqs. (4.6) and (4.10b), we can substitute ex
pressions for BI and S~':'3 into Eq. (4.14) and solve for 
B2 • We obtain the following result: 

B2 = - -.L{N(N - I)Pt-2Pt-1 DN- 2 
2eo 

+ N(N + 2)Pt-lPt+1DN-l 

+ (N + 2)(N + 3)pt+1pt+2D N 

+ ~ [N pt-l + (N + l)pt + (N + 2)pt+l)}' 
4eo 

(4.15) 

If one desires the order E2 correction to x, i.e., the 
function (operator) S2, then one must solve Eq. 
(4.13) using only the a3 and a5 terms from FI(yo) and 
the term 2eoBI Sl on the right-hand side. 

Now we proceed to obtain an explicit approximate 
expression for PN in terms of N by satisfying the 
commutation relation (3.2), thus giving explicit 
approximations to PN to order E, and ON to order 
E2. We first carry out the procedure to order unity 
and then to order € to indicate how one would handle 
the general case. 

However, there is a fundamental ambiguity in any 
such approximation in powers of E. The zeroth-order 
values of PN and ON are just those for the ordinary 
linear harmonic oscillator, (1i/2eo ylt and eo, respec
tively, so that P~,ON = tli. Any operator differing 
from these values by terms of order E will satisfy Eq. 
(3.2) to order E, i.e., P;'0N = iii + O( E). There is, 
in fact, no unique way to make the approximation 
order by order. We require only that the method 
selected give accurate results to the order under 
consideration, the same results given by every con
sistent scheme. 

The functions PN and ON are themselves power 
series in €, an explicit fact for ON' but also true 
implicitly for PN' The value for PN must be chosen in 
order n to satisfy the commutator to order (n + 1). 
This fixes the form of the operator PN to order En. An 
equivalent process is necessary in actually evaluating 
the approximate solution in the classical case. This 
point is not made explicit by Bogoliubov and Krylov, 
although they do handle the solution this way in 

carrying out the first-order approximation. The pro
cedure we have followed is next presented in detail. 

In finding ON to order En, the coefficients Bn , 

B n- 1 , ••• , BI must be known to order EO, EI, ••• , En, 

respectively. From the exact expression for Bn in terms 
of ON and PN, we can thus use their order €n-l values 
to find Bn to order En; their order En- 2 values to find 
Bn- 1 to order En; etc. 

In computing x to order En, we use ON to order En 

wherever it occurs in an exponential, but we substitute 
PN (and ON wherever it is not in an exponential) to 
order En in the fundamental, En-l in Sl, and so on 
until in Sn we use ON to order EO = 1. Thus, we gener
ate the solution x as a series of harmonics of the re
normalized frequency to order n, but we do not retain 
unnecessary amplitude corrections. Since no exponen
tials appear in the commutation relation, in evaluating 
the commutator, PN and ON are handled on an equiv
alent basis. This procedure differs from other consist
ent ones only by terms of order En+1 and higher, when 
calculating in order En. In what follows, we shall apply 
ON to a complete calculation to order E2 of the oper
ators in terms of N explicitly. 

To order EO we have 

(4.16a) 
which implies 

Xo = p~) exp (-ieot)a + at exp (ieot)p~). (4.16b) 

Temporarily dropping the superscript zero, the com
mutator of x and x at t = 0 is as follows: 

[x(O), x(O») = 2ieo[Npt_l - (N + 1)pt). (4.17) 

This commutator is required to be iii + O(E), leading 
to the condition 

N pt-l - (N + 1)pt = (1i/2eo) + O(E). (4.18) 

The final question is whether or not PN can have 
terms of order EO which depend on N. If P N is taken to 
be a c-number, it follows at once that PN = (1i/2eo)!. 
We express P;' as a power series in the operator N by 

where 

co 

p~ = LTiNi, 
;~o 

co 

T; = LT;k€k. 
k~O 

Then we obtain the following relationship: 

(N + l)p;' - N pt-l 
co 

(4. 19a) 

(4.19b) 

= Too + LN[NH + N i 
- (N - l)i)Tio + O(E). 

i~l 

(4.20) 
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The terms in the summation are of such a nature that 
no choice of the {TiO} can cause the sum to be a c
number. Thus, 

Too = 1i/2w, 

Tjo = 0, j ~ 1, 

(4.21a) 

(4.21b) 

and, finally, we recover the well-known result for the 
ordinary harmonic oscillator: 

pW = (1i/2w)!. (4.22) 

The complete zeroth-order approximation is con
tained in Eqs. (4.16) and (4.22). But it should be 
emphasized that this approximation was obtained by 
the method outlined above, and not by setting e = 0 
and solving Eq. (2.1). Thus, 

£l~) = w, 

p~) = (1i/2w)!, 

Xo = (1i/2w)![e-iwta + at eiwt]. 

(4.23a) 

(4.23b) 

(4.23c) 

In carrying out the next higher order, accurate to 
order e, from Eq. (4.6) we have 

Bl = -(2wrl[N(p~~l)2 + (N + 1)(p~»2 
+ (N + 2)(P~~l)2] (4.24a) 

= -(31i/4w2)(N + 1), (4.24b) 

and the renormalized frequency to order e is 

£lW = w[1 - e(31i/4w3)(N + 1)]. (4.2S) 

According to the procedure established above, the 
first-order correction to x takes on the following form: 

Sl = _(8w2r\Ii/2w)~e-i30Nlllta3. (4.26) 

The entire first-order x-operator is, then, 

xl(t) = p<j;>e-iONlllta - e(Ii/16w3)p~)e-i30Nl1lta3 + h.c. 

(4.27) 

Again, dropping temporarily the superscript one on 
PN' the commutator becomes 

[xl(O), xl(O)] 

= jw(2(N + l)prv - N Prv-l - N prv+1 - e(31i/4w3) 

X [2(N + 1)2prv - N 2prv_l - N(N + 2)prv+1]) 

+ e(iw)({(31i/4w3)PNPN+1 + (1i/4w3)(1i/2w)! 

X [N PN-I - (N + 3)PN+2]}a2 + H.c.) 

+ e(jw)[(1l/8w3)(1l/2w)~(PN - PN+3)a 4 + h.c.]. 

(4.28) 

The polynomials in a and at are linearly independent 
in Hilbert space. Thus, three equations must be 

satisfied by PN to various orders in e: 

2(N + l)prv - N P7v-l - N prv+1 - e(31i/4w3) 

X [2(N + 1)2prv - N 2p7v_l - N(N + 2)prv+d 

= (Ii/w) + O(e2
), (4.29a) 

(31l/4w3)PNPN+1 + (1i/4w3)(1i/2wy!t 

X [N PN - (N + 3)PN+2) = 0 + O(e), (4.29b) 

PN - PN+3 = 0 + O(e). (4.29c) 

The third, Eq. (4.29c), is immediate since 

P.v = (1i/2w)! + O(e). 

The second equation also is satisfied for the same 
reason. The first equation, Eq. (4.29a), will give the 
first-order correction to P N' Without presenting the 
details, when one refers to the expansion of Eq. 
(4.19), the coefficients Tjl are determined (Tik for 
k ~ 2 are arbitrary, but we choose them as zero) to be 

TOl = Tn = (31i2/4w3), (4.30a) 

Til = 0, j ~ 2. (4.30b) 

Thus we can list the first-order results for £IN, PN, 
and x: 

£lW = w[1 - E(31i/4w3)(N + 1)], 

pW = (1i/2w)![1 + e(31i/8w3)(N + 1)], 
xl(t) = pWe-iONllita + a teioNllltp<j;> 

- e(IiJI6w3)( 1i/2w )![e-i30Nllit a3 

(4.31a) 

(4.31b) 

+ a he+i30Nl1lt). (4.31c) 

Finally, we give the result from Eq. (4.1S) for B2 , 

obtained as above by making the approximations 
PN "'-' pW = (1i/2w)! and £IN "'-' £l~) = w. We also 
list £l~) for completeness: 

B2 = -(31i2/64w5)(SN2 + tON + 4), (4.32a) 

£lW =: w[1 - e(31i/4w3)(N + 1) 

- e2(31i2/64w5)(17N2 + 34N + 21)]. (4.32b) 

5 CONCLUSIONS 

The equation of motion for x studied in Sec. 4 
can be derived from the Hamiltonian 

H = t(p2 + W2X2) - tex4• 

If one now takes the first-order expressions obtained 
for Ps and £IN and calculates the first-order Hamil
tonian, one obtains 

H(l) = (N + t)liw - (3EIi/8w3) 

X (N2 + N + t)liw, (S.l) 

where N = ata. To this order, the Hamiltonian has 
the unperturbed eigenstates In) as eigenstates, where 

H(O) In) = (n + t)liw 10) 
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and (5.2) 
In) = (n !)-t(at)n 10). 

The first-order corrected energy eigenvalues are 

E~l) = (n + !)liw - (3EIi/8w3)(n2 + n + !)liw. (5.3) 

It is interesting to compare this result with that of the 
time-independent perturbation theory in the Schro
dinger representation. There, one finds that 

E~l) - (n + !)liw = L:dXCP:(X)( - ~X4)CPn(X) 
= -(3EIi/8w3)(n 2 + n + !)liw, 

(5.4) 

in agreement with Eq. (5.3). This agreement provides a 
partial check on the assumptions made in our method, 
such as the existence of a power series for On and Pn 
in the operator N = ata. 

Thus, there are other methods,2 many in fact, by 
which one can obtain first-order results for the one
dimensional problems considered in this paper. Also, 
one could work in Schrodinger representation to 
obtain the perturbed energies En and the perturbed 
eigenstates CPn to arbitrary order in E, assuming 
convergence. However, the neutral scalar field problem 
with interaction Hamiltonian density iEcp4(X) is known 
to lead to an infinite set of coupled, nonlinear oscil
lators when quantized in a box. Since there is no 
equivalent SchrOdinger theory for such a problem, a 
method which generalizes to it must involve the 
Heisenberg operator. One of the coupling terms for 
each of the denumerable infinity of such oscillators 
is the one we have chosen to investigate in Sec. 4. 
Since we have shown that a reasonable long-time 
approximation requires a q-number renormalized 
frequency and a q-number renormalization of the 
coordinate amplitude, it is appropriate to expect a 
q-number renormalized mass and a q-number wave 
function renormalization in the self-coupled field. 

Such q-number renormalizations are new to the 
perturbation solutions of field theory. Previously, 
they have been excluded in part due to the handling 
of the singularities in Green's function integral 
solutions by a method called "adiabatic switching." 

The reader· is referred elsewhere for a detailed 
demonstration of the existence of a q-number mass 
renormalization in the Ecp4 field theory.5 

Finally, it should be emphasized that the present 
method gives a consistent procedure for calculating, 
to arbitrary order in E, a condition one requires for 

• S. 0. Aks and R. A. Carhart, "Asymptotic Behaviour and 
Operator Mass Renormalization in the cp' Model," Nuovo Cimento 
(to be published). 

the generalization of the method to field theory in 
order to include production processes and radiative 
corrections. 

APPENDIX 

It is shown here that every polynomial over the 
variables a and at can be written as a polynomial in 
special order. We start with the well-known result 
that such polynomials can be re-expressed as poly
nomials in normal order, as linear combinations of 
terms of the form (at)kat. We prove below that these 
terms can be rewritten as polynomials in special 
order. Then, using the fact that composite polynomial 
functions of polynomials are again polynomials, we 
have the desired result. 

It remains for us to prove that (at)kat can be written 
as a polynomial in special order. The proof is given in 
two parts. The case k ~ t is considered first and is 
carried out using mathematical induction on the 
integers M = k + t. 

For M = I, remembering that k ~ t, the only 
term to consider is at which is already in special order. 

Using the induction hypothesis, i.e., all terms with 
n = k + t can be written as polynomials in special 
order, we show that all terms with k + t = M + 1 
can be written as polynomials in special order. 

The only term occurring in the case where k = 
M + 1, t = 0 [i.e., (at)M+l] is already in special order. 
For k + t = M + 1, with t ~ 1, we write 

(atYat[(at)kat-I ]a. 

The term in the bracket is of the type K + (t - 1) = n 
and can, in accordance with the induction hypothesis, 
be expressed as a polynomial in special order. Thus 
(at)kat, k + t = n + 1, and t ~ 1 is a linear combina
tion of terms of the form 

[(at)"NB]a = (at)"a(N + I)B = (atY-IN(N + 1)8, 

where rand s are positive integers (in particular, 
r ~ 1). 

Summarizing to this point, we have shown by 
mathematical induction that all normal-ordered 
terms of the form (at)kat, with k ~ t, can be expressed 
as a polynomial in special order. 

Terms of the form (at)tak, with k ~ t, remain to be 
considered. We note that 

(at)tak = [(at)kal]t, 

and the term in the bracket is of the form considered 
above. Thus it can be put into the form of a polynomial 
in special order. Consequently, its adjoint can also be 
written a polynomial in special order. This completes 
the argument. 
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A Gr~n's function technique is applied t~ one-velocity neutron problems with spherical symmetry. 
The ~am ~dvantag~ of the approach IS that It bypasses the need to construct explicitly the appropriate 
spherIcal eIgenfunctIOns. Indeed, these can be directly deduced from this new formulation if one so 
~~ , 

1. INTRODUCTION 

The eigenfunction expansion technique has achieved 
considerable success in dealing with boundary-value 
problems in one-speed linear transport theory. The 
method developed by one of the authors,l though 
applied extensively to boundary-value problems with 
planar boundary conditions,l-4 is readily adapted to 
more general geometrical configurations. The essential 
feature of this technique lies in constructing a complete 
set of eigenfunctions (normal modes) of the appro
priate transport equation, expanding the neutron 
angular density in terms of the complete set, and 
finding the expansion coefficients from the boundary 
conditions. There are some drawbacks in this kind of 
treatment. They are, among others: 

(i) The set of eigenfunctions (for example, the 
energy-dependent transport equation) may not form 
a complete set, which means one must construct 
appropriate additional functions to make the set 
complete. 

(ii) In most cases it is not always easy to prove 
completeness. 

In a recent paper by Case,5 a fresh approach has 
been introduced. It draws on analogy with the Green's 
function technique in dealing with classical boundary
value problems. The advantages of this approach, 
among others, are: 

• The work reported here was supported in part by the National 
Science Foundation and by NASA contracts NAS5-9113 and 
NAS8-21086. 

t Present address: The Rockefeller University, New York N.Y. 
l002t. ' 

:I: Present address: Institute of Nuclear Research of the Polish 
Academy of Science, Institute of Theoretical Physics Warsaw 
University, Warsaw, Poland. ' 

1 K. M. Case and P. F. Zweifel, Linea~ T~ansport Theory (Addi-
son-Wesley Pub. Co., Inc., Reading, Mass., 1967). 

• J. R. Mika, Nuc!. Sci. Eng. 11,415 (1961). 
• G. J. Mitsis, Nuc!. Sci. Eng. 17, 55 (1963). 
• R. Zelazny, J. Math. Phys. 2, 4 538 (1961). 
• K. M. Case, On the Boundary Value Problems of Linear Trans

port Theory (The University of Michigan Press, Ann Arbor, 1967). 

(i) It incorporates the normal mode expansion 
technique in the scheme. 

(ii) The eigenfunctions arise in a rather natural way, 
and thus the necessity of proving their completeness 
(if they form a complete set) is eliminated. 

This paper utilizes the new approach to deal with 
various spherically symmetric boundary-value prob
lems in one-speed transport theory. In particular, we 
treat albedo, critical, and Milne problems for the 
interior of a sphere, and the Milne problem for the 
exterior of a black sphere. In formulating the bound
ary-value problems for specific cases, we encounter an 
apparent difficulty in managing the regular integral 
equations by analytic methods. To circumvent this 
difficulty, we introduce a reduction operator which 
permits us to transform these regular integral equations 
into integral equations with singular kernels, but with 
the original coefficients. In other words, the reduction 
operator essentially reduces the spherical eigen
functions in the integral equations to the planar ones. 
The resulting singular integral equations are then 
solved for the coefficients by the conventional method 
developed for planar problems. 

2. CONSTRUCTION OF THE GREEN'S 
FUNCTION 

The time-independent transport equation in the 
one-speed approximation is 

(1 + n . V)1p(r, n) = :7T f dQ'1p(r, n') + Q(r, Q), 

(1) 

where n = v/v is the unit velocity vector, r is the 
position vector, Q(r, n) is a given neutron-source 
function, and c is the average number of secondary 
neutrons per collision produced by a neutron of 
velocity v. In this treatment we will assume that c is a 
known constant. 

223 
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In the treatment of the boundary-value problems, 
the standard way of incorporating the boundary 
conditions is to convert the differential equation into 
an integral equation. With this end in mind, consider 
the Green's function for the above transport equation: 

(1 + .Q • V)G(r, .Q; ro, .Qo) 

= .£.. fdo.'G(r, .Q', ro, .Qo) + b(r - ro)b(.Q • .Qo), 
47T 

(2) 

where .Qo is the direction of the monodirectional point 
source located at ro and b(.Q· .Qo) is the surface 
b function defined in the usual manner; i.e., 

b(.Q . .Qo) = 0, .Q ~ .Qo, (3a) 

f d.QJ(.Q)b(.Q • .Qo) = J(.Qo), (3b) 

if somewhere in the domain of integration .Qo = .Q. 
By construction, the solution5 of Eq. (I) is 

'lj!(r,.Q) = f dO.' d3r'G(r,.Q; r', .Q')Q(r', .Q') 

+ f dS do.sG(r,.Q; rs, .Qs)fi(rJ • .Qs'lj!(rs, .Qs), 

(3c) 

where r. and.Qs are position and velocity vectors of the 
neutron at the boundary surface, respectively, and 
fi(rs) is the corresponding normal pointing toward the 
region where the solution of the transport equation 
is being sought. 

Let us now construct the Green's function by taking 
the Fourier transform of Eq. (2) with respect to r; 
i.e., let 

G(r,.Q; ro, .Qo) 

= _1_ fd3k exp [ik • (r - ro)]Gi.Q, .Qo). (4) 
(27T)3 

Equation (2) then becomes 

Gi.Q, .Qo) = ~ .£..- fdo.' Gi.Q', .Qo) 
1 + Ik·.Q 47T 

+ b(.Q • .Qo) (5) 
1 + ik·.Q 

By integrating both sides of Eq. (5) with respect to .Q, 
we obtain 

I
do.G (.Q Sl) = 1 (6) 

k ,0 A(k) . (1 + ik • .Q) , 

where 

A(k) = 1 - ~ I dO. (7) 
47T 1 + ik . .Q 

is the familiar dispersion function. 

Substituting the integral in Eq. (5) by the expression 
(6), we get 

Gk(.Q • .Qo) = [A(1 + ik· .Q)(l + ik· .QoW! 

+ b(.Q • .Qo)[l + ik . .Q]-I. 

The Green's function is then simply given by 

G(r, .Q; ro, .Qo) 

= ~ fd 3k exp [ik • (r - ro)] 
(27T) 

X [_C_ [(1 + ik • .Q)(l + ik . .QOWI 
47TA 

+ b(.Q . .Qo) J. (8) 
1 + ik·.Q 

This is the fundamental Green's function which will 
serve to determine the solution of the one-speed trans
port equation for any given source and any incident 
distribution. We, therefore, turn to Eq. (3), which 
represents such a solution, and cast itin a more useable 
form. 

Let us introduce the explicit expression for G [as 
given by Eq. (8)] in Eq. (3c) and rearrange the terms to 
obtain 

'lj!(r, .Q) = 'lj!ir,.Q) + V'o(r,.Q) + 'lj!c(r, .Q), (9) 

where 

'lj!ir,.Q) = I dO.' d3r'G(r,.Q; r', .Q')Q(r', .Q') (10) 

is a known function, 

1 J 3 e
ik

•
r 

'lj!o(r, .Q) = -2 d k H, 
47T 1 + ik·.Q 

(11) 

H = -.l IdS do.so(rs) • .Qs'lj!(rs, .Qs)b(Sl • .Qs)e-ik
•r, 

27T 

= 2~ f dSfi(rs) • .Qs'lj!(rs, .Q)e-ik
•
rs

, (12) 

(.Q) C Jd3k e
ik

.
r T () 

'lj!c r, = 87T2 1 + ik • .Q A ' 13 

and 

1 I e-ik
.
r
, 

T = -2 dS do.so(rs) • .Qs'lj!(r., .Qs) . 
47T 1 + ik·.Qs 

(14) 

From Eq. (9) we see that the solution of any 
boundary-value problem is known, provided we can 
find the surface distribution 'lj!(rs'.Q) or, equivalently, 
the coefficients Tand H. Of course, if 'lj!(rs'.Q) is known 
a priori, then we are done. However, this is not 
always possible, for, in most instances, we only know 
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either the incident or the outgoing distribution, but 
not both. It is, therefore, necessary to supplement Eq. 
(9) with another equation which determines "P(rs ' n). 
This is easily done by passing to the limit [in Eq. (9») 
as r -+ rs from within the region of interest; i.e., 

"P(rs ' n) = "PaCrs' n) + "Po(rs, n) + "Pe(rs , n). (15) 

For further discussion of the equation that determines 
the surface distribution, see Ref. 5. 

The rest of this paper is devoted to the study of the 
integral equation (9) in conjunction with Eq. (15), 
subject to various boundary conditions in spherically 
symmetric problems. Specifically, we shall consider 
two categories of problems, the interior and the 
exterior of a sphere. 

3. SPHERICALLY SYMMETRIC PROBLEMS 

By this we mean that the angular density "P will be a 
function of rand fl = f • n, with fl > 0 corresponding 
to the outgoing neutrons and fl < 0 to the incoming 
ones. Under the spherical symmetry, the integral 
equation (9) is considerably simplified by carrying out 
the appropriate angular integrations. Thus, noting 
that T, given by Eq. (14), is a function of the magni
tude of k, we can write 

"Pe(r, fl) 

= ~ (ro dkk2 T(k) (h
dT

Jl ~ 
87T

2 Jo A(k) Jo -1 1 + ikt 

x exp (ik{ tfl + [(1 - fl2)(1 - t2»)t cos (Cf! - Cf!k)})' 

or 

C Jro 2 T(k) "Pir, fl) = - dkk J(k, r, fl) - , 
87T -ro A~) 

(16) 

where 

/(k, r, fl) =Jl ~ eiktrI'Jo{kr[(l - fl2)(1 - t2»)l}. 
-11 + Ikt 

(17) 
Similarly, 

1 Jro Jl dt "Po(r, fl) = - dkk2 -- eiktrl' 
47T -00 -1 1 + ikt 

x Jo{kr[(l - fl2)(1 - t2»)l}H(k, t), (18) 
where 

H(k, t) = fldfl'fl'''P(r., fl')e- iktr
.I" 

x Jo{krs[(l - fl'2)(1 - t2)]t} (19) 

and rs denotes the radius of the sphere. The equation 
that determines the angular density is then 

"P(r, fl) = "Pq(r, fl) + "Po(r, fl) + "Pe(r, fl). (20) 

Before we express "P(r, fl) (for interior and exterior 
problems) in terms of eigenfunctions of the transport 

equation, let us examine the analytical properties of 
A(k), J(k, r, u), and T(k) in the complex k plane. 
From Eq. (7) it is clear that A is sectionally holo
morphic in the k plane with the branch cuts extending 
from -ioo to -i and ito ioo. This property is shared 
by the functions J(k, r, fl) and T(k). (We shall use this 
fact in constructing the eigenfunctions of the transport 
equation.) The zeros of A(k) are either purely real or 
purely imaginary, depending on whether c < 1 or 
c > 1. It may seem peculiar, at first, that the angular 
density [or more appropriately, the Green's function 
given by Eq. (8») is not uniquely determined when the 
zeros of A are real. However, we will show later (when 
we deal with the critical problem) that it is not 
necessary to prescribe anyone particular recipe for 
treating the real zeros of A; that is, all prescriptions 
lead to a unique determination of the angular density. 
Finally, we note that, for complex values of k, the 
functions J(k, r, fl), T(k) , and H(k, t) diverge at 
infinity. However, we show in the following sections 
that these functions can always be written as a sum 
of two, one of which converges in the upper half k 
plane and the other in the lower half. 

A. Interior Problems 

In Eq. (20), let us first consider "Pe(r, fl) given by 
Eq. (16). We wish to express "Pe(r, fl) in terms of eigen
functions. To do that, we need to change the path of 
integration from the real axis to the contour surround
ing the cut, as shown in Fig. 1. Since r < rs , it is 
necessary to decompose T(k) only. The decomposition 
is readily obtained by expanding the exponential in 
Eq. (14) in terms of spherical harmonics. Thus, 

e-ik.r, = 47T I injn(krs)Y:m(k. ns)ynm( -fs ' n s). n,m 

The expression for T(k) now becomes 

T(k) = ~ IdS dn fi(r ) • n "P(r" fls) 
7T s s s 1 + ik • ns 

(21) 

x 2 injnCkrs)Y!m(k. ns)Ynm( -fs ' n.). 
n,m 

r ) r. 

k- plane 

r < r. 

FIG. I. Contours for 
r> r. and r < r •. 
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Because of the azimuthal symmetry of the surface 
angular density "P(r, , P,.), the only term in the sum 
over m which is nonzero is that for which m = O. 
Hence, 

T(k) = f1dP,BP,S"P(r., P,.) 

0() 

x L in(2n + 1)jn(kr.)P nC -P,s)Q,.{k), (22) 
n=O 

where Qn(k) is the Legendre function of the second 
kind defined by 

Qn(k) = (1 dt P net) . (23) 
)-1 1 + ikt 

Now the spherical Besssel function inez) can be ex
pressed as a sum of Hankel functions of the first and 
the second kind. In Sommerfeld's notation,6 

(24) 

Putting (24) into (23), we get the following decom
position for T(k): 

(25) 

where 

TI,2(k) = L1~P,8P,."P(r., P,.),(O,(2)(k, rs, -P,.) (26) 

and 

0() 

= L in(2n + l)~~),(2)(kr.)Pn( -p,.)QnCk). (27) 
n=O 

Let us note that 
(28) 

The expression (16) for "Pe(r, p,) may now be re
written as a sum of two integrals by inserting the 
decomposition of T(k) given by Eq. (25). One may, 
then, readily show that one of the integrals converges 
in the upper half k plane and the other in the lower 
half. To simplify the subsequent calculations, we use 
the relation (28) and write 

c fOO 2 TI(k) ( ) 1J!.(r,p,) = - dkk -- I k, r,J-t. 
81T -00 A 

(29) 

In much the same way, the expression for "Po(r, p,) 
[see Eq. (18)] may be cast in the following form: 

"Po(r, p,) = 1. foo dkk2fI dt. eiklr/l 

41T -00 -1 1 + Ikt 
x Jo{kr[(1 - p,2)(1 - t2)]!}HI(k, t), (30) 

8 A. Sommerfeld, Lectures on Theoretical Physics, Vol. 6: 
Partial Differential Equations in Physics (Academic Press, New 
York, 1949). 

where 

H1(k, t) = f/p,fp,I"P(r.,p,f) 

00 

x L in(2n + 1)~~)(kr.)P n( -p,')P nCt). (31) 
n=O 

Now we can change the path of integration from 
the real axis to a contour surrounding the cut in the 
upper half k plane. For "Pe(r, p,), we have 

"Pe(r, p,) = - dkk2 __ 1 ___ 1 + d. c. C iiOO (I-T- I+T+) 
81T i A- A+ 

(32) 

where - (+) denotes the boundary value as we 
approach the cut from the right(left), and D . C is the 
discrete contribution arising from the zero of A. For 
the present we have assumed that c < I; i.e., the 
zeros of A(k) are purely imaginary. Let us simplify the 
integrand by constructing the eigenfunctions. This we 
do as follows. First we note that, from Plemelj's 
formula, we have 

= ! e-r/l Jo{r[(1 - J-t2)(k2 + 1)]!}, 
k 

and k is purely imaginary. Thus, 

A = (I-T1/A-) - (I+Tt/A+) 

(34b) 

= (T1/A-)(:J'I + i1TI6) - (TtJA+)(:J'I - i1TId). 

To construct the eigenfunctions, we introduce )"(k) 
in A as follows: 

A = (T1/A-)[:J'I + A.Ia - ()" - i1T)Id] 

- (Tt(A+)[!fI + A.Id - ()" + i1T)Idl. 

Now choose)" such that 

cp(k, r, fA) = 'Sf + U 6 (35) 

are spherical eigenfunctions of the transport equation 
with continuous spectrum. By straightforward calcu
lations, one may readily show that the appropriate 
)" is 

)" = i1T(A+ + A-)/(A+ - A-). (36) 

If we choose A in this way, then A becomes 

A = [(T1/A-) - (Tt/A+)]cp(k, r, p,) 

+ 21Ti(Tl - Tt/A- - A+)Id • 
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(37) 

(38) 

and we have written down the explicit expression for 
the discrete contribution in which 

r O (k ) = _ ~ k2 Tl(ikO) (39) 
< 0 4 0 N(iko) , 

and 

cp(iko, r, ft) 

=jl _d_t _ e-kO~ltlo{kor[(l _ ft2)(1 _ t2)]!} (40) 
-11 - kot 

is the discrete eigenfunction of the transport equation 
with the eigenvalue iko the zero of A(k); i.e., 

or 

A(iko) = 0, 0 < ko < 1. 

For tpo(r, ft) [see Eq. (30)], we get 

tpo(r, ft) = - dkk2 dt 27Tii'«l II 
47T i -1 

X e'ktrItJo{kr[(l - ft2)(i _ t2)]i} 

x 15(1 + ikt)H(k, t), 

tpo(r, ft) = -ie-Tit f«l dkkJo{r[(l - ft2)(k2 + i)]!} 

X H( k, - i~)' (41) 

Now one may easily show that tpo(r, ft), as given by 
Eq. (41), is equal to minus the second term on the 
right-hand side of Eq. (37). With this in mind, Eq. 
(20), for the angular density tp(r, ft), becomes 

f1 1 (i) (i ) tp(r, ft) = tp,ir , ft) + Jo dv ~ r < ; cp ;' r, ft 

+ cp(t,r,ft)r~(*), (42) 

where we have set k = ii'll and ko = i/vo. 
An equation that determines the coefficients r < 

and r~ is obtained by letting r -- r. in Eq. (42). Thus, 

(1 1 (i) (i ) tp(r., ft) = tp,lr., ft) + Jo dv ; r < ; cp ;' r., ft 

+ cp(*,r .. ft)r~(~). (43) 

This is a regular integral equation. Its solution is 
difficult to discuss. Therefore, we shall seek the help 
of an operator (the reduction operator) which, when 
applied to Eq. (20), produces ,an auxiliary equation 
with the same coefficients as that in Eq. (43), but with 
a singular kernel. Before we present such an operator, 
let us first consider the cJass of exterior problems. 

B. Exterior Problems 

Now since r > r., in order to express tpc(r, ft) [see 
Eq. (16)] in terms of eigenfunctions by the change of 
path of integration to a contour surrounding the cut 
in the upper half plane, we need to decompose 
J(k, r, ft) [see Eq. (17)] and then follow the sllme 
procedure as that in the interior problems. Thus, to 
decompose J(k, r, ft), we write 

eiktrItJo(kr[(1 _ ft2)(1 _ t2)]!) 
00 

= ! I i fl(2n + l)[{~H(kr) + {~2)(kr)]p fI(f.t)P net), (44) 
n=O 

where we have used the decomposition (24) of the 
spherical Bessel function. Then, 

J(k, r, ft) = tW1l(k, r, ft) + {(2)(k, r, ft)], (45) 

where ~(l).(2)(k, r, ft) is given by (27) with rs replac€(d 
by r and -ft. by ft. Equation (16) for tpc(r, ft) now 
becomes 

C j«l T(k) 
tplr, ft) = 87T -00 dkk

2
{(1l(k, r, ft) A(k)' (46) 

The resulting integral equation for tp(r, ft) is given 
by 

"P(r, ft) = "Pir , ft) + f dv(l/v)r > (i/v)Z(i/v, r, ft) 

+ Z(i/vo, r, ft)r~(1/vo). (47) 

An equation that determines the coefficients r > (i/v) 
and r~(l/vo) is 

tp(r., ft.) = tpir., ft) + fdll(l/lI)r >U/V)Z(i/lI, r., ft) 

+ Z(i/vo, rso ft)r~(1lvo), (48) 
where 

and 
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In Eq. (47), the regular eigenfunctions occur implicitly 
in the coefficients r > (i/v) and r~(l/vo). Thus, from 
Eq. (22) for T(k), we have 

T(k) = fld,us,us1p(r., ,u.)I(k, r., -ft.)· 

Therefore, 

where k is a purely imaginary number (Le., k = i/v). 
Now, by definition, 

[I-(k, r., -ft.)/A-] - [I+(k, r., -ft.)/A+] 

= (1/A-)[;rI(k, r., -ft.) + i7rI~(k, r., -ft.)] 
- (lJA+)[;rI(k, r., -ft.) - iTrI~(k, r., -fts)] 

= (l/A+A-){;rI(k, r., -ft.) 
+ i7r[(A+ + A-)/(A+ - A-)]I~(k, r., -fts)} 

= (1/A+A-)tP(k, r., -fts). 

4. THE REDUCTION OPERATOR 

Let us consider an operator 6, given by 

e == lim J"" dr'r' K(r - r',,u) 
r-+r8 -00 

X (1 +,u~ + 1 - ,u2 ~), 
or' r' oft 

(56) 

where the kernel K(r - r', ft) is 

K(r - r', tt) = (1/,u)e-(r-r')!Jl8(r - r')8(,u) 

- (1/,u)e-(r-r')/1l8(r' - r)8( -,u). (57) 

Let us write the operator e, formally, as 

e == lim KS, (58) 

where 
o 1 _,u2 0 

S=:l+,u-+---
or r a,u 

is the streaming part of the transport operator. 

A. Application of the Operator e to Interior Problems 

We have already mentioned that 4>(k, r, ,u), as given Owing to the linearity of the operator e, its applica-
by Eq. (35), are the regular eigenfunctions of the tion to Eq. (20) gives us 
transport equation with continuous spectrum. Here, 

4>(k, rs, -,us) = ;rICk, r" -,u.) 
+ iTr[(A+ + A-)/(A+ - A-)]I~(k, r., -,us) (52) 

are the regular eigenfunctions of the adjoint equation 
with the same continuous spectrum. Thus, explicitly, 

Similarly, 

(54) 

where 

~(t, r.,fts) 

= VOfl ~ e'81"/Volo{~ [(1 - ,u;)(1 - t2)]!} (55) 
-1 Vo - t Vo 

is the regular discrete eigenfunction of the adjoint 
equation with the point spectrum Vo (iko = i/vo being 
the zero of A). 

To solve the integral equation (48) for the coeffi
cients, we shall seek the help of the reduction operator. 
In the next section, we present such an operator. 

First, consider the left-hand side of Eq. (59). Since e 
is a product of two operators [Eq. (58»), K and S, let 
us apply S first. Thus, 

S1p(r,,u)8(rs - r) 

o1p 
= 1p(r,,u)8(r. - r) + ,u8(r. - r)

ar 

1 - ,u2 aljl 
- ,uljJb(rs - r) + -- 8(r. - r) -a . 

r ,u 
For,u < 0, 

6[1p(r, ,u)@(rs - r)] = rs1p(r., ft). (60) 

Next consider 61pc. We have, from Eq. (16), 

c J"" 2 T(k) 61pc(r,,u) = - dkk - leICk, r, ,u)]. (61) 
8Tr -00 A(k) 

Now, 
SICk, r, ft) = (2 sin kr)Jkr. 

Therefore, for ft < 0, 

KSI(k ) 2 food ' , -1.-,') '''';:>( , ) sin kr' , r,ft = - - r r e ~"" r - r --
r -00 kr' 

or 

KSI(k, r,p) = - - + . (62) i [ e
ikr 

e-
ikr 

] 

k 1 + ikft 1 - ikft 
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If we put Eq. (62) into Eq. (60), the result is 

ic . foo T(k) 
0"PcCr, fL) = - hm dkk-

81Tr-r, -co A(k) 

X - + . (63) [ 
eikf e-ilcr ] 

1 + ikfL 1 - ikfL 

Now, decomposing T(k) into the sum of TI(k) and 
T2(k) as before [see Eq. (25)] and following the same 
procedure of integration around the cut in the upper 
half k plane, we obtain 

where 

_ ~ [iOO dkk[e-ikr'~(1 _ ikfL) 
4Ji 

_ eikf'b(l + ikfL)](T1 - Tt) + rd.c. 
A- - A+ 

(64) 

cf>°(k, r., fL) = eikr'{'J'(1 + ikfJ)-l 
+ i1T[(A+ + A-)/(A+ - A-)]b(l + ikp)} (65) 

are the planar eigenfunctions corresponding to the 
continuous k spectrum. Also, for Jl < 0, these eigen
functions are regular. However, if the sign of k is 
reversed, then these planar eigenfunctions become 
irregular. 

In Eq. (64), let us introduce the coefficients r < 

and r~ as given by Eqs. (38) and (39), respectively. 
Thus, 

1ioo dk 
()"Pc(r, Jl) = i ---; 

i k-

where 

x [</>o(_k, rs,Jl) - r/>°(k, r.,fL)W«k) 

_ E. [ioo dkk Tl - Tt 
4Ji A- - A+ 

X [e- ikr'b(l - ikfL) - eikf'b(l + ikfL)] 

+ CJ[</>O(-iko, r.,fL) 

- cp°(iko, r., /l)]r < (ko), (66) 

tfo°(iko, r., /l) = e-ikor'/(l - kot-t), 0 < ko < I, (67) 

is the planar discrete eigenfunction corresponding to 
the point spectrum ko. 

One may readily show again that the second term on 
the right-hand side of Eq. (66) is equal to -()1poCr, Il). 
Consequently, the reduced angular density given by 

Eq. (59) may now be written as follows: 

rs1p(rs, fL) = 8"Pir, t-t) fdV[ cpo ( - ;, rs, t-t) 

- cpo(;,r .. Il)]r«;) 
+ vo[ tfo°( - ~ , r., fl) - cf>o(~ , r., fl) ] 
x r~ (~), /l < 0. (68) 

Putting the explicit forms of the planar eigenfunctions 
in Eq. (67), we re-express this equation in the standard 
notation.1 Thus, 

where 

fell) = -. vor < - -- - --
1 [ 2 0 (1) ( e-r,/vo er,/vo ) 

2m Vo Vo - fL '110 + t-t 
+ [l~ e-2r./ vt' < (l) 

Jo v - fL v 

+ rs"P(rs,/l) - 81pq(r,/l)] (70) 

and 

i\ (;) = ver,/vr < (n. (71) 

Equation (69) is the auxiliary equation which can be 
solved for the coefficients r < and r~ by the standard 
technique developed for planar problems.1 We note 
that the existence of such a solution guarantees the 
completeness of the regular spherical eigenfunctions 
given by Eqs. (35) and (40) in the sense stated in the 
following theorem. 

Theorem 1: "Any" function 1p(r, fL) in the domain 
- /l < I and regular at r = 0 may be expanded in 
terms of the regular spherical eigenfunctions r/>(i/v, 
r, /l) and tfo°(i/vo, r, /l), corresponding to the contin
uous spectrum 0 < v < 1 and the point spectrum vo . 

Let us mention that this is the half-range complete
ness of the eigenfunctions. The proof of the theorem 
is demonstrated by constructing the coefficients r < 

and r~ from Eq. (69). For further details on this we 
refer the reader to Ref. 1. Here we shall merely use the 
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results of such a solution in various specific boundary
value problems. Before we do that, however, let us 
complete our presentation by giving the analog of 
Eq. (69) for the class of exterior problems. 

B. Application of the Operator () to Exterior 
Problems 

Consider the left-hand side of Eq. (59). For r > r .. 
we have 

S{ 1p(r, ,u)e(r - r.)} 

= 1p(r, ,u)e(r - r.) + ,ue(r - r.) d1p 
dr 

1 - ,u2 d1p + ,u1p{)(r - r.) + -- e(r - r.) - . 
r d,u 

For ,u > 0, we get 

O{1p(r, ,u)8(r - r.)} = r.1p(r., ,u). (72) 

In the right-hand side of Eq. (59) consider 01pc: 

C Joo dk T(k) 01p.(r,,u) = - "2 - fOlCk, r, ,u)]. 
817 -00 k A(k) 

For,u > 0, we have 

KSI(k, r,,u) = K 2 sin kr 
kr 

= 2. Jr dr' e-(r-r')/p sin kr' 
k,u -00 

1 [e
ikr 

e-
ikr J 

= ki 1 + ik,u - 1 - ikp. . 
Therefore, 

c Joo T(k) 01p.(r,,u) = -. lim dkk -
8171 r-+r, -00 A 

[ 
eikr e-ikr J 

x 1 + ik,u - 1 - ik,u , 

c Joo T(k) eikr 
01p.(r,,u) = -.lim dkk - .' 

47T1 r-+r, -00 A 1 + Ik,u 

or 
(73) 

Again, by changing the path of integration to a con
tour surrounding the cut in the upper half k plane, 
we cast Eq. (73) into the form given below: 

c iiOO ° (T- T+) 01p.(r, ,u) = 417i i dkkcp (k, r.,,u) A - - A + 

+ E iioodkkeikr'{)(l + ik,u) 
2 i 

T- - T+ 
X A- _ A+ + d. c. (74) 

where cpO(k, r .. ,u) is the planar eigenfunction repre
sented by Eq. (65). Now let us introduce the coeffi
cients r> and r«;. defined by Eqs. (50) and (51), 

respectively, and put the form of 01p. given by Eq. (73) 
into Eq. (59). We obtain 

r.1p(r .. ,u) = 01pk,,u) - 2fdVI\(;)cpO(;, r .. ,u) 

- 2VocpO(~ , r .. ,u )r~ (t), (75) 

where cp°(ijvo, r.,,u) is the discrete planar eigen
function given by Eq. (67). 

Let us cast Eq. (74) into a more usable form by 
introducing the explicit expressions for the eigen
functions. Thus, 

where 
= (A+ - A-)g(,u), ,u > 0, (76) 

g(,u) = ~[-v~r~ (i)e-r"vOj(vo -,u) 
47T1 71o 

and 

+ 01pa(r,,u) - r."PCr .. ,u) J (77) 

(78) 

In the next section, we consider some specific 
interior and exterior problems. 

5. APPLICATIONS 

In the integral equation (69), we notice that, except 
for the terms involving the incident distribution and 
the distribution due to source(s), the rest of the 
features are common to all interior problems. This is 
also true for Eq. (76) for the class of exterior problems. 
For this reason it is convenient to write down the most 
general solutions for the corresponding coefficients and 
treat just the distinguishing part separately for each 
problem. Thus, for the class of interior problems, the 
solution of the singular integral equation (69) isl 

r> (;) = - 2~;[X+/-,u) - x-/~,u)J{v~r~ (~) 
X [erB/vo X(vo) _ e-t',/vo X( -vo)J 

,u + 71o ,u - 71o 

+ f l

dve-2r,!V r«i/v) X( -v) 
Jo 71- ,u 

+ e dp/ X+(f-t') - X-{f-t') 
Jo f-t' + f-t 

x [r,1p(r., -,u') - 01pir, -f-t')]}, f-t < O. 

(79) 
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The equation that determines r~ is 

v~I'~ (~) [X(vo)e-1',/vo - X( -vo)e-r,/vo] 

- fdVX( -v) exp (-2r./v)r < (~) 

-L1
d,u'[X+(,u') - X-(,u')] 

x [r.1jJ(r., -,u') - 01jJa(r, -,u')] = 0, (80) 
where 

X(z) = _1_ exp [~ (ld,u argA+(,u)]. (81) 
1 - Z 7T Jo ,u - z 

Similarly, for the exterior problems, Eq. (76) has the 
solution 

(i) 1 (1 1) r> ; = - 47Ti X+(,u) - X-(,u) 

x {_ v~I'~ (.!.) e-r,/vo X ( + vo) 
Vo ,u - Vo 

+ (1dp,' X+(,u? - X-(P') 

Jo ,u -,u 

x [01jJ(r, ,u') - rs1jJ(r., ,u')]}, ,u > O. (82) 

The equation that determines r~ is 

v~I'~ (*)X( +vo)e-r,/vo + fd,u'[X+(,u') - X-(,u')] 

x [01jJ"(r,,u') - r.1jJ(r.,,u')] = O. (83) 

Let us now consider some specific problems and 
determine the coefficients r < and r~ explicitly. We 

> > 
treat the interior problems first. 

A. The Albedo Problem 

The albedo problem involves the determination of 
neutron angular density everywhere inside the source
free sphere [1jJir,,u) == 0] with an incident distribution 
given by 

1jJ(rs,,u) = (r;)-lb(,u - ,uo), ,u < 0, ,uo < O. (84) 

Under this boundary condition, Eq. (79) for r < 

becomes 

r(i) = __ 1 ( 1 _ 1 ){vgr~ (.!.) 
,u 27Ti X+( -,u) X-( -,u) Vo 

x [exp (!:!) - exp (-r.) X( -vo)J 
Vo vo,u - Vo 

+ [Idv exp (-2r./v) i\(ijv) X( -v) 
Jo v - ,u 

1 X+( -,uo) - X-( -,uo)} +- . 
r. ,u - ,uo 

(85) 

For r~ , we have 

v~I'~ (~) [ X(vo) exp (~) - X( -vo) exp ( - ~) ] 

[1 (-2r) (i) - Jo dvX( - V) exp ~ r < ; 

- .!. [X+( -,uo) - X-( -,uo)] = o. (86) 
rs 

Equations (85) and (86) are well suited for asymp
totic expansions of the angular density. Thus, for a 
large sphere, one may neglect the integral term in Eq. 
(85) involving exp (-2r./v), and solve the equation by 
iteration. In particular, in the zeroth approximation, 
we have 

- (i) 1 (1 1) 
I' < ; ~ - 27Ti X+( -,u) - X-( -,u) 

x {vgI'~ (.!.) [exp (!:!) X(vo) 
Vo Vo ,u + Vo 

(-r8) XC -vo)J -exp - ---
Vo ,u - Vo 

(87) 

and 

v~I'~ (~) 

_ [X+( -,uo) - X-( -,uo)] . (88) 

rs[X( 1'0) exp (r./vo) - X( -vo) exp (- r.lvo)] 

Now, by eliminating v~r~(l/vo) from Eq. (87), we 
obtain the explicit expression for r <. The angular 
density is then readily obtained from Eq. (42). 

B. Milne Problem for the Interior of a Sphere 

The Milne problem involves the determination of 
neutron angular density everywhere inside the sphere 
with a source at the center and zero incident distri
bution. Thus, the boundary condition is 

1jJ(r",u) = 0, ,u < O. (89) 

We assume an isotropic source; i.e., 

Q(r, n) = ~(r). (90) 
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Putting this expression for Q into Eq. (10), we obtain 

1 foo dkk
2 

1pir, #) = 87T2 -00 A J(k, r, #), (91) 

where J(k, r, #) is given by Eq. (17). 
As before, we may express 1pq in terms of boundary 

values about the branch cut in the upper half k plane 
by first decomposing J(k, r, #) as shown in Eq. (45). 
To avoid repetition of calculations, we merely state 
the answer. Thus, 

C 1ioo dkk 
1pir, #) = - - -- Z(k, r, #) 

87T i A+A-

where Z(k, r, #) and S(l)(iko, r, #) are given by Eqs. 
(50) and (27), respectively. Put k = ii'll and ko = 11'110 

to get 

1 y(I) ( i ) + 4 2· A' ~ - , r, # . 
7T IVo '110 

(93) 

After the application of the reduction operator to Eq. 
(91) for # < 0, we get 

1 e-r./vo 

+ 2 'A' --, # < O. (94) 
m '110 - # 

Now let us subject Eq. (79) to the boundary con
dition (92) and insert the expression (94) for ()1pq. The 
result is 

{ 
2rO (1)[ (rs) X(vo) x '110 < - exp - --

'110 '110 # + '110 

(-rs) X( -vo)J -exp -
'110 # - '110 

1 (-rs) X( -'110) ---exp - --
27TiA' '110 # - '110 

l Id (-2rs)r'"\ (i)X(-V) + vexp -- < - --
o v v '11-# 

+- --exp - --, C II dv' (-rs) X( -v)} 
47T 0 vA + A-v v - # 

# < O. (95) 
From Eq. (79), we get 

v~r~ (~)(exp (~)X(vo) - exp (~:s)X( -'110)] 

- --. -exp _s X(-vo) 1 (-r) 
2mA' '110 

(1 (-2~) _ (i) -Jo dvexp .-'11- X(-v)r< ; 

_..£... (I~ exp (-rs)X( -v) = O. (96) 
47T Jo vA+A- v 

For a large sphere, we may neglect the integrals in 
Eqs. (95) and (96) involving exp (-2rslv). Thus, in the 
zeroth approximation, Eq. (96) becomes 

2r O(1) 1 (-2rs)X(-vo) '110 < - c:::: --exp -- ---
'110 27TiA' '1'0 X( '110) 

c (-rs) 11 dv +-exp - --
47T '1'0 0 vA+A-

x exp - --, (-ra) XC-v) 
v X(vo) 

(97) 

while Eq. (95) becomes 

(i) 1 (1 1) r ; '" - 27Ti X+( -#) - X-( _#) 

X exp -, S --- (v' + '110) • (-r) X( -v') ] 
v '11'-# 

(98) 

These are precisely the coefficients which occur in the 
half-space Milne problem, I as expected. The first 
order approximation of r~ and r < may now be 
readily obtained by computing the integrals pre
viously neglected in Eqs. (96) and (95) from the first 



                                                                                                                                    

PROBLEMS IN ONE-SPEED TRANSPORT THEORY 233 

iterations (97) and (98). Thus, 

c (-rs)Il 
dv (-rs) XC-v) + - exp - -- exp - --

41T '1'0 0 vA+A- v X(vo) 

- - dvexp - XC-v) -----1 11 (-rs) (1 1) 
21Ti 0 v X+(v) X-(,v) 

x [_1_ exp (- r s) voX( - '1'0) 
1TiA' '1'0 ('1'0 - '1')('1'0 + v) 

c e dv' 
41T(VO - v) Jo v'A+A-

X exp (-rs) XC-v') (v' + vo)J 
v' v' + v 

(99) 

and 

I\ (1.) '"" _1 ( 1 _ 1 ) 
{t 21Ti X+( -{t) X-( -{t) 

x {_1_ exp (- rs) voX( -'1'0) 
1TiA' '1'0 ('1'0 - '1')('1'0 + v) 

C [1 dv' 

41T(VO - v) Jo v'A+A-

X exp (-rs) X( -v') (v' + '1'0) 
v' v' + v 

1 11 dv -- --
21Ti 0 v - {t 

x exp -- XC-v) -----(-2rs) (1 1) 
V X+(v) X-(v) 

x [_1_ exp (~) voX( -'1'0) 
1TiA' '1'0 ('1'0 - '1')('1'0 + v) 

c e dv' 
41T(VO - v) Jo v'A+A-

X exp (-rs) X( -v') (v' + vo)]}. (100) 
v' v' + v 

C. The Critical Problem 

We mentioned earlier that, when the zeros of the 
dispersion function are real (c> I), the Green's 
function [Eq. (5)] is not uniquely determined. The 
angular density, however, is still uniquely determined 
regardless of the manner we choose to treat the singu
larities. To illustrate this point, let us consider the 
critical problem. Assuming no volume sources, the 

integral equation (20) becomes 

"P(r, {t) = "Po(r, {t) + "Pc(r, {t). (101) 

The dispersion function occurs only in "Pc, which is 
given by Eq. (29). We rewrite this equation as follows: 

'lPcCr, {t) = ..£. 100 

dkk2Tl(k)I(k, r, {t) 
81T -00 

X [~± + Alo(k - kl) + A2o(k - k2)} 

(102) 

where ~ implies the Cauchy principal value, Al and .12 
are some arbitrary functions of k, and kl' k2 are the 
real zeros of A(k). Since A( -k) = A(k), -k2 = 
kl = ko > O. Also froin Eq. (28), we have Tl( -k) = 
T2(k). With this in mind, let us re-express Eq. (101) in 
the following form: 

c JOO 2 TICk) "Pc(r, {t) = - dkk - I(k, r, {t) 
81T -00 A 

+ 1>(ko, r,{t)rC(ko), (103) 

where we have omitted writing the principal value 
symbol and 

rC(ko} = ..£.. kUA1T1(ko) + A2T2(ko)] (104) 
81T 

and 

1>(ko, r, {t) 

= II dt. eikotTIl J o(kor[(l - {t2)(1 - t2) ]!) (105) 
-11 + Ikot 

is the discrete regular eigenfunction which is of 
oscillatory type in contrast to the eigenfunctions 
constructed previously. 

The calculation of the integral in Eq. (103) may now 
be carried out in exact analogy with the interior 
problems for c < 1. Here we merely state the final 
result. Thus, 

"P(r,{t) = f d; r «;)1>(;, r,~) 
+ 1>(ko, r, {t)rC(ko), (106) 

where the coefficient r < is given by Eq. (38), and, as 
before, 1>(i/v, r, {t) [see Eq. (35)] are the regular 
eigenfunctions corresponding to the continuous spec
trum. 

The implication of our previous statement as to the 
uniqueness of the angular density should now be 
obvious. In particular, we see from Eq. (106) that the 
coefficients r < and r c are determined uniquely by the 
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boundary conditions, and the angular density, there
fore, does not depend on how we set up these coeffi
cients. Equation (104) illustrates such an arbitrariness 
in re. 

The steps involved in obtaining the auxiliary equa
tion for the coefficients are exactly those involved in 
the interior problems for c < 1. Thus, Eq. (69) 
represents that equation with (}'ljJq == 0, r c replacing 
rl!: , and the discrete eigenfunctions by their oscilla
tory counterpart. In fact, from Eq. (79), which repre
sents the most general solution of Eq. (69), we have 

-exp - --
(
-irs) X(ivo) ] 

Vo ft + ivo 

l Id (-2rs)r«i/V)X() + vexp -- --- -v 
o v V-ft 

+ (1 dft' X+(ft') - X-(rt') rs"P(rs, ft»). 
Jo ft' + ft 

The equation that determines r e is (107) 

v~re(*)[X(-iVo)eXp (-v~s) - X(ivo)exp (~:)J 

- fdVX(-V) exp (-~rs)r «~) 

- fdft'[X+(ft') - X-{ft')]rs"P(r., -ft') = 0. (108) 

The boundary condition for the critical problem is 

'IjJ(r" ft) = 0, ft < 0. (l09) 

Inserting this boundary condition into Eq. (107), we 
get 

(i) 1 (1 1) r < ~ = - 21Ti X+( -ft) - X-( -ft) 

X {v~rc(..!.) [exp (irs) X(=i~o) 
Vo Vo ft 1Vo 

- exp -- ---(
-irs) X(ivo) ] 

Vo ft + ivo 

l Id (-2r,) r <City) X( )} + vexp -- --- -v, 
o v v-ft 

and, from Eq. (107), we get (110) 

v~re(~)[ X(-ivo)exp (~:) - X(ivo)exp (-v~·) ] 
(1 (-2r ) (i) - Jo dvX( -v) exp ~ r < ; = 0. (111) 

For a large sphere, if we neglect the integral in Eq. 
(111) involving exp (-2rs/vo), we get 

exp (-irs/v)X(+ivo) - X(-ivo)exp (irs/vo) = 0, 

(112) 

which merely states that the asymptotic density is to 
vanish at the extrapolated end point. This problem has 
been extensively treated for planar geometry by the 
normal mode expansion technique. I •4 

As a final application of the Green's function 
technique, let us consider the Milne problem for the 
exterior of a black sphere. 

D. Milne Problem for the Exterior of a Black Sphere 

The problem under consideration involves the 
determination of the neutron angular density outside 
a purely absorbing sphere (black sphere). Far away 
from the sphere, there is a source which supplies the 
neutrons. Since the black sphere implies zero emergent 
distribution, the appropriate boundary condition is 

"P(rs ' ft) = 0, ft > 0. (113) 

Ih calculating the angular density 'ljJq(r, ft) in Eq. 
(47), let us assume that a spherically symmetric 
source is located at some distance R outside the black 
sphere. Thus, let 

Q(r, Q) = (qo/R2)b(r - R), R > r.. (114) 

Putting this source function into Eq. (10), we get 

qo J 00 dkk ikR (k ) ( 5) "Pir,ft) = --. - e I ,r,ft, 11 
41TRI -00 A 

where J(k, r, ft) is given by Eq. (17). 
Let us split Eq. (115) into two parts as follows: 

qo [J 00 dkk ikR )0( ) "Pir,ft) = -.- --e J(k, r,ft • R - r 
47TlR -00 A 

+ - eikRJ(k, r, ft)0(r - R). (116) Joodkk ] 
-00 A 

Now, if we push the source to infinity (i.e., let R ---+ 

00), we see that the second integral in Eq. (116) will 
make no contribution. Furthermore, in the same 
limit, the modes with continuous spectrum must also 
disappear. Thus, in Eq. (110), if we choose 

qo = R ekoRi[koA'(ko)rl, (117) 

where A(iko) = 0, and let R ---+ 00, we get 

'ljJa(r, {t) = -t/>Uko, r, ft). (118) 

The application of the reduction operator for ft > ° 
to Eq. (116) gives us, in the limit R ---+ 00 and the 
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same choice of qo as given in Eq. (117), 

1 ( e-kor, ~or.) 
(hp<i r , fl) = 2ko 1 _ kolt - 1 + ko{t , fl > O. 

(119) 

The coefficients f' > and r~ given by Eqs. (82) 
and (83), respectively, which solve the integral equa
tion (47), may now be readily obtained. Thus, inserting 
the boundary condition (113) and Eq. (119) into Eq. 
(82), we get 

x {V~X(vo) e-rs/vo[l - r> (!)] 
fl - Vo Vo 

+ v~X( -vo) ers/vo}. (120) 
It + Vo 

The equation that determines r~ is similarly obtained 
from Eq. (82). Thus, 

One usually writes 

Derivation of Identities 

Let us begin with the Green's function (for c = 0) 
in the form of a Fourier integral 

1 f e
ik

.
R 

G(r, n; ro, no) = -3 b(n 0 no) d3k , 
(27T) 1 + ikon 

(Al) 

where R = r - roo The integration may be carried out 
in a straightforward manner by first resolving k and 
R as follows: 

k = nkon + k1.' such that k1. on = 0, 

and 

R = nR 0 n + R1.' such that R1. 0 n = 0. 

Then we can write 

k 0 R = k 0 nR 0 n + k1. 0 R1. . 

Equation (1) then becomes 

G = b(n 0 no) 1. 
27T 

xJoo d(k 0 n) exp (ik 0 nR 0 n) 0 _1_ 

-00 1 + ik 0 n (27T)2 

x f d2kl. exp (ikl. 0 Rl.)' 

(122) Separate parts of the integrals are 

where '0 is the so called extrapolation distance which 
determines the distance where the asymptotic neutron 
density vanishes. 

APPENDIX 

In the main body of this paper, we have dealt with 
the media with regeneration property. In the course 
of the treatment we encountered certain complicated 
looking functions such as ,<0,(2), defined by the infinite 
series (27), which are hard to relate to any classically 
known functions. In this section we consider the 
Green's function for media without regeneration 
property (i.e., c = 0). (For a geometrical interpreta
tion of the Green's function for purely absorbing 
media, see Ref. 1.) Here also we encounter similar 
type of functions which do not seem to have classical 
analogs, but their certain integrals are related to 
Dirac's delta function. Consequently, they give rise to 
some interesting mathematical identities and com
pleteness relations (half and full range). For the 
planar geometry, the completeness relations are rather 
trivial. However, for the sake of comparing the 
hierarchy of complexity, we also present these trivial 
completeness relations. 

and 

.!.. J 00 d(k 0 n) eik.nR.n = e-R.n 0(R 0 n) 
27T -00 1 + ik 0 n ' 

where 
0(R 0 n) = I, Ron> 0, 

= 0, Ron < o. (A2) 

The expression for the Green's function now may be 
written as 

G = exp (-R 0 n)b(n 0 no)b(R 1.)0(R 0 n). (A3) 

This equation holds for any arbitrary values of , 
and roo 

Let us consider Eq. (I) again and carry out the 
integration in a manner parallel to the treatment of 
interior and exterior problems. Define I as 

I = _1_ f d3
k exp [ik 0 (r - ro)] (A4) 

(27T)3 1 + ik 0 n ' 
and let 1< denote this integral when r < ro, and I> 
when r > ro. First consider ,< ro. Expanding 
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exp (-ik • ro) in terms of spherical harmonics and 
using the cosine formula to express 1{ • r = t and T • 
Q = p" we get 

XJoo dkk2~~2)(kro)j1 dt. Y!m(t, cp) 
-00 -1 1 + Jkt 

. eiktrIlJm{kr[(1 - p,2)(1 - t2)]!}. (AS) 

(Here we have used the decomposition of the spherical 
Bessel function in terms of spherical Hankel functions 
~~l) and '~).) Now the distortion of the path of inte
gration (with respect to k) to the path surrounding the 
branch cut in the lower half k plane yields 

I -TlljO dv ~ ~ 'n -hm"Y(2) ( . ro) 
< = -e "3,:;.,,:;., I e 'on 1-

-1 V n~O m~-n V 

x Ynm(-To ·Q)Y~m(V'!P) 
X Im{r[(1 - ft2)(V-2 - 1)]!}. (A6) 

Since G = IJ(Q· no), the comparison of Eq. (6) with 
Eq. (3) gives us the first identity. 

Identity I: 

-exp (-rp,) 3'! ! in exp -im - ,~2) j...Q j o dv 00 n ( 7T) (r ) 
-1 V n~O m~--n 2 V 

X Ynm( -To • n)Y~m(V' !p) 
X Im{r[(1 - p,2)(V-2 - 1)]i} 

= exp (-R. Q)15(R.l)0(R· Q), 

r < ro, fl == r· Q. 
Similarly, for r > ro, we have the second. 

Identity 2: 

exp (rop,o) f :: ~o m~ninehm"'~1)(i;) 
X Ynm(T' n) Y~m(v, !Po) 

X Im(ro[(l - p,;)(1/v2 - 1))!) 

= exp (-R· Q)O(R.l)0(R· n), 

r > ro, fts == To' n. 
We remark here that Identities 1 and 2 so far are not 

restricted to any geometry. Also note that the Green's 
functions G < (r < r 0) and G> (r > r 0) are related to 
1< and I>, respectively, by 

(A7) 

Now if we express the delta function in Eq. (A7) in the 
form 

b(n ·.no) = (j(p's - fto)(j(!po - !POo) , (A8) 

where ft. = To·.n, P,o = To' .no, and in Eq. (A3) 

write oCR 1-) in cylindrical coordinate system, i.e., 

o(R.l) = r-1(1 - p,2)-t 

X (j[r(l - p,2)! - ro(1 - ft;)!]o( cp - !Ps), 

(A9) 

and integrate Eq. (A7) over all angles except p, = 
r· nand fto = To' .no, we get Identities 3 and 4 
corresponding to the spherical geometry . 

Identity 3: 

-t exp (-rp,) (0 d: S(2)(iro , -P,o , v) 
1-111 V 

X Io{r[(1 -- p,2)(1/V2 - 1)Jt} 

= exp (-(rp, - rop,o)J 

b[r(l - ft2)! - ro(1 - p,~)!) 0 
X !" (rp, - rop,o), 

r(l - ft2)' 

Identity 4: 

i exp (rop,o) f ~: S(l)(~ ,p" 11) 

where 

X Io{ru«(1 - p,~)[(l/v2) - I))!} 

= exp [-(rp, - ro,uo)] 

J[r(l - p,2)* - ro(1 - p,~)!] 
X * 0(rp, - 'oP,o), 

r(l - ft2) 

S(1).(2)(~ ,p" V) 

= n~/n(2n + 19~1).(2)(~)Pn(P,)PnCP). (AIO) 

A more convenient form of these identities is 
obtained if we use the formula 

to re-express the right-hand sides. This gives us: 
Identity 3' : 

_! exp (- rP,)jO d: S(2) (iro , -fto, v) 
-1 V V 

X Io{r[(l - fl2)(lJv2 
- 1)]i} 

1 
= exp [-(rp, - rop,o)) -2-

r Iftl 
X [(j(p, - ftl) + (j(p, + P,1)]0(rp, - 'otto), 

, < '0; 
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Identity 4': 

! exp (ropo) f ~: S(1) C;: ,p, v) 

where 

X Io{ro[(l - p~)(1/v2 - l)]!} 

= exp [-(rp - ropo)](r2 Ipl)-1 

X [b(p - PI) + b(p + pl)]0(rp - ropo), 

r> ro, 

Completeness Theorems 

Let us note that the left-hand and right-hand sides 
of identities (3') and (4') are two representations of 
G< and G>, respectively. The half-range completeness 
theorems follow from the limits of G < and G> as r 
approaches r o' Specializing to various particular 
values of P and Po, let us first obtain a number of 
useful results. Consider G < first. 

The right-hand side representation of G< is 

1 
G < = exp [-(rp - rOPO)]-2 

rfl 

X [b(# + #1) + b(# - #1)]0(r# - ro#o)' 

(All) 

I. #0> 0, # > ° 
The argument of the 0 function is positive if 

# > (rolr)#o' Now the first b function makes no 
contribution, since its argument cannot vanish. The 
second b function can contribute if 

# = #1 = {(r~/r2)#~ - [(r~/r2) - I]}! < (rofr)po, 

(rofr) > 1. 
But then 0(rp - ropo) = 0. Hence, 

G< = 0, #0> 0, and # > 0. (AI2a) 

2. Po > 0, P < ° 
For these values of P and Po, 0 (rp - ropo) = 0. 

Hence, again 

G< = 0, Po> 0, P < 0. (AI2b) 

3. #0 < 0, # > ° 
For this 0 = I, b(# + #1) makes no contribution. 

Therefore, only b(p - PI) may contribute. Hence, 

G< = e-(rl'-rol'o)(r2Ipl)-lb(p - PI), Po < 0, P > 0. 

(AI2c) 

4. Po < 0, P < ° 
Then r# - ropo = ro IPol - r Ipi > ° if 

Ipi < (ro/r) IPol· 

Clearly b(p - PI) makes no contribution. Hence, the 
possible contribution may come from b(# + #1)' This 
is easily seen from putting P + #1 equal to zero: 

P + PI = ° = -ipi + PI 

or 

Ipi = {(r~/r2)p~ - [(r~/r2) - In! < (rofr) IPol. 

The last inequality shows that 0(r# - ro#o) = 1 is 
satisfied. Hence, 

G < = e-(rl'-rol'o)(r21,u1)-lb(p + #1), ,uo < 0, # < 0. 

(A12d) 

By exactly the same argument, one may show that 
G> , in the right-hand side representation (see identity 
4'), can be written as 

G> = e-(rl'-rol'o)(r2 Ipl)-lo(,u - PI), Po > 0, P > 0, 

(A13a) 

G> = 0, Po> 0, ,u < 0, 

(A13b) 

G> = [e-(rl'-rol'o)/ r2 Ipl]b(,u - PI), ,uo < 0, ,u> 0, 

(AI'3c) 

G> = 0, ,uo < 0, P < 0. 

(A13d) 

Now in Eqs. (AI 2a)-(AI 2d) and (AI3a)-(A13d) let 
r -4- ro. Denoting this limit of G'J; by G'f" we obtain the 
following set of results: 

G_ = 0, Po> 0, P > 0, 

(A14a) 

G_ = 0, Ilo > 0, # < 0, 

(AI4b) 

G_ = (e-2rol'/r~p)b(p + ,uo), Po < 0, ,u > 0, 

(AI4c) 

G_ = -(r~p)-Ib(p - Po), Po < 0, P < 0, 

(AI4d) 

G+ = (r~p)-lb(p - Po), Po> 0, p> 0, 

(AI5a) 

G+ =0, fto > 0, ft < 0, 

(A15b) 

G+ = (e-2rol'/r~fl)b(p + ,uo), ,uo < 0, ,u > 0, 

(AI5c) 

G+ = 0, Po < 0, ,u < 0. 

(A15d) 
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Let us remark here that the purpose of tabulating G ± 

for various sets of values of f-l, f-lo (instead of using 
Heavyside theta function) is that only those repre
sentations of G± give rise to completeness relations 
which correspond to the same sign of f-l, f-lo -for 
instance, Eqs. (A14a), (AI4d), (AI Sa), and (AISd). 
The rest give rise to mere identities. 

In the left-hand side representations of G'f' we have 
from identities (A3') and (A4'), 

G = _1. -rOllio dv S(2) (iro _ ) - ~e 3 ' f-lo,Y 
-1 V Y 

G =1 ropoll dy S(U (ir 0 ) 
+ ye 3 ' f-l, Y 

o Y V 

From Eqs. (AI4d) and (AI Sa) we may now con
clude our half-range completeness theorems. 

Theorem 1 (Half-Range Completeness): For f-lo < ° 
andf-l < 0, 

r~ -ropio dv S(2) (iro ) -e - - -II Y 
2 3 ' rO, 

-1 Y V 

Theorem 2 (Half-Range Completeness); For f-lo > ° 
and f-l > 0, 

The full-range completeness theorems may now be 
readily obtained by taking the appropriate differences 
of G+ and G_. Thus, subtracting (AI6) from (AI7), 
we have (in the left-hand side representation) 

G - G - 1 ropoll dy S(I)(iro ) 
+ - - ye 3 ' f-l, Y 

o v v 

This equation can be cast into a more symmetric form 
by means of the following relations: 

e-rplo{ro[(l - f-l2)(V-2 - 1)]i} 

= HS(UC:o , f-l, v) + S(2t:O 
, f-l, v) 1 (A19) 

erp1o{ro[(1 - f-l2)(V-2 - 1))i} 

S(l)( iro ) S(2)(iro ) --,f-l, -Y = -,f-l,Y. 
v v 

(A2l) 

We may now rewrite Eq. (AS) in the form 

G - G =! II dv S(1)( iro )S(2)(iro _ ) + - 3 ' f-l, v ,Po, v . 4 ~v v v 

(A22) 

In the right-hand side representations of G+ and G_ we 
have, from (AISa), (AI4a) and (AISd), anc!(AI4d), 

G+ - G_ = (r~f-l)-lc5(f-l - f-lo), Po > 0, f-l > 0, 

Po < 0, P < 0. 

(A23) 

The fUll-range completeness theorems may now be 
readily concluded from Eqs. (A22) and (A23). 

Theorem 3 (Full-Range Completeness): For any P, 
f-lo, 

r~Il dv S(l)(iro )S(2)(iro _ ) 
4 

3 ' p, V ,Po, V 
-I'll Y V 

Theorem 4 (Full-Range Completeness,; For any P, 

f-lo, 

_1 2fl dv S(l) (iro _ )S(2)(iro ) "4ro 3 ,p, V , /.to, V 
-1 V v J' 

We note that Theorem I is adjoint to Theorem 2 in 
the sense that they imply each other under the reflection 
of f-l and f-lo. In particular, this equivalence also exists 
under the interchange of P and f-lo. We may, therefore, 
combine the two theorems into a symmetric form. 
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Theorem 5 (Full-Range Completeness-Symmetric 
form); For any fl' flo, 

1 2f1 dV[S(l)(iro )S(2)(iro _ ) lIro 3 ,fl, v , flo, v 
~ v v v 

- S(l)(iro - )S(2)(iro )] , fl,v ,flo,v 
v v 

For the sake of comparison we present the corre-

sponding trivial theorems for the planar geometry: 

for any fl, flo· 
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The first-order quantum corrections to the equations of state of an almost-classical N-particle system 
are calculated to all orders in the particle density by expanding the normalized Wigner distribution 
function in powers of h2• In this way one avoids the expansion of the partition function, which has the 
unsatisfactory property that the correction terms diverge in the thermodynamic limit. Similarly, the 
first-order quantum correction to the pair distribution function is derived. 

1. INTRODUCTION 

A well-known concept in the quantum statistical 
treatment of an N-partic1e system is the Wigner distri
bution function (WDP) f(r, p), where rand pare 
the 3N-dimensional position and momentum vectors. 
It is defined in such a way that the quantum statistical 
ensemble average of an arbitrary operator A is given 
by 

(A)qu = Tr pA/Tr p 

= I a(r, p)f(r, p) dr dp / If(r, p) dr dp. (1) 

Here p is the density operator and a(r, p) represents 
the classical quantity corresponding to the quantum 
mechanical operator A. If, in particular, the corre
spondence between a and A is established according 
to Weyl's rule (cf., e.g., Ref. 2), one finds for fer, p) 

1 E. Wigner, Phys. Rev. 40, 749 (1932). 
2 K. Schram and B. R. A. Nijboer, Physic a 25, 733 (1959). 

the expression 

fer, p) = (7rnr3N I per - y, r + y) exp (2in-I p. y) dy, 

(2) 

where per, r') is the density operator in coordinate 
representation.3 It will be obvious that p andf(r, p) 
may be multiplied by an arbitrary temperature-depend
ent factor. 

In the case of statistical equilibrium described by a 
canonical ensemble, the (unnormalized) density oper
ator is given by 

p = exp (-PH), P = (kT)-l. (3) 

This operator satisfies the so-called Bloch equation 

op 
-= -Hp. 
o{J 

(4) 

a In fact, the correspondence (2) and Weyl's rule are equivalent, 
as several authors showed independently; see, e.g., Ref. 2, Ref. 5, 
and Boris·Leaf, J. Math. Phys. 9, ~5 (1968). 
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The (unnormalized) WDF, which in the sense of (2) 
corresponds to (3), satisfies the equation 

of = -cos{~(~.~ - ~ .~)}Hel(r'P)f(r,P)' 
o~ 2 OPH orf orH OPf 

(5) 

where Hel(r, p) is the classical Hamiltonian function, 
and %rt means a/or operating on f only, etc. This 
equation was first derived by Schram and Nijboer2 
and independently by Imre, Ozizmir, Rosenbaum, 
and Zweifel4 (IORZ). 

2. EXPANSION OF THE UNNORMALIZED WDF 

In the latter paper, IORZ used Eq. (5) as a starting 
point to study the quantum corrections to the 
(thermal) equation of state for gases like H 2 , He, 
and Ne at low (but not too low) temperatures. The 
authors introduce a function X by 

fer, p) = x(r, p) exp (-pHcJ) (6) 

and expand X in even powers of Ii according to 

X = 1 + 1i2XI + /i4X2 + . . . . (7) 

From (5), one obtains in a straightforward way a 
differential equation for X, from which the Xi can be 
calculated. If it is assumed that HIe = (2m)-lp2 + 
<I>(r), Xl is found to be given by5 

Xl = - - p. - <I> - 3p2 - + (J3 - . (8) 1 [~3 ( 0 )2 02<1> (O<l»2J 
24m m or or2 or 

If now one tries to expand the partition function 

Z = Tr e-PH = ff(r, p) dr dp (9) 

again as a power series in /i 2
, 

(10) 

where 

Z =fe-PHcl dr dp cl , (11) 

(12) 
where 

(a(r, P»cl = z~tf a(r, p)e-PHc1 dr dp. (13) 

• K. Imre, E. 6zizmir, M. Rosenbaum, and P. F. Zweifel, J. 
Math. Phys. 8, 1097 (1967). 

• The last term of Eq. (8) was omitted by IORZ [cf. their Eq. 
(A8)], possibly due to a printing error. We may add here that 
their Eqs. (A24) for the free energy and (A25) for the pressure are 
also incorrect. 

It now turns out, as was noticed by IORZ,4 that 
CI is of order N, C2 is of order N2, etc., so that these 
correction factors to the partition function blow up 
for a macroscopic system. The reason is, of course, 
that the free energy F = {J-I log Z should be propor
tional to N in the thermodynamic limit, so that if we 
had expanded the quantity N-I log Z in a power 
series in /i2, the quantum corrections should be 
expected to be small quantities for an almost-classical 
system. 

Nevertheless, it will be obvious from the theory of 
power series that, if the expansion of N-I log Z con
verges, the expansion (10) will also converge; hence, 
one may conclude that the coefficients of the expan
sion of N-I log Z may be found from those of (10) by 
formal application of the expansion 

log (1 + x) = x - tx2 + tx3 . .. , (14) 

although for large N, we find that 1i2CI , n4C2 , etc., 
may be much bigger than 1. 

One can now derive the quantum corrections to the 
equations of state. Expanding the pressure according 
to 

P = Pel + /i2A I + /i4A2 + ... , 
one finds from (12) 

A = !1..( . 
I ~ oV Xl)el' 

(15) 

(16) 

In order to evaluate this expression from (8) and (13), 
one should n~tice that (Xl) depends on the volume V 
only through the limits of integration. One then 
proceeds in the well-known way: Supposing that the 
volume is a cube with edge L, one makes a change in 
variables 

r = Lr' 1.. = l... ~ 
'oV 313 oL' 

(17) 

in such a way that the limits of integration for r' no 
longer depend on V. One then finds 

- {3 I 0 02<1>\ (32 / 0<1> 02<1>\ 
Al = 72mV \r. or or2 leI + 12mV\r. or or! leI 

_ 1-I r • 0<1>\ <0
2

<1>\ (18) 
12m V \ or 101 or2 101 . 

In the derivation we used the equality 

102<1>\ = p/(O<l>'\\ , 
\ro2 leI \ or) leI 

which follows from partial integration. 

(19) 

For the caloric equation of state, one expands the 
internal energy 

V = Vel + J;2EI + J;4E2 + ... , (20) 



                                                                                                                                    

ON THE THEORY OF QUANTUM CORRECTIONS 241 

where 

u = _ a 10gZ. 
o~ 

Applying the equality 

a lah\ 
- (h)Cl = \-1 + (h)cl(H)cl - (hH)cl, (21) op ap cl 

where her, p) is any function in phase space, one finds 
from (8) for the first-order correction 

E1 = L 10
2

<1» 
12m \or2 el 

p2 102<1>\ p2 / a2<1> \ 
+ 24m (<1»e\or2/cl- 24m \<1> or2 /el' (22) 

in perfect agreement with the result of Wigner.1 As 
far as we know, the result (18) has not been published 
before. 

Higher-order corrections to the equations of sta te 
may be evaluated in the same way, but the calculations 
become much more complicated. 

3. EXPANSION OF THE NORMALIZED WDF 

In this section, we wish to point out that an alterna
tive method, namely expansion of the normalized 
WDF instead of the unnormalized one, avoids the 
unsatisfactory features of the above derivation and 
leads to the same results. 

The normalized WDF is 

ge"~ p) = fer, p){jf(r, p) dr dPrl = Z-lf(r, p). (23) 

It corresponds to Z-lrPH in the sense of Eq. (2) and 
it satisfies an equation similar to (5): 

og = -cos {fl(~. ~ - ~ .1.-)}Hel(r, p)g(r, p) op 2 OPH orfJ orH Opy 

+ (H)qug(r, p), (24) 

where ()qU is the quantum statistical ensemble 
average. 

Introducing now in a similar way the classical 
normalized distribution function 

gel(r, p) = Z-;11 exp (-PH el), 

we can define the ratio 

"P(r, p) = ge"~ p)/gel(r, p), 

and, as before; we expand 

(25) 

(26) 

Now (24) leads immediately to a differential equation 
for "P(r, p), and,considering in particular the term in 

/i2 , we have 

O"PI = _1 [P2(p. ~)2 <1> _ 2P 02<1> + p2(0<1»2] 
op Sm m or or2 or 

+ < "PIH)cl. (27) 

Equation (27) differs from the corresponding equa
tion for Xl only in the last term, which does not 
depend on (r, p). Therefore 

"PI = Xl + a(p). (2S) 

Equation (27) can be solved directly, but it is easier to 
use the normalization of g and gel: 

1 == f dr dpg(r, p) = f dr dpgeiCr, p){1 + /i2"P1 + ... } 
= 1 + /i2("P1)CI + ... , (29) 

from which it follows that 

("P1)CI = 0, ("P2)cl = 0, ... ; 

then (2S) and (30) lead to 

(30) 

(31) 

Higher-order corrections can be calculated in a 
similar way.6 

In order to calculate the quantum corrections to 
the equation of state from the expansion of the 
normalized distribution function, we make use of the 
virial theorem, which states that 

pV = ~ (p2) _ !/\r. 0<1>\1 (32) 
32m 3 or 

in a system in thermal equilibrium. Equation (32) is 
valid in quantum statistics as well as in classical 
statistics. Here we assume that <1> is only the potential 
of the intermolecular forces. One finds from (32) and 
(31) the first correction to the equation of state: 

p 102<1>\ p2 I 0<1> 02<1>\ 
Al = 36mV \or2 le/ 36mV \r. ar or21c1 

f32 I 0<1>\ 102<1>\ 
- 72mV \r. or/el\or2/cl 

p3 I 0<1> (0<1»2\ 
- 72mV \r. or or IcJ· (33) 

One may prove that (33) is equivalent to (1S) if one 
uses the equalities 

6 From the definitions of 'P and X it follows immediately that 
X = 'P(X)cl; hence, one concludes that 'Pi can be expressed in Xi and 
<Xi)Ci with j ::;; i. 
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and 

I r • 0«D 02«D\ = ,/r. 0«D(0«D)2) _ 1(0«D)2\ 
\ or or2 lei \ or or el \ or leI 

_ ! (r . ~(0«D)2\ , (35) 
2 or or lei 

the validity of which can be shown by partial integra
tion. From (31) one calculates at once the correction 
of order 1i2 to the caloric equation of state; one finds 

E = L 102«D \ _ L <<<D 02«D \ 
1 24m \ or2 lei 12m or2 lei 

(J2 102«D) {Ja I. (O«D 2\ + - (<<D)el\- + - \«D -) . (36) 
24m or2 el 24m or 101 

Equation (36) is equivalent to (22), as it should be; 
this is seen by using the equality 

1«D(0«D)2) = !/(0«D)2\ + !/«D02«D\. (37) 
\ at el {J \ or I ci (J \ or2 lei 

We wish to emphasize that (18) [or (33)] and (22) 
[or (36)] give the corrections to the equations of state 
to all orders in the particle density. Therefore, they 
are valid also for dense systems.7 

If «D(r) can be written as a sum of two-particle 
interactions v(ij) = Veri - r j ), Al and El can be 
expressed in terms of the reduced classical particle 
distribution functions 

7 One should realize, however, that for dense systems the effects 
of the symmetry conditions on the wavefunctions may be imponant. 
These effects are neglected here. 

The last two terms in (39) are proportional to V in 
the thermodynamic limit, but taken together they 
have a finite limit. This is easily seen if one introduces 
a set of functions k.(rl' r2, ... , r.) in the following 
way: 

nl (rl) = pkl(rl), 
n2(rl , r2) = pI [k2(rl , r2) + k1(rl)kl(r2)], 

n3(r1 , r2, r3) = p3[k3(rl' r2 , r3) + kl(rJk2(r2 , r3) 

+ k1(r2)k2(r1 , ra) + kl(r3)k2(rl , f2) 
+ kl(rl)kl(r2)kl(r3)], . . . . (41) 

Then the functions k. have the cluster property: If the 
positions r1 , t 2 , ••• , r. can be divided in at least two 
groups such that positions in different groups are 
further apart than the range of the interaction between 
the particles, then k. = O. One may say that 
kS(rl' ... ,r,) is zero unless all r i , i = 1, 2, ... , S, 

are close to each other. 
If one substitutes (41) into (39), one easily verifies 

that the terms which are of order V in the thermo
dynamic limit cancel each other. In the same way one 
sees that the sum of the last two terms of (40), which 
are of order V2 in the thermodynamic limit, gives a 
contribution to £1 which is of order V. 

It is well known that the first term of the expansion 
of n,(rl , r2' ... , r.) in powers of the density is 

p' exp [ -fJi:51.fi:5SV(ij)} (42) 

Therefore, from (39), one finds for dilute systems that 

A~d) = - ~ exp (-fJv(r)]r. - -- d3r 
fJ 2 f 0 olv(r) 
72m or or2 

+ -1!.. exp [-fJv(r)]r. - -- d3r 
PI 2. f ov(r) 02v(r) 

72m or or2 

fJp2 f 02V = - exp [-pv(r)] -2 dar. 
24m or 

(43) 
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A~a) is the first-order quantum correction to the equa
tion of state to second order in the density, and is 
therefore the first quantum correction to the second 
virial coefficient. Equation (43) is in agreement with 
the results of Uhlenbeck and Beth8 and of Green.9 

In the same way one obtains for dilute systems 

E~d) = ~: f exp [-pv(r)] ~:~ dar 

pZV J 02V 
- 24m exp [-pv(r)]v(r) or2 dar, (44) 

in agreement with the result of Green.9 

The expansion of the normalized WDF can be used 
to evaluate quantum corrections to the ensemble 
average of any quantity which is a function of (r, p), 
and also to the reduced particle distribution functions. 

As an example, we derive the first quantum correc
tion to the pair-distribution function. Expanding 

N 2(rl , r 2) = n2(rl , r 2) + li2bl(rl , r 2) + .. " (45) 

wherelo 

N 2(rl , r 2) = N(N - 1) J g(r, p) dra dr, ... drN dp, 

(46) 
one finds (to all orders in the particle density) 

bl(rl , r2) 

= {L [~(OV12)2 _ 2 02V~2 
24m orl orl 

+ tfnlra , r4) 02V!' dra dr4]n2(r1 , r2) 
ora 

---
8 G. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936); 4, 915 

(1937). 
I H. S. Green, J. Chern. Phys. 19,955 (1951). 

10 One should notice that (46) has the same physical meaning 
as the classical two-particle distribution function; it represents the 
Slater sum integrated over N - 2 coordinates. 

+ {I.T.}, (47) 

where {LT.} is equal to the first term between the 
braces with r1 and r2 interchanged. Applying (41) 
again, one shows that the terms, which are of order 
V in the thermodynamic limit, compensate each other. 
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A funct!o~al formalism for co~ere~ce theory is developed in terms of the (quasi) probability functional 
of the radIatIOn field. The formahsm IS closely connected to the P representation of the density operator. 
For the fields confined within a spatial volume of finite size, this connection is expressed as a multi
dimensional Fourier integral. A certain type of correspondence, illustrated by explicit examples, between 
the classical and the quantum mechanical description of the field statistics is established. The recent 
results of Titulaer and Glauber concerning the (1, l)th-order coherent fields are analyzed from the point 
of view of the functional formulation. 

1. INTRODUCTION 

The optical coherence theory is concerned with the 
statistical description of fluctuations of the electro
magnetic field. Optical coherence phenomena may be 
said to be manifestations of correlations between these 
fluctuations. l In order to study correlations in optical 
fields in a systematic way, a general statistical descrip
tion of the field is needed. This has been provided both 
in classical terms2 and in terms of the quantized field. 3-5 

A classical approach to specifying the randomness of 
radiation consists in defining the multifold probability 
distribution wN, from which all moments at N space
time points r i , ti can be calculated. When we describe 
the electromagnetic field in quantum-mechanical terms, 
we must think of the field vectors as operators which 
satisfy the Maxwell equations. Since the field, in general, 
is in a mixed state, the averaging must be performed by 
means of the density operator p, which describes the 
field completely: It has been found especially con
venient to make use of the set of coherent states in 
describing the quantum state of the field. A particular 
representation of the density operator, in terms of 
products of the coherent-state vectors, is called the 
p representation (or the diagonal representation in 
Sudarshan's terminologyG). The use of the P repre
sentation in describing fields brings out a correspond
ence between the results of quantum electrodynamics 
and classical theory. The analogy between both types 
of predictions can be made even closer by introducing 
configuration-space probability densities7 which corre
spond to any given form of the P representation. In 
this connection an important question arises whether 
this correspondence, persisting throughout the theory 

.. Warsaw, Koszykowa 75 
1 L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965). 
2 E. Wolf. Proceedings of the Symposium on Optical Masers 

(John Wiley & Sons, Inc., New York, 1963). 
3 R. J. Glauber. Phys. Rev. Letters 10, 84 (1963). 
• R. J. Glauber, Phys. Rev. 130, 2529 (1963). 
5 R. J. Glauber, Phys. Rev. 131, 2766 (1963). 
• E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963). 
7 See Ref. 1, p. 247. 

of coherence, may be regarded as demonstrating the 
complete equivalence of the classical and quantum
mechanical approaches. Although explicit calcula
tions relating to black-body radiationS seem to support 
this statement, we should bear in mind, however, 
that the field described by the density operator in the 
P representation does not necessarily have a classical 
analog. 9 Another controversy is related to the ques
tion of universal validity of the P representation. 
Mehta and Sudarshanlo express the density operator 
as the limit of an infinity sequence of P representations. 
Statistical averages may then be evaluated for any 
density operator by carrying out an appropriate 
limiting procedure. It is, however, stressed by Mollow 
and Glauberll that the usefulness of this approach is 
riot clear. It is not our intention to resolve this 
problem here. All the results presented in this paper 
will be qualified by the assumption that the P repre
sentation exists. 

The probability distribution WN, whether defined 
classically or derived quantum-mechanically from the 
density operator in the P representation, contains, as 
N ---->- 00, all the information we possess about the 
random electromagnetic field. In the limit N ---->- 00, 

WN becomes a probability functional W[&(r, t)] = 
W[&]. The problem of determining the equations 
governing the probability functional W of a random 
field or the characteristic functional <I> (a functional 
Fourier transform of W) has been extensively developed 
in the theory of turbulence.12- 14 An attempt to formu
late the coherence theory in terms of the functional 

8 C. L. Mehta and E. Wolf, Phys. Rev. 134A, 1143, 1149 (1964). 
• This takes place when the singularities of the function P({CXk}) 

specifying the P representation are of types stronger than those of 
II functions; cf. Ref. 5, Footnote 11. 

10 C. J. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274 
(1965). 

11 B. R. Mollow and R. J. Glauber. Phys. Rev. 160, 1076 (1967). 
1. E. Hopf, J. Ratl. Mech. 1,87 (1952). 
13 R. M. Lewis and R. M. Kraichnan, Commun. Pure. Appl. 

Math. 15, 397 (1962). 
14 A. S. Monin and A. M. Yaglom, Statistical Hydrodynamics 

(Moscow Publishing House, Moscow, 1967) (in Russian), 
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equations is indicated in the book by Beran and 
Parrent.IS Characteristic functionals have been used 
for different purposes by Glauber,16 Keller,17 and 
Mehta and Sudarshan.Io In this study a unified 
functional formalism for coherence is proposed. 

Since the probability functional represents the 
probability of observation of the field as a whole, it 
certainly gives the over-all statistical characteristics 
of the field. Once it is known, all correlation functions 
can be evaluated. Vice versa, if the set of correlation 
functions is specified, we face the moment problem 
of finding the probability functional on the basis of 
its moments. It is worth mentioning that, since the 
positive- and negative-frequency parts of the field are 
to be regarded as independent of each other, the 
(N, M)-type correlation functions, which contain 
unequal numbers of creation and annihilation oper
ators, must be taken into account. Only the totality of 
these functions forms the complete set of moments 
of the probability functionat. 

The purpose of this paper is to show that the 
knowledge of the density operator in the P repre
sentation enables one to construct the probability 
functional of the electric field. The most convenient 
way to do this is to deal with a discrete set of variables 
rather with a continuum of them. This is attained 
by assuming that the field is confined within a spatial 
volume of finite size. All functional integrals can then 
be reduced to multiple integrals of denumerably 
infinite type. In this case the characteristic functional 
$ appears to be a multiple Fourier transform of the 
function P( {lXk}) , specifying the P representation. 
When the characteristic functional is found, the P 
representation may be rederived. On the other hand, 
if the characteristic functional is given in classical 
terms, then, using the Fourier theorem, the P repre
sentation can in principle be derived. In this sense, it 
may be said that apart from the possible negativeness 
of the probability functional the correspondence 
between the classical and quantum description is 
one-to-one. It should be stressed that the inverse 
problem of determining the density matrix for a field 
when its characteristic functional is known has already 
been solved by KellerI7 from a different standpoint. 

The general methods of the outlined procedure are 
illustrated in Sec. 3 by some specific examples where 
the P representations corresponding to Gaussian 
fields, an ideal laser field, and fully coherent fields are 

15 M. J. Beran and G. B. Parrent, Theory of Partial Coherence 
(Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964). 

,. R. J. Glauber, in Quantum Optics and Electronics, C. deWitt 
et al., Eds. (Gordon and Breach Science Publishers, Inc., New York, 
1965). 

17 E. F. Keller, Phys. Rev. 139, B202 (1965). 

considered. In Sec. 4 the probability functional for 
the (l, 1)th-orderI8 coherent field is derived. 

2. PROBABILITY FUNCTIONAL OF THE FIELD 

The classical theory of coherence may be described 
in terms of a probability distribution W (probability 
functional) in the space of positive-frequency part 
E,,(x) and negative-frequency part E!(x) of electric 
vector fields. Here x stands for the space-time point 
r, t, and f-l = I, 2, 3 labels the Cartesian components 
of the field. We employ the summation convention 
over repeated indices. If 'ix) is an arbitrary complex 
vector field whose Fourier expansion contains only 
positive frequency amplitudes and ,!(x) is its complex 
conjugate, we define real scalar products as 

a, E*) = lim -L r IT ,,,(X) Ei.(x) dr dt 
T-+oo 2T Jv -T 

== I'iX)E!(X) dx, 

(,*, E) = lim -L r IT ,!(x)S,,(x) dr dt 
T-+oo 2T Jv -T 

== I'i.(X)s/X) dx, (2.1) 

where the domain V of r is a certain bounded volume 
of space. The characteristic functional of W is defined 
by 

$[', '*] = (ei(;,&*)+i('*,&) 

= I W[E*, E]ei(,,&*)+i('*,&) dE* dE, (2.2) 

where the integration is over the entire space of 
electric vector fields lying inside the considered 
volume.19 

To gain an insight into the physical meaning of the 
probability functional, imagine space-time to be 
divided into discrete cells centered at Xl, •.• , X N. If 
we suppress tensor indices, the values of the functions 
E*(x) and E(x) at those particular points 

E*(x l ), E(x l ),"', S*(XN)' 

E(x"v) = Ei, EI ,"', E"~, EN 

are analogous to the variables of a multivariable 
distribution function. In the limit, as N -+ 00 and 
each cell contains only one point, the probability of 
obtaining a particular set of values ErSI' ... , StSN 
in the range d&i d&l' ... , d&j:" d&N goes over into 

I. The first order in Glauber's terminology. 
,. The integral in (2.2) is to be understood as a functional integral. 

The technique of functional integration is supposed to be known. 
For the details see, e.g., K. O. Friedrichs, Mathematical Aspects of 
the Quantum Field Theory (Interscience Publishers, Inc., New York, 
1953); K. Symanzik, Z. Naturforsch. 9a, 809 (1954); R. P.l'eynman 
and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw
Hill Book Co., New York, 1965). 
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probability of observing particular functions B*B in 
the range dB* dB. In a similar manner, the functional 
integral on the right-hand side of (2.2) can be thought 
of as a symbolic generalization of 

<I>({l ,t, ... , 'N'~) 
= I W(BtB1' ... , B~BN) 

X exp [iJ/'kB: + ,:Bk)] dBt dB1 ... dB~ dBN 

A formal representation for <1>[,,*], in terms of the 
correlation functions, is the Volterra expansion20 

where 

O(N.M)[" '*] 

-IG(N.M) (x ... x . x . ···x ) - 1'," 'I'NI'N+l" 'I'N+M 1, ,N, N+1' ,N+1',1 

X '1'1(X1) •.• 'I'.",(XN) 

x ':N+l(XN+1) ... 'I'*N+M(XN+M) dX1 ... dXN+M 
(2.6) 

is the Wightman-type functional21 of the (N, M)th 
order. By the Fourier inversion formula, it follows 
from (2.2) that 

W[S*, S] = I <1>[" ,*]e-i[Cc.&*)+(c*.&)] d(2'7T) d(;:). 

(2.7) 

Hence, by virtue of (2.5), we get 

00 00 'N+M I 
W[B*, S] = I I _I ,-, OCN.M)[" '*] 

N=OM=O N. M. 

x e-i[CC.&')+CC·.&)] d(2'J d(~:). (2.8) 

Therefore, W can be considered as a functional not 
only of S * and B but also of all correlation functions 
GCN.lI11, i.e., 

W = W{B*(x), Sex); [G~~:~~NI'N+l'''I'N+M 
x (Xl' ... , xl\'; XN+I ' ••• ,XN+M)])' (2.9) 

20 V, Volterra. Theory of Functionals and of Integral and Integro
Differential Equations (Dover Publications. Inc,. New York. \959). 

21 A, S, Wightman. Phys. Rev. 101, 860 (1956), 

to infinitely many variables. By functional differentia
tion of (2.2) we obtain 

bN+M<I> 

b'1'1(x1) ... b'l'ixN)b':N+1(xN+1) ... b'I'N+H(xN+M) 

= (iN+MB:1(X1) ... S!N(XN)SI'N+1 

x (x ) ... B (x )ei(C&*)+i(C'&» N+1 I'N+H N+M . (2.3) 

Hence the (N, M)th-order correlation function is 

(2.4) 

In the quantum description, the electric field 
operator E,ix) is analogously separated into its 
positive-frequency part E~+)(x) and its negative
frequency part E~-)(x), which is a Hermitian adjoint 
of E~+). The operator E~+) has right eigenstates of the 
forlJl 

(2.10) 

and the corresponding eigenvalue function SI' is a 
linear form in the variables {ock}, 

(2.11) 

where 
el'(x, k) = i(iliwk)tuk/r)e-i{J)kt. (2.12) 

The state I{ock}) == Ilk lotk)k is a direct product of the 
individual modes, eigenstates of the annihilation 
operators ak , 

(2.13) 

Given now the P representation of the density 
operator 

p = I P({otk}) I {otk})({otk}1 d2{OCk}, (2.14) 

the (N, M)th-order correlation function, defined by 

GCN.M) (x ... x . x ... x ) 1'," 'I'NI'N+l'" /IN+H I, ,N, N+l, 'N+M 
= Tr {pE~~)(Xl) , .. E~~)(XN) 

x E~~~.cXN+l) ... E~;~M(XN+M)}' (2.15) 

can be written as 

G(N.M) (x ... x . x ... x ) 
/ll"'/lN/lN+l"'I'N+H l' ,N' N+1' 'N+1'd 

= f P({otk})S:l(Xl, {otk })··· S!.vCXN' {OCk}) 

X B/lN +.(X1V+I, {otk})' .. BI'N+M(XN+1Il' {OCk}) d2{otk }· 

(2.16) 
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If we introduce a configuration-space probability 
density 

w(N·.M){E* (x) .,. E* (x ). 
"1 1, '''N N, 

E"N+1(XN+1)' ... , E"lHM(XN+M)} 

=fp({CXk }) fr <5{E:rXj) - L e:;(x j, k)CX:} 
,=1 k 

which is the distribution function corresponding to 
P({cxk}), the correlation function can be expressed in 
the following form: 

G(N.M) (x ... x . x . .. x ) 
"1'" "N"N+1'" "N+M 1, ,N, N+1' 'N+M 

=fw(N.M){E* (X) . .. E* (x ). 
,,1 1, '''N N' 

E"N+1(X N+1)' ... , f,"N+M(X N+M)} 

X E:l (X1)' .. E:iXN)E"N+l(XN+1) ... E"N+M(XN+M) 

X dE:l(X1) ... d&:N(XN) d&"N+1 

(2.18) 

It should be noted that the distribution function 
(2.17) gives the joint probability of the functions 

&:1(X1' {cxk}),"', &:N(XN, {cxk}); 

&"N+1(X N+1' {cxd), ... , &"N+M(X N+M' {CXk}) 

taking on the values 

&:1(X1), ... , &:iXN); 

&"N+/XN+1)' ... , &"N+M(XN+M) 

at N + M fixed space-time points Xl>"', XN; 
XN+1, ... , xN+M' Since we consider &* and & as 
independent functions, introduced in place of real 
and imaginary parts Re (&) and 1m (&) of the field, one
dimensional <5 functions of independent arguments 
cxk and cx: introduced in place of Re (cxk) and 1m (cxJ 
are used, but otherwise these distribution functions 
are identical with those derived by Glauber for the 
field amplitudes at one and two space-time points.22 

The correlation function can be also written in terms 
of the probability functional Was a functional integral, 

G~~.'~!N"N+l··· "N+M(X1, ... , XN; XN+1' ... , XN+M) 

= f W[f,*, f,]f,:/X1) ... f,:N(XN) 

X E"N+1(XN+1)' .. E"N+M(XN+M) d&* de, (2.19) 

II See Ref. 16, Eqs. (14.44) and (14.61). 

where the probability functional is given by 

W[&*, &] = f P({CXk})d[ &*(X) - t e*(x, k)cx: ] 

x <5[ &(x) - t e(x, k)CXk ] d2{cxk }. (2.20) 

Here <5[&*] and <5[&] are the <5 functionals which 
can be regarded as generalizations of 15(&: ' ... , &~) 
and 15(&1' ••• , &N) to infinitely many variables. They 
can be expressed as the functional Fourier transforms 
of unity, 

<5[&*] = f eiIC
,&·) dC"71} 

The meaning of functional integration in (2.19) is the 
same as in (2.2). Inserting (2.20) in (2.2) we obtain 

<1>[" '*] = f P({CXk}) exp [i t(CX:'k + CXk,:)] d2{CXk}, 

(2.21) 
where 'k = a, e*(x, k», 

,: = a*, e(x, k». t2.22) 

Hence the characteristic functional, which in this case 
can be written as <1>[" '*] = <I>(gk})' is simply a 
multidimensional Fourier transform of the function 
P({cxk}). On applying the Fourier inversion formula to 
Eq. (2.21), we obtain the following expression for 
P({CXk}): 

P({CXk}) = f <1>( gk}) exp {-it (CX:'k + CXk,:)} d2U:}· 
(2.23) 

Equations (2.21) and (2.23) establish the above 
mentioned correspondence between the classical and 
quantum mechanical approaches to the coherence 
theory. The characteristic functional may be con
sidered as a classical quantity which can be determined 
in classical terms, whereas the function P({cxk}) is 
inherently of quantum mechanical origin. In contra
distinction to a functional formalism for turbulence, 
neither the configuration space probability density 
W(N.M) nor the probability functional Ware necessarily 
nonnegative. Both of them inherit behavior of the 
function P({ock }) from which they are derived and are 
subject to the same limitations that apply to P({cxk }). 

It is known that in some cases P({CXk}) can become 
quite singular-more singular, for example, than 
any tempered distribution23-and we can expect the 
same will hold for the probability functional. 

.3 K. Cahill, Phys. Rev. 138, B1566 (1965). 
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3. SOME SPECIFIC EXAMPLES 

We illustrate the former results with the examples 
of characteristic functionals and probability func
tionals for certain types of fields of special interest. 

A. Gaussian Fields 

The density operator is specified by 

P({O(k}) = II -~- e-l~kl'l<nk>, 
k 1T\nk ) 

(3.1) 

where (nk ) is the mean number of photons in the kth 
mode. From (2.21) we find 

(3.2) 

where 
(3.3) 

Making use of (2.22) and the relation24 

G~~1)(Xl' x2) = L e:(x1 , k)(nk)e.(x2, k), (3.4) 
k 

we obtain 
<P{~, ~*] = exp {_GO.l)[~, ~*n. (3.5) 

With the aid of (2.7) it can be shown that 

W[&*, &] 

= II _1_ exp {-JG-;;!(Xl' x2)&ixI)&~(X2) dXI dX2}' 
k 21TAk 

(3.6) 

where Ak are the eigenvalues of the kernel G !'.(xI , xJ, 
and G;!(x1 , x2) is the reciprocal kernel, Le., 

f GpiXl' x)G-;;!(Xl, x2) dx = O;"(XI - X2) (3.7) 

0;. being the transverse 0 function.25 

B. Fully Coherent Fields 

In this case the density operator in the P repre
sentation is 

P({O(k}) = TI 0(0(: - ~DO(O(k - ~k)' (3.8) 
k 

which after substitution into (2.21) leads again to the 
factorized form (3.2) of <1>. Here we have 

and 

<P = exp [J '!'(X)&!(X, {.ok}) dx 

+ if '!(X)&It(X' {~k}) dx 1 (3.10) 

•• See Ref. 16, p. 150, Eq. (14.32) . 
•• See, for example, W. H. Louisell, Radiation and Noise in 

Quantum Electronics (McGraw-Hill Book Co., New York, 1964). 

The probability functional, as also can be seen directly 
from (2.20), is of the form 

W[&*, EJ = o[E*(x) - E*(x, {Pk})]O[E(x) - E(x, {.ok})]' 

(3.11) 
C. An Ideal Laser Field 

In this case we have 

P({O(k}) = (211' 1~11)-10(10(11 - l~tI) II (21T 100kD-IO(\O(ki)· 
,"*1 (3.12) 

From (2.21), after a straightforward calculation, we 
obtain 

<P = Io{2{J G~~L.l(Xl' X2)~!,(Xl){~(X2) dX1 dX2r}, 

(3.13) 

where 10 is the Bessel function of imaginary argument 
and zeroth order, and the correlation function of the 
(1, 1 )th order for the ideal laser field is given by 

G~~L')(Xl' x 2) = e!(x l , 1) l~zl2 e.(x2' I). (3.14) 

For the probability functional we obtain a rather 
complicated formula involving functional derivatives 
of the ~ functionals, 

W[&*, &] 

= Io{2[JG~~.L.)(Xl' x2) _J _ _ 0_ dXl dX2]t} 
oE!(xl ) oE.(x2) 

X o[&*]o[&J, (3.15) 
which can also be written as 

W[E*, &l = 2111' f" o [E*(x) - e*(x, l) I~ll e-i81
] 

X o[&(x) - e(x, I) I~ll ei9!] dOl' (3.16) 

if we use (3.12) and (2.20) rather than (2.7). 

4. PROBABILITY FUNCTIONAL FOR 
COHERENT FIELDS 

In Sec. 3 we were concerned with determining the 
probability functional on the basis of an explicit form 
of the P representation. Here we wish to describe the 
application of the functional formalism to the case 
where the only information about the field is the 
knowledge of the distribution moments. An example 
is provided by the (l, 1)th-order coherent fields, 
which have been studied extensively by Titulaer and 
Glauber.2M7 

The (1, 1 )th-order coherence condition 

IG(l·l)( )12 G(l,l)( )G(l.1)( ) 
f1' Xl, X2 = f11t Xl' Xl vv X2' X2 , (4.1) 

.6 U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676 (1965). 
27 U. M. Titulaer and R. J. Glauber, Phys. Rev. 145, 1041 (1966). 
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provided it holds for all space-time points, implies the 
pair of identities obeyed by the density operator 

G(l,l)( ) 
E(+)() = 1l0il X o, x E(+)(x) (4.2) 

II x p G(1,I)( ) 110 0 p, 
ilOilO Xo , Xo 

G(1,I)(X x) 
E(-)(x) = 11110 ,0 E(-)(x ). (4.3) 

p G(1,o() p 110 0 
ilOilo XO , Xo 

These identities may be used to shift the arguments 
of the (N, M)th-order correlation function to a 
common reference point Xo. By a direct extension of 
Titulaer and Glauber results, we obtain 

If we introduce the vector function 

G(1,I)(X x) 
q;- ( {R}) _ 11011 0, (4 5) 
.J II X, Pk '- [G(I,O( )]!' . 

where 
iloilo Xo , Xo 

f 
* ( ) iWk t G(1,I)(r t· r t) 

U kll r e 11011 0' 0" d 
fJ - r 

k - . 1 ! (1,1) • !' 1(2nWk) [G Ilollo(ro, to, r o, to)] 
(4.6) 

we may write Eq. (4.4) in the form 

G~~:~~N!tN+1"'"N+M(XI"'" XN; XN+1"", xN+M) 
N N+M 

= g(N,M) II :F:;(x;, {Pk}) II :F1l;(x;, {Pk})' (4.7) 
;=1 ;=N+I 

It is worth noting that the constants 

G(N,M) (x ... x) 
g(N,M)= 110"'110 0, '0 (4.8) 

[G(1·l)(x x )]!(N+M) 
iloilO 0' 0 

are not necessarily real numbers. 
When the expression (4.7) is substituted in the 

Volterra expansion (2.5) of the characteristic func
tional, we find 

co co iN+M g(N,M) 

<D[" ,*] = N~O M~O N! M! 

X ft f'"lX¥f:;(X;, {Pk}) dx; 

N+~I f 
x r!J+I ~:lx;):FlllXj, {fJk})dx;. (4.9) 

According to (2.1), this may be written as 

OCJ OCJ 'N+M (N,M) 
<D[{, {*] = ~ ~ I ,g , ({, :F*)Na*, :F)M, 

N=O M=O N. M. 
(4.10) 

and the Fourier inversion formula (2.7) yields 

co OCJ iN+M g(N,M) 
W[E*, E] = ~ ~ ---=-

N=O M=O N! M! 

x f({, :F*)Ne-;(',&*) dC{,J 

x I<'*, :F)Me-i('*,&) d(;:). (4.11) 

This is the desired general expression for the proba
bility functional representing the (1, l)th-order co
herent fields. The functional integration in (4.11) can 
be performed to give 

co OCJ (N,M) 
W[E*, E] = ~ ~ -g

N=O M=O N! M! 

X [-I:F!(X) _15 - dXJN b[E*] 
c5E!(x) 

X [ - f :F1l(x) bE;(X)] Mb[E]' (4.12) 

or in a more extended form, 

co co g(N,M) 
W[E* E] - ~ ~--
.' - N~O M":O N! M! 

X f (-1)N:F:1(X I ) ••• :F:N(XN) 

bNb[E*] 
X dx l ' "dXN 

bE!l(x I ) ... bE!N(xN) 

X I ( _1)1I-1:F IlJxI) .. , :F IlM(X M) 

c5 M c5[E] 
X dx l ' .. dXM' 

c5EIl1(XI) ... c5EIlM(x M) 
(4.13) 

With the aid of (2.19), it may be readily verified that 
the expression (4.13) leads to the correlation functions 
of the form (4.7), which is characteristic for the 
(I, 1 )th-order coherent fields. In order to demonstrate 
this, use must be made of the relations 

I dx~ ... dx~,:Fv~(xD ... :F~N(XN) 

f (-1)NbNb[E*] E*() E*( )dE* 
X bEv~(x~)'" bE~v(xN) II, Xl ••. liN XN 

= N!f dx~ ... dXN:F::(X~) ... :F~N(XN) 
X 0lllVIO(XI - x~) ... 0IlNVNO(XN - x.¥) 

= N! :F!,(xI )' .. :F!N(XN), (4.14) 

and the .similar ones, obtained by replacing :F*, E*, 
and N by:1'", e, and M, respectively. 
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The case of full coherence corresponds to g(N.Ml = 
1, for all Nand M. It follows then from (4.12) that 

W[B*, B] = b[B*(x) - 9'*(x, {Pk})] 

x b[B(x) - 9'(x, {Pk})]' (4.15) 

which agrees with (3.11). 
Finally, if we write the characteristic functional in 

the form 

(4.16) 

then, by virtue of (2.23), we find 

<Xl <Xl g(N.Ml( a )N 
P({cxk }) = L L -- - L P: - b({cxt}) 

N=O M=O N! M! k ocxt 

X (-L Pk ~)Mt5({CXk})' (4.17) 
k OCXk 

This formula may be,regarded as a counterpart of the 
expression for the density operator representing the 
(1, 1 )th-order coherent fields in terms of the n-photon 
states. 28 
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Relativistic analogs of Brans-Dicke and Hoyle-Narlikar scalar-tensor cosmologies are given in 
terms of two- or three-fluid models. Each fluid has an equation of state of the form pressure = canst x 
density. The models discussed have the matter and scalar fluids interacting and are expressed by different 
forms of Ei , where this is the total new rate of transfer of energy per unit volume to the ith fluid from 
all other fluids. 

Vajk1 has commented recently on relativistic 
cosmological models with one or more relativistic 
fluids, each with an equation of state of the form 

P = (v - l)pc2 , 1::;; v ::;; 2, (1) 

where v is a constant. The models he considers are 
homogeneous and isotropic with conservation equa
tion 

(2) 

where R is the scale factor of the Robertson-Walker 
line element 

ds2 = c2 dt2 - R2(t){ dr
2 

2 + r2(d()2 + sin2 
() dc/>2)}. 

1 - kr 
(3) 

Here r, (), and c/> are dimensionless, comoving co
ordinates and k is 0, ± 1. In a one-fluid model, Eqs. 
(1) and (2) give 

p = BR-3v
, (4) 

1 J. P. Vajk, J. Math. Phys. 10, 1145 (1969). 

where B is a constant. When this is inserted in the 
Friedmann differential equation with zero cosmologi
cal constant 

(5) 

it can be seen that, for k y!; 0, the metric can be ex
pressed in terms of elementary functions and elliptic 
functions only if 

v = tn, n = 3,4,5,6. (6) 

If a model contains n noninteracting fluids, then each 
one satisfies Eq. (4) and the total density and pressure 
are 

n n 

P = L Bi R-3V
/, P = L (Vi - 1)c2BiR-3v

i. (7) 
i=l i=l 

Numerous papers have been published recently on 
models containing the two noninteracting fluids of 
radiation (V1 = t, P = !pc2) and dust (V2 = 1, P = 0) 
in order to describe a universe which was dominated 
by radiation at early epochs but is now dominated by 
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Friedmann differential equation with zero cosmologi
cal constant 

(5) 

it can be seen that, for k y!; 0, the metric can be ex
pressed in terms of elementary functions and elliptic 
functions only if 

v = tn, n = 3,4,5,6. (6) 

If a model contains n noninteracting fluids, then each 
one satisfies Eq. (4) and the total density and pressure 
are 

n n 

P = L Bi R-3V
/, P = L (Vi - 1)c2BiR-3v

i. (7) 
i=l i=l 

Numerous papers have been published recently on 
models containing the two noninteracting fluids of 
radiation (V1 = t, P = !pc2) and dust (V2 = 1, P = 0) 
in order to describe a universe which was dominated 
by radiation at early epochs but is now dominated by 
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matter (see, for example, Refs. 2-7). Other papersS- IO 

have been published on models containing these two 
fluids but in the case where there is conversion from 
one to the other. Where there are n interacting fluids, 
Eq. (2) can be written as 

where 

n 

IEi = 0, 
i=1 

(8) 

Ei = R-3 [.!!.. (PiC2R3) + Pi ~(R3)J = (Pi + 3ViHpi)c2. 
dt dt 

(9) 

H = RI R is the total net rate of transfer of energy 
per unit volume from the n - 1 fluids (1, 2," . , 
i-I, i + 1, ... ,n) to the ith fluid. Equation (7) 
thus holds when all the Ei are zero. 

It is shown in this paper how two- or three-fluid 
relativistic cosmological models can be used to de
scribe both Dicke's (D)11·12 and Hoyle and Narlikar's 
(HN)13 scalar-tensor cosmologies. The relativistic 
models used are ones which are solutions of Einstein's 
field equations 

(10) 

which are to be understood in the normal way. This 
is done by writing the density as . 

P = Pm + Pr + Pc, (11) 

where the subscript m denotes matter (or dust), r 
denotes radiation, and c denotes a third fluid with 
v = 2, Pe = Pec2. The matter-energy tensor is now 

Tij = -Pgij + (P + PC2)UiUj 

= - (Pc + tPr)C2gi; 

+ (Pm + tPr + 2pe)C2
Uiui , (12) 

ui = dxiJds. The field equations and the metric (3) 
now give 

3(R2 + kc2)IR2 = KC4(Pm + Pr + Pc) (13) 

• P. J. E. Peebles, Astrophys. J. 142, 1317 (1965). 
3 R. A. Alpher, G. Gamow, and R. Herman, Proc. Nat\. Acad. 

Sci. (U.S.) 58,2179 (1967). 
, A. D. Chernin, Astron. Zh. 42, 1124 (1965) [Sov. Astron.-A.J. 

9,871 (1966)]. 
5 K. C. Jacobs, Nature 215, 1156 (1967). 
6 C. B. G. McIntosh, Monthly Notices Roy. Astron. Soc. 138, 

423 (1968). 
, Va. B. Zel'dovich, Usp. Fiz. Nauk 89,647 (1966) [Sov. Phys.

Usp. 9, 602 (1967)]. 
8 W. Davidson and J. V. Narlikar, Rept. Progr. Phys. 29, 539 

(1966). 
• C. B. G. Mcintosh, Nature 215,36 (1967). 
10 C. B. G. McIntosh, Monthly Notices Roy. Astron. Soc. 140, 

461 (1968). 
11 R. H. Dicke, Phys. Rev. 125, 2163 (1962). 
12 R. H. Dicke, Astrophys. J. 152, 1 (1968). 
13 F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. (London) A273, 

1 (1963). 

and 
2RIR + (R2 + kc2)IR2 = -KC4(Pe + !Pr)' (14) 

In the following, k will be taken as zero. 
The two scalar-tensor cosmologies satisfy Eqs. (13) 

and (14) together with the conditions 

(15a) 
d {

Em = Ee = 0, 
HN: Er = 0 an 

Em = -Ee = 3c-2jH, (15b) 

D: Er = 0, Em = -Ee = ±iPmp!Mc4(-2f.{)t, 

(16) 

where M and f are constants described below. In the 
original versions of both theories, Pc is expressed in 
terms of a scalar field C by splitting the matter~nergy 
tensor into a dust and radiation part T m ij and a 
scalar part Te ii such that 

Te ij = -f(CiC; - tgi;CkCk), Ck = C,k' (17) 

This leads to 
Pcc2 = - tfCkCk 

so that, when C is a function only of t, 

Pec4 = - t/C2. 

(18) 

(19) 

Here, f and C are the same here as in the HN 
theory, though Hoyle and Narlikar deal with the 
case Pr = O. In their model, the conservation equation 
pi;; = 0 means that 

(Pm + 3HPm)c4 =fC(C + 3HC) (20) 

and the extra condition required by their theory is 

fD C = C'1\i, l = pcui
, (21) 

giving 

(Pm + 3HPm)c4 = fCC + 3HC). (22) 

Equations (20) and (22) agree only when Em = Ee = 0 
or C = 1. The first case is Eq. (15a). When Pr = 0, 
this is Nariai's (B) type solution and the metric has 
been written out by various authors including Vajk. l 

The second case leads to 

Pec4 = -t/, Pmc4 = f + constlR3, (23) 

and is the case (I5b). When Pr = 0, this is Nariai's 
(AI) type solutionl4 when the constant in Eq. (23) is 
zero and his (A2) type solution otherwise. The (AI) 
model is Hoyle and Narlikar's steady-state model. 
In both these (A) models, there is continual creation 
of matter but only because energy from Pec2 is con
verted to energy in Pmc2. 

In the D theory, 

MC = In A, f= -(2w + 3)M2c4J167TG, (24) 

1< H. Nariai, Progr. Theoret. Phys. (Kyoto) 32, 450 (1964). 
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where M is a constant with the dimension of (time)-l. 
Equation (16) can be written as 

Em = -!PmMc2(; = -iPmcW)' (25) 

and leads to 

),!PmR3 = const = (),2 Pm)(),-!R)3. (26) 

Dickel2 interl?rets this as PmR3 = const, where Pm and 
R are measured in ordinary (cgs) units and the Pm and 
R in gravitational units. The general form of the 
condition (16) is 

o C = -Pmc2M/(2f). (27) 

In the D theory, Pc is positive for w > -t, but in 
the HN theory, Pc is negative for f positive. It is 
interesting to note here that Noerdlinger15 has stated 
that there is a "theoretical necessity of a positive 
value" for w. This point of view would eliminate the 
HN model. 

Dicke12 has shown that, in his model, the ratio of 
helium to hydrogen produced by the cosmic fireball 
can be reduced to almost zero. It would be interesting 
to study the effects, in general, on the production of 
helium of the inclusion of a fluid with y = 2 into 
cosmological models containing matter and radiation. 
The author does not know of any work where HN 
models containing radiation have been studied. 

In neither theory is it necessary to introduce the 
scalar field C as in Eq. (17). Hoyle and Narlikar16 

have noted, "It is also of interest that if creation of 
matter is postulated it is possible to obtain the steady
state cosmology without introducing the C field used 
in previous papers. It turns out that the mass fields 
can play an almost identical role to the C field." 

When looked at in this way, the two theories dis
cussed could be accused of having ad hoc choices for 

15 P. D. Noerdlinger, Phys. Rev. 170, 1175 (1968). 
16 F. Hoyle and J. V. Narlikar, PrQc. Roy. Soc. (London) A299, 

188 (1967). 

the conditions (15) and (16). It must be admitted, 
however, that the conditions (21) and (27) can be 
derived from variational principles. The two theories 
do appear far more simila.r than would generally be 
believed and it would be worthwhile to compare them 
to see how results applying to one apply to the other 
and also to general 3-fluid models. Both Brans and 
Dicke17 (in the original D model) and Hoyle and 
Narlikar developed their theories partly to understand 
the relationship between Mach's principle and general 
relativity. The question now arises as to how a 
general three-fluid model helps us study such a 
relationship. 

Also, it must be noted that all authors saw their 
theories as satisfying Einstein's equations but only 
when the original Lagrangian from which the equa
tions were derived was altered. What is clear is that 
there is no need to change this Lagrangian in order 
to obtain the two different kinds of cosmOlogies. 
It could be worthwhile to examine various other 
ad hoc conditions such as (15) and (16) to see what 
types of models can be formed and whether or not 
corresponding Lagrangians can be found. 

The Dicke theory was formed from the Brans
Dicke one by means of a conformal mapping, in the 
metric tensor. A similar mapping was made by 
Hoyle and Narlikar18 which yields field equations 
similar to the Brans-Dicke ones, though these field 
equations are smooth-fluid approximations of their 
particle equations and are not valid in the neighbor
hood of a particle. 
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Crossing relations between s-channel helicity amplitudes and u-channel helicity amplitudes are 
derived, following the derivation of the crossing relations between s-channel helicity amplitudes and 
t-channel helicity amplitudes by Trueman and Wick [T. L. Trueman and G.-C. Wick, Ann. Phys. (N.Y.) 
26, 322 (1964)]. The .over-all phase factor of crossing relations, which was not given by Trueman and 
Wick, is also derived by specifying the path of analytic continuation and by applying these relations in 
the static approximation. 

1. INTRODUCTION 
In 1963, crossing relations for helicity amplitudes 

(crossing relations between s-channel helicity ampli
tudes and t-channel helicity amplitudes) were derived 
by Trueman and Wick.1 These relations have been 
found to be powerful tools in particle physics. For 
example, they have been used to study the analytic 
properties of helicity amplitudes2•3 and to derive the 
so-called conspiracy relations.4 

Another purpose of this paper is to find the over-all 
phase factor of the relations. The factor is dependent 
on the path of the analytic continuation. It is depend
ent on the position of the real point of the trajectory 
in the s-t plane. In order to avoid the ambiguity, we 
assume that the real point lies in the domain of the 
s-t plane which reduces to the triangle defined by the 
inequalities 

4m2 > s, t and u > 0 (1) 
According to Trueman and Wick, helicity ampli

tudes G 6p,ya of the s-channel reaction A + C -+ B + D 
are expressed as linear combinations of helicity ampli
tudes FJy,pa of the t-channel reaction A + jj -+ C + D 
(see Sec. 2). 

One of the purposes of this paper is to derive 
crossing relations between s-channel helicity ampli
tudes and u-channel helicity amplitudes, i.e., to ex
press helicity amplitudes GdP,ya of the s-channel 
reaction A + C -+ B + D as linear combinations of 
helicitr amplitu~es H yp ,6a of the u-channel reaction 
A + D -+ B +C (see Sec. 3). These crossing rela
tions between G and H are easily obtained if we follow 
the derivation of the Trueman-Wick crossing rela
tions between G and F. Since the derivation of the 
Trueman-Wick crossing relations is complicated, we 
believe that it is worth deriving the crossing relations 
between G and H. 

when all external and internal particles have a 
common mass m. We determine the over-all phase 
factor by applying our crossing relations to cases in 
which the crossing relations are explicitly known, i.e., 
to the static model (Sec. 4) and to elastic pp Lcattering 
(one pion exchange process) (Sec. 5). Discussions are 
given in Sec. 6. 

2. CROSSING RELATIONS BETWEEN 
s-CHANNEL HELICITY AMPLITUDES 

AND t-CHANNEL HELICITY 
AMPLITUDES 

In this section we write the crossing relations 
between helicity amplitudes G dp,ya of the s-channel 
reaction A + C -+ B + D (Fig. 1) and helicity ampli
tudes Fdy,pa of the t-channel reaction A + jj-+ 
C + D (Fig. 2)1 for convenience as 

Gop,ya (s = (Pa + Pc)2, t = (Pa - Pb)2) = €( -1)~ L (-1)~' 
a'p'y'd' 

X dPi"Pd)d~r<"Pc)df,P("Pb)d:i"Pa)F6'y',p'a' (t = (Pa + Pb)2, s = (Pa - Pel), (2) 

(s + m! - m;)(t + m! - m!) - 2m~(m! - m! - m; + m~) 
cos "Pa = ! ' 

4Pspt(st) . 

where 

-(s + m! - m~)(t + m! - m!) - 2m:(m! - m! - m~ + m~) 
cos "Pb = 1. , 

4p;ptCst)" 

-(s + m: - m~)(t + m; - m~) - 2m;(m! - m; - m; + m~) 
cos "Pc = 1. , 

4Psp;(st)'2' 

(3) 

(s + m~ - m~)(t + m~ - m;) - 2m~(m! - m~ - m; + m~) 
cos "Pd = 1 , 

4p;p;(st)'2' 
1 T. L. Trueman and G.-C. Wick, Ann. Phys. (N.Y.) 26, 322(1964). 2 Y. Hara, Phys. Rev. 136B, 507 (1964). 
3 L. L. Wang, Phys. Rev. 142, 1187 (1966). • See, for example, Y. Hara, Pro gr. Theoret. Phys. (Kyoto) 37, 941 (1967). 
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. , . 0/ '( )1 sm "Pa = mdPt sm t P. s , 

P. = [s - (ma + me)2JI[s - (ma - me)2]1/2(s)l, 

p~ = [s - (mb + ma)2]I[s - (mb - md)2]1/2(s)l, 

(4) 

Pt = [t - (ma + mb)Z]I[t - (ma - mb)2]1/2(t)l, (5) 

P; = [t - (me + md)2]1[t - (me - md)2]1/2(ti, 

and 

cos Ot = [2st + t2 
- t t m~ + (m! - m:)(m~ - m~)J 

x (4tptp;)-I. (6) 

In Eq. (2), Pi is the momentum of the particle i in the 
s channel, and Fa' Pb (= -Pb)' Pe (= -Pc), andpaare 
momenta of particles in the t channel. The IX, p, y, and 
(J( IX' , p' , y', and (J') are helicities of particles a, b, c, and 
d in the s (t) channel. The superscript A of the function 
d~1Z in Eq. (2) stands for the spin ofthe particle A. The 
sign of sin OJ is determined by the relation 

1 '.0 1 '·0 s P.P. sm • = t PtPt sm t. (7) 

The left-hand side of Eq. (7) must be continued 
analytically from the physical region of the s-channel 
reaction to the physical region of the t-channel 
reaction on the condition that sin O. > o. 

The quantities rJ and r/ depend on which particles 
are taken to be "particle 2" in G and F. The values of 

C 

"tx8 

07t" 
A 

FIG. 1. The s-channel 
reaction: A + C --+ B + 
D. P.:(oo,; 0, 0, P.), Pb: 
(00;; P; sin 0" O,p; cos 0.), 
p.:(E .. O, 0, -p,), Pd: (E;; 
-p;sinO ,,0, -P; cos 0,). 

B 

FIG. 2. The t-channel reaction: c~tp· 
A + B-+ C + D. P.:(oo,; 0,0, 

p,), Pb:(oo;; 0,0, -PI)' P.:(E,; 
-p' sin 0,,0, PI cos O,),Pd:(E{; 
p; sin 0" 0, -p; cos Ot). 

{'~o 
A 

rJ and rJ' for the various possible choices 10 the 
definition of G and F are tabulated below. 

"particle 2" in G 'YJ 

A,B 0 

A,D -p + (J 
C,B -IX + y 

C,D -IX - P + y + (J 

"particle 2" in F 'YJ' 

A,C 0 

A,D y' - (J' 

B,t ' P' IX -

B,D IX' - P' + y' - (J' 

The quantity E = (- I)A is the over-all factor and is 
expressed as 

A = aA + bB + cC + dD. (8) 

The factor E can be determined only when the s-channel 
reaction A + C - B + D is identical to the t-channel 
reaction A + B - C + D, i.e., B = C. In Secs. 4 
and 5 it will be found that 

A =2A =2D (9) 

when particles Band C (B and C) are taken to be 
"particle 2" in both G and F. 

3. CROSSING RELATIONS BETWEEN 
s-CHANNEL HELICITY AMPLITUDES 

AND u-CHANNEL HELICITY 
AMPLITUDES 

In this section we derive crossing relations between 
helicity amplitudes GdP'11Z of the s-channel reaction 
A + C - B + D (Fig. 1) and helicity amplitudes 
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o 

8~tPo Fig. 3. The u-channel reac
tion: A + 15 ->- B + C. Pa:(wu; 
0,0, Pu), Pb:(W~; -p~ sin (Ju, 0, 
p~ cos (Ju), P.:(E~;p~ sin (Ju, 0, 
-P: cos (Ju), Pd:(Eu; 0, 0, -Pu)' 

~t~c 
A 

H ,P,6rt. of the u-channel reaction A + D - B + C 
(Fig. 3). If we compare Figs. 1 and 2 with Figs. 1 and 
3, we find that the crossing relations between G and 
H are obtained from the crossing relations between 
G and F of the previous section through the following 

sin Xa = maP .. sin O .. /P.(s)t, 

sin Xb = mbP~ sin O,,/p;(si, 

sin Xc = mcp~ sin O,,/P.(s)t, 

sin Xd = maP" sin O .. /p;(s)t, 

(13) 

P .. = [u - (ma + ma)2]t[u - (ma - ma)2]t/2(u)t, 

p~ = [u - (mb + mc)2]t[u - (mb - mc)2]t/2(u)t, 

(14) 

Pc = -Pc, and Pa = -Pa. (15) 

The sign of sin 0 .. is determined by the relation 

i "0 i "0 s P.P. sm • = u P"P .. sm ... (16) 

substitutions: 
0, _ 0, + 1T, 

Ot - 0" + 1T, 

s-s, 
t-u, 
A-A, oc-oc, oc'-oc', 
B - D, {J - (), {J' - ()', 
C - C, I' - 1', 1" - 1", 
D - B, () - {J, ()' - {J'. 

Thus we obtain the following crossing relationss: 

G6P ,1rt. (s = (Pa + Pc)2, u = (Pa - P"Y) 
= €'(-1)~ ~ (-1)~' 

rt.'p']'6' 
x d~(Xa)d~1(Xc)d:P(Xb)d:'rt.(Xa) 
x HiP',6'rt.' (u = (Pa + Pa)2, s = (Pa - pc)2), 

where 

"particle 2" in G 

A,D 
A,B 
C,D 
C,B 

"particle 2" in H 

A,C 
A,B 
D,C 
D,B 

~ 

oc-{J+y-{) 
oc + I' - 2{) 

-(J + 21' - () 
21' - 2{) 

~' 

-oc' + P' - 1" + ()' 
-oc' + ()' 

{J' , -I' 
o 

(10) 

(11) 

(12) 

The quantity €' = (_I)A' is the over-all phase 
factor and is expressed as 

The left-hand side of the relation must be continued A' = aA + dB + cC + bD. (17) 
analytically from the physical region of the s-channel 
reaction to the physical region of the u-channel In Secs. 4 and 5 it will be found that 
reaction on the condition that sin 0. > O. The values 
of ~ and ~' are tabulated below.s A' = 2A = 2B (18) 

• In deriving (II) and (13) from (2) and (4), we have used the 
relation d).Il(-(J) = (-I)).-Il d).Il«(J). 

when particles C and D (C and lJ) are taken to be 
"particle 2" in both G and H. 
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4. CROSSING MATRIX IN THE STATIC MODEL 
AND THE DETERMINATION OF " 

Let us consider the following reaction involving 7TO: 

(19) 

Since the reaction (19) is identical to its u-channel 
reaction, we can determine ,,' in this case. If particles 
A and B are much heavier than pion (m a R:! mb» mIT) 
and if Is - m!l, Is - m~l, and It I are far smaller than 
m!, then the static model is a good approximation. 
For convenience, let us assume that ma = mb = m in 
the following. In the static model 

s = (ws + m)2 - p; = m2 + 2mws + m;, 

t R:! - 2p~(1 - zs), 

u = 2m2 + 2m; - s - t 
(20) 

R:! m2 - 2mws + m; + 2p~(1 - zs) 

in the s channel, and 

u = m2 + 2mwu + m;, 

t R:! -2p~(1 - zu), (21) 

s R:! m2 - 2mwu + m; + 2p!(1 - zu) 

in the u channel. The Wi and Pi are the energy and 
momentum of the pion in the i reaction, and Zi is the 
cosine of the scattering angle ()i in the i channel. We 
find that 

(22) 

sincep; = w; - m! R:! (-wu)2 - m; = p~ in the static 
model. We also find that 

sin ()s R:! sin 0u (23) 

from (16) if we assume that the real point of the path 
of analytic continuation lies in the domain of the 
s-t plane bounded by t = 0 and su = (m2 - m;)2. 
Hence, we find 

and 

cos Xa = cos Xb = -Zs = -zu' 

cos Xc = cos Xd = 1, 

sin Xa = sin Xb = sin ()s = sin ()u' 

sin Xc = sin Xd = 0, 

(24) 

Xa = Xb = 7T - Os = 7T - 0u == 7T - ° (25) 

in the static model. 
Therefore, the crossing relations (11) become 

Op,is, u) = ,,'( -o-P 2 (-I)P' 
a'p' 

x dfP(7T - ()d:!-a(7T - O)Hp'.Au, s), (26) 

if we take particles C and D to be "particle 2" in 0 
and H. Since 

Gp.aCs, u) = (27Tm/ps) 2 (J + t)Tp,aCw, J)d;'f/«() (27) 
J 

and 

Hp',Au, s) R:! (27Tm/p.) 

x 2(J + t)Tp',A-w, J)d~,fJ'(-()' (28) 
J 

we find the following crossing relations among 
partial-wave helicity amplitudes: 

Tp.aCw, J) = ,,'( _1)A-B 2 (_l y ,+p,(2J' + I) 
a'p'J'J" 2J + 1 

x C(J'AJ"; (J', rx)C(J'AJ"; rx', -rx') 

X C(J"BJ; rx + {J', -(J') 

x C(J"BJ; 0, (J)TP',a'( -w, J'). (29) 

Helicity states IJM; ).1).2) and the states used in the 
conventional static model IJM; LS) are connected 
through transformation matrix 

(JM; LS I JM; ).1).2) 

(
2L + I)! = -- C(LSJ;0,).)C(Sl S2S ;).1' -).2)' 
2J + 1 

(30) 

Thus, we obtain the following crossing matrix: 

T (w, J, L = 1, B, A) 

= ,,'( -1)A-B9(2J + 1)-2C(IBJ; 0, (J)C(lAJ; 0, rx) 

x 2 (-ly'+P'C(J'AJ";{J',rx)C(J'AJ";rx',-rx') 
apa'p'J'J" 

X C( J" BJ; {J' + rx, - {J')C( J" BJ; 0, {J)C(1 BJ' ; 0, (J') 

x C(IAJ'; 0, rx')T (-w, J', L = I, B, A) 

= ,,' I(2J' + O{A, 1, J'}T (-(u, J', L = I, B, A), 
J' B, I, J 

where we have used relations 

2 C(IBJ; 0, {J)C(J"BJ; 0, (J) = te2J + l)b1J'" 
p 

2 (-I )a'C( I AJ'; 0, rx')C(J' Al ; rx', -rx') 
a' 

and the definition of the 6-j symbol 6 

(31) 

(32) 

(33) 

{
j.1' j2, !12} = [(2j12 + 1)(2j23 + l)]-!( _1)h+io+ia+J 
h,J,123 

X 2 C(jd2j12; ml, m2) 

x C(j12j3J; m1 + m2 , M - m1 - m2) 

X C(j2j3j23; m2 , M - m1 - m2) 

x C(jIi23J; m1 , M - m1). (34) 

Ifwe compare the crossing matrix (31) with the SU(2) 
crossing matrix,7 we find 

,,' = (_1)2A = (_1)211, (35) 

6 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, N.J. 1957). 

7 See, for example, V. Singh and B. M. Udgaonkar, Phys. Rev. 
149, 1164 (1966). 
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B 

A 

t 
5 

o 

c 

FIG. 4. One-pion-exchange dia
gram in pp scattering. 

5. DETERMINATION OF E 

In the previous section we have found that 

A = 2A + (b + c)C = 2D + (b + c)C, 

B = C, (36) 
and 

A' = 2A + (b + c)C = 2B + (b + c)C, 

C = D, (37) 

when crossed particles are taken to be "particle 2" in 
both G and F (or H). In order to find b + c we have 
only to consider the one-pion-exchange diagram of 
pp elastic scattering (Fig. 4). Then its contribution to 
G and F is given by 

G+_._+ = -G++. __ 

= F++.++ = -F++. __ = t/(4(t - m;)], (38) 

where + (-) stands for +H -t). From Eqs. (2), 
(36), and (38) we obtain b + c = 0 and (9) and (18). 

6. DISCUSSION 

In order to determine €, we do not have to apply 
crossing relations to cases of which the crossing rela-

tions are known. All that we have to do is to prove 

GdP.y,.(Pd' -Pb; -PC' Pa) 

= (-1)2A-H7F67.paCPa, Pc; Ph' Pa) (39) 

when particles Band C (= '8) are taken to be "particle 
2" in both G and F. This problem will be discussed 
elsewhere. 

For other possible choices of the position of the 
real point of the trajectory in the s-t plane, we can 
determine € by making use of our knowledge on the 
analytic properties of helicity amplitudes. The analytic 
properties of helicity amplitudes were studied by 
assuming the crossing relations.2 However, what we 
have used in Ref. 2 is the magnitude of cos "Pi and the 
fact that the helicity does not change sign in the 
crossing process. That is, actually we have not 
assumed the crossing relations to study the analytic 
properties of he Ii city amplitudes, but we have assumed 
the Lorentz invariance of the theory and the assump
tion that scalar-scalar scattering amplitudes satisfy 
Mandelstam representations.1 

Note added in Proof' The knowledge of the sine and 
cosine of "Pi is not sufficient to determine "Pi' In this 
paper we have assumed that "Pa = "Pd and "Ph = "Pc in 
the limit ma = md and mb = me' • 

By defining phases of initial and final helicity states 
and by proving (39), we have determined the over-all 
phase factor of the crossing relations for any processes 
in International Centre for Theoretical Physics, 
Trieste, Preprint IC/69/38. 
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1?t~ eq~ation .pet - .p~m + m2 s~~ .p = 0 is presented as a model field theory and studied in detail. It 
exhIbIts dIscrete conserved quantItIes and extended particle states with the pro beh' d' 
covariance stab Tt . tc Th . I d ,per aVlor regar mg , II y, e. ose partlC es 0 not interact with small oscillations and we show th t th' 
(plus ,a few re~sonabI~ require!D~nts) defi.ne~ the model uniquely. A connecti~n with the Kort:we I~ 
de VrIes equatIOn, whIch has simIlar properties, is established. g 

1. INTRODUCTION 

. We .study. a one-dimensional nonlinear field equa
tIOn, In which the range of the field is a I-sphere. 
Skyr~el obtained. essentially the same equation by 
~orkl~g on a nonlmear theory of strong interactions, 
In whIch the components CPP of a field cP are subject to 
the constraint Ii" cP~ = const, so cp describes a 1-
sphere if N = 2. In a subsequent paper2 the model is 
quantized by introducing discontinuous functions as 
localized particle states. The classical equation is 
analyzed in great detail by Perring and Skyrme,S who 
give a number of exact solutions with obvious physical 
interpretations. Part of their results is obtained 
independently by Enz.4 

Finkelstein and Misner5 propose the above
me~tioned model in the course of a study of topo
logIcal conservation laws; in their work, as in ours, 
only continuous fields appear, i.e., continuous 
mappings of space-time into the field space <D. For 
each t = const those mappings determine a fortiori 
continuous fields ep(X) , to which conserved discrete 
quantities can be assigned.5 Restricting <D to be a 
manifold, a point cp E <D can be represented by n real 
numbers cp«, the "components" of the field, with n 
constant over <D. If a manifold <D is a vector space, we 
say that it is trivial because it can be shown5 that it 
does not exhibit discrete conserved quantities in the 
above sense. In particular, the only nontrivial one
dimensional (n = 1) manifold is the I-sphere, and 
much of this paper will deal with a one-(space)
dimensional equation in which the field cp ranges over 
the one-sphere, i.e., cp = 271' and cp = 0 are considered 
identical expressions. 

• Supported by the National Research Council of Canada. 
Present address: Centre for Research in Experimental Space Science 
York University, Toronto. ' 

1 T. H. R. Skyrme, Proc. Roy. Soc. (London) A247, 260 (1958). 
• T. H. R. Skyrme, Proc. Roy. Soc. (London) A262, 237 (1961) 
• J. K. Perring and T. H. R. Skyrme, Nuc!. Phys. 31, 550 (1962): 
• U. Enz, Phys. Rev. 131, 1392 (1963). 
• D. Finkelstein and C. W. Misner, Ann. Phys. (N.Y.) 6 230 

(1959). ' , 

In Sec. 2 we give the motivation of the problem, 
~nd certain particlelike states of the system are shown 
III Sec. 3; we call those particle states kinks and the 
interaction between kinks and between a ki~k and a 
perturbation are analyzed in Secs. 4 and 5. In Sec. 6 
the system is quantized, and it is shown that the 
classical behavior found before is essentially un
changed. In Sec. 7 we prove that a set of plausible 
conditions lead uniquely to the problem developed 
above: Finally,. we show in Sec. 8 that the Korteweg
de Vnes equatIOn, which appears in several inde
pendent branches of physics, is intimately connected 
to our problem. 

Some of the results obtained here could be concisely 
expressed using topological terms, as done elsewhere.6 

Here we shall, however, renounce compactness in 
favor of a more intuitive presentation. 

2. THE ONE-DIMENSIONAL MODEL 

The simplest topologically nontrivial manifold is 
the I-sphere, i.e., the space of the real numbers 
modulo 271' with the usual metric, or the subspace of 
the real Euclidean plane (Xl, xJ given by x~ + x~ = 1. 
In what follows we assume that the range of the field 
cp(x, t) is such a manifold, if not otherwise stated. 

The Klein-Gordon Lagrangian density in one 
space dimension, 

C = -i(ep! - cp; + m2cp2), Ii = c = 1, (2.1) 

is not admissible in this case, since we have C(cp) =F 
C(ep + 271'). One way of fixing this is to modify (2.1) as 
follows: 

C = -t( cp! - cp~ + 2m2(1 - cos cp» 
= - i( cp! - cp~ + 4m2 sin2 cp/2); (2.2) 

that is, we replace the mass term of (2.1) by a periodic 
function of cp, with period 271'. Of all such functions, 
2m2(1 - cos ep) is the simplest one which becomes 
m2cp2 for small cp, giving the Klein-Gordon equation 
in the low-amplitude limit. 

• D. Finkelstein and J. Rubinstein, J. Math. Phys. 9, 1762 (1968). 
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11111[]P~<Z1l11111 
I ~IOad 
\ ma 

FIG. 1. A classical system described by the sine-Gordon equation: 
An infinite elastic ribbon has a load on one of the edges and is in a 
gravitational field perpendicular to its axis; the only allowed motion 
is torsion around this axis. The angle between the load and the 
gravitational field is the field variable t(l. If t(l is defined by looking 
from x = 00, the figure shows a I-kink state, namely (21T)-1[t(l(00) -
t(l(-00)1 == N = 1. Given t(l(x), any continuous deformation rf;.(x) 
[e.g., the time evolution rf;(x,I)1 which preserves t(l(±oo) 'viii con
serve N, and its possible values are the integers if t(l(±oo) = 0 
(mod 21T). 

Notice that cp in (2.2) is considered dimensionless 
and that 

Je = !(cp~ + CP: + 4m2 sin2 H) 
has the correct sign and dimension. 

If we impose the boundary conditions 

cp( - 00, t) = cp( 00, t) = ° (mod 27T), (2.3) 

the solutions will exhibit a conserved quantity, namely, 

1 J'" ocp(x, t) 1 - dx =.- (cf>(oo, t) - cp(-OCJ, t)] = N, 
27T -00 ox 27T 

an integer. (2.4) 

N is additive in the following sense (all fields are 
taken at the same time, which we omit): Let a < b < c 
be real numbers; any field CPI(X) satisfying (2.3) can be 
deformed continuously, keeping CPI(± 00) constant in 
the process, into a field cp~(x) such that cp~(x) = 0 
(mod 27T) for x ¢ (a, b); such a field has the same N, 
say N I , as CPI (x). Analogously, a field CP2(X) can be 
deformed into cp~(x), with cp~(x) = 0 for x ¢ (b, c). 
Then the juxtaposition 

has 

cp(x) = cP;'(x), xE(a,b), 

= cp~(x), X E (b, c), 
= 0 (mod 27T), x ¢ (a, c), 

(2.5) 

upon interchange of the supports of cP~ and cP~ we still 
have (2.5). Also, if NI = I and Nz = -1, any N can 
be obtained juxtaposing N cP~ fields or ( - N) cP~ fields. 
The system described by (2.2) can also be thought of 
as a stripS of semiwidth 1, torsion modulus I, mass 
density 1 along one edge, placed in a uniform gravi
tational field of strength ml; cp(x, t) is the angular 
displacement at (x, t) (Fig. 1). If (2.3) is satisfied, 27TN 
is the total torsion of the strip, from x = - 00 to 
x = 00. In terms of this visualization, the process de
veloped in the preceding paragraph can be described as 
"ironing CPI(X) into the interval (a, b)," etc. 

3. BOUND STATES 

The equation of motion corresponding to (2.2) is 

CPtt - cP~., + m2 sin cP = O. (3.1) 

We shall call (3.1), for obvious reasons, the sine
Gordon equation?; in the static case it becomes 

cP~., = m2 sin cpo. (3.2) 

It is easy to seel.3-5 that (3.2) admits only two 
bound [i.e., such that cP - 0 (mod 27T) as Ixl- 00] 
solutions, except for a displacement, and they corre
spond to N = ± 1 : 

cpO = 4 tan-I e±m(:Il-q) , (3.3) 

with integration constants e'Fmq. We see that cpo satisfies 
our boundary condition and that cpo = "max (mod 27T)" 
at x = q, so that q can be interpreted as the position of 
our "cp-packet" or "kink," as we shall call it in the 
following. 6 The ± signs correspond evidently to the 
two possible helicities of the kink. 

Putting cp(x, t) = cpV(x - vt) in the sine-Gordon 
equation, we get 

(v2 - l)cpVH + m2 sin cpv = 0, 

and, upon comparison with (3.2) and (3.3), 

cp" = 4 tan-I exp [ m ! (x - q(t»], (3.4) 
±(1 - v2

) 

where q(t) = q + vt = q(O) + vt is the position of the 
kink at time t. The width of this "running kink" is 
(1 - vZ)!(I/m), i.e., (1 - v2)l times the static kink 
width. This Lorentz contraction is, of course, a con
sequence of the relativistic invariance of the theory. 

The energy of the running kink is 

E = L: dxJe( cpV) 

= ~ L: dX( cp:2 + cp~2 + 4m
2 

sin
2 

tcp") 

= 4m i J'" c~sh-2 Y dy 
(1 - v2

) -00 

Sm 
= (1 - v2)!' 

In particular, the rest mass of the kink is M = Sm. 
Note, again, that E exhibits the right relativistic 
dependence on the speed v of the kink. The factor S is 
due to the choice of an over-all factor t in (2.2), and 
to that extent somewhat arbitrary. 

Thus, the classical (c-number) kink is a relativistically 
invariant model of an extended body in one dimension.4 

7 The name is due to Professor Martin Kruskal. 
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4. INTERACTION BETWEEN KINKS 

For short periods of time the deformation of several 
kinks in interaction will be small and we may look for 
solutions of the form 

n 

4>(x, t) = 1p(x, t) + l 4>lx, t) (4.1) 
;=1 

with 

4>t(x, t) = 4 tan-1 exp Nt m * (x - Vtt - qiO», 
(1 - v:) 

(4.2) 

Nt = ±1, (4.3) 
and 1p « l. In particular, with 

Vi = 0t1p(x,O) = 1p(x, 0) = 0, (4.4) 

such a solution will tell us the direction and strength 
of the force acting on each kink at rest at t = O. 

For simplicity we restrict ourselves to n = 2, and we 
put -q1 = q2 = q; inserting (4.1) into the sine
Gordon equation, we obtain, at t = 0, 

-\ o:1p(x, 0) 
m 

= L sin 4>t - sin L 4>i 

= sin eM1 - cos 4>2) + sin 4>2(1 - cos 4>1) 

= -4 N1 sinh m(x + q) + N2 sinh m(x - q). (4.5) 
cosh2 m(x + q) cosh2 m(x - q) 

In Figs. 2 and 3 we plot 4>(x, 0) = 4>1(X, 0) + 4>2(X, 0) 
in full line and 1>(x, t) ~ 4>(x, 0) + to~1p(x, 0)t2 (t 
small) in dotted line; this shows that the kinks repel if 
N1 = N2 and attract if N1 = -N2 (the cases N1 = 
N2 = -1 and - N1 = N2 = + 1 are represented by 
Figs. 2 and 3 with 4> ---->- -4». 

If q» 11m and for x ~ q, we get from (4.5) the 
change in 4>2; 

J... 02 ( 0)""'" -4N1 sinh m(x + q) t1p x, -
m2 cosh2 m(x + q) cosh2 m(x - q) 

-4Nl tanh 2mq 
,....., ------~------~--
- cosh 2mq cosh2 m(x - q) 

_8N
1
e-2m <1 

,....., ----~-----
- cosh2 m(x - q) . 

(4.6) 

From (4.2), the change in <P2(X,0) generated by a 
small change in q, i.e., a rigid displacement of the 

4n~----------------~~=----

+(X.I) 
211 

./ '+(x.o) +2 
0 

-q 0 

FIG. 2. Interaction between kinks: Two N = I kinks are initially 
at rest at x = -q and x = q; the dotted line is rp(x, t) for t> 0 
but small, showing that the kinks repel each other. 

4Jt 

2tr 
f' .(x.tl;t-t(x.O) 

+, '2 0 
-q 0 q x 

FIG. 3. As in Fig. 2, except that now we have an antikink at 
x = q (Ns = -1); here </>(x, t) shows that a kink and an antikink 
attract each other. 

kink, is 

fJ.I.. 04>2(X,0) fJ -2N2m fJ 
't'2 = oq . q = cosh m(x _ q) q, (4.7) 

and, if fJq changes in time, 

0:(154)2) = -2N2m fJij. (4.8) 
cosh m(x - q) 

Comparing (4.8) and (4.6) at x ~ q, we see that under 
their interaction the kinks tend to contract and that the 
force acting on 4>2 is 

(8m)(fJij) ~ 32m2Nl N2e-m (2Q). (4.9) 

For completeness we give here two exact solutions 
of (3.1) found by Perring and Skyrme3 ; Putting 
(1 - V2)-! = 1', m = 1, and rl + 27T = 1>, they are 

.I.. 4 -1 cosh yvt 
't' = tan - ----'~ 

" v sinh yx 

----* 4 tan-1 ~ eYz cosh yvt 
X-+-C» v 

~ 4 tan-1 ! ey(x-vt) 
t-fo-CX) v 

~ 4 tan-1! ey(xtvt), 
t-+ OCJ V 

.I.. 4 -1 v sinh yx 2 
't'a = tan + 7T 

cosh yvt 

veYx 

~ 4 tan-l + 27T 
"'-+ OCJ 2 cosh yvt 

~ 4 tanl vey(x+vt) + 27T 
t-+-oo 

~ 4 tan-1 vey(x-vt) + 27T, 
t-+ OCJ 

.I.. 4 -1 v cosh yx 
't'b = tan 

sinh yvt 
~ 4 tan-1 2v cosh yxeyvt 
t~-CX) 

,::e-+-oo 

~ 4 tan-1 vey(x+vt), 
x-+ OJ 

(4.10) 

(4.11) 
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.J. 4 -1 sinh yvt 2 
'f'b = tan + 1T 

v cosh yx 

eyvt 
~ 4 tan-1 + 21T 

t-+oo 2v cosh yx 

~ 4 tan-I! eY(<Il+vt) + 21T 
x-+-oo V 

1 ~ 4 tan-1 - e-Y(<Il-vt) + 21T. 
x-oo V 

Except for the unimportant factors l/v and v (which 
can be absorbed in the phase), (4.10) shows that r/>a 
represents two N = I kinks with speeds ±v approach-. 
ing the origin for t ---+ - 00 and moving away from it 
for t ---+ + 00. If v is small enough (~ 0.05), fa departs 
little from a linear combination of two kinks, with the 
distance of closest approach larger than twice the 
kink size, so that r/>a can be recognized as the bouncing 
of two kinks. For larger v's, r/>a is strongly distorted and 
no such interpretation is possible. 

Analogously, CPb represents, at t = - oo,an N= -I 
kink approaching the origin with speed v from x = 
- 00 and an N= I kink coming from x = 00 with 
speed -v. Those pass through each other and, at 
t = 00, CP-l is at x = 00 and CP+l at x = - 00; r/>b(X, 
+ (0) has the form of cp(x, 0) of Fig. 3. 

As said in Sec. I, we are interested in continuous 
fields only, so what follows is presented as just a 
curiosity. A discontinuous type of solution of (3.1) is1 

cP = n1T L ± O(x ± t - x?), (4.12) 
i 

with O(x) = 0 for x :S 0, and = I for x > 0, and the 
x~ real constants. In particular, cP = 21TO(X - t) can be 
interpreted as the limit as v ---+ I of cpv: 

x - vt 
cpv = 4 tan-1 exp ! ----+ 21TO(X - t). (4.13) 

(1 _ v2)· v-I 

Since elements like 21TO(X ± t - x~) do not interact 
with each other nor with cP, where r/> satisfies the 
sine-Gordon equation, we can have an indeterminate 
number of "nothings" (for them cP = 0 mod 21T), with 
an arbitrary total particle number and an energy 

L lim 1 ~ = 00. 
Vi-+1 (1 - vDc 

Although this strongly suggests a nonquantum 
approach to the divergence problem in field theory, 
we have not pursued this line further. 

5. SMALL OSCILLATIONS 

We next analyze small departures from the single 
kink state, i.e., we consider cP = cpo + "P, "P « 1. The 

more general case of taking r/>" instead of r/>0 can be 
reduced to this one by a Lorentz transformation. 
Also, the substitution x - q ---+ x allows us to take 
q = 0 in cpo. 

Expanding sin cP = sin r/>0 + "P cos r/>0, sine-Gordon 
gives 

"Ptt - "P<Il<ll + (m2 cos r/>0)"P 
= "Ptt - "P<Il<ll + m2(1 - 2 cosh-2 mx)"P = 0, (5.1) 

in which we put "P(x, t) = "P(x)e-iwt , obtaining 

Equation (5.2) is solved by Landau and Lifschitz8 

(p: 76); there is only one possible bound level, with 

w 2 = O. (5.3) 

The corresponding solution is a combination of 
hypergeometric functions which in our case reduces 
to 

"Pb(X) "-' Ilcosh mx. (5.4) 

It is easier to check directly that (5.4) is a solution of 
(5.2) if (5.3) holds. This is the only bound solution 
because a one-dimensional bound problem is non
degenerate. 

From (4.7) we see that (5.4) is, except for a constant, 
the change in r/>°!q=o generated by a rigid displacement 
of the kink. 

The above comments show that cpo is stable against 
almost every bound variation, the only exception 
being a rigid translation; against it cpo is in neutral 
equilibrium, because w 2 = O. Note, again, the analogy 
with particles. 

The remaining (unbounded, scattering) solutions of 
(5.2) are obtained by Morse and Feshbach,9 also as a 
combination of hypergeometric functions; after some 
manipulations they can be reduced to 

"Pk(X) = (21T)!weik<ll(k + im tanh mx), (5.5) 

where k 2 = w 2 - m2 and -00 < k < 00. 

The fact that (5.2) has this type of solutions means 
that the potential - (m 2/2) cosh-2 mx, for which (5.2) 
is the Schrodinger equation (particle of mass = I), 
is completely transparent at any energy of the incoming 
particle. This is a remarkable property indeed, and 
we shall elaborate on it later on. 

lt is easy to check that (5.5) is a solution of (5.2) and 

8 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non
Relativistic Theory (Pergamon Press, London, 1958). 

• P. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Co., New York, 1953). 
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also that 

L: 1p:(X)1pk'(X) dx = ()(k - k'), 

L: 1pk(X)1pb(X) dx = 0, (5.6) 

L: 1pb(X)1pb(X) dx = 8m. 

For completeness we give here Je in terms of 1p and 
1jJ = 17: 

Je = !( r/>~2 + 4m2 sin2 HO) 

+ l(1jJ2 + 1p~ + m2(1 - 2 cosh-2 mx}rl) 

(5.7) 
and the closure relation 

Notice that (5.5) does not satisfy boundary con
ditions (i.e., r/>o + 1pk does not), but it can be under
stood in the usual way as a contribution to a packet 
1p(x) = J a(k)1pix) dk so that 1p(x) ~ 0, Ixl ~ 00. 

6. QUANTIZATION 

In what follows we consider r/>0 a c number and 
subject 1p to the usual boson quantization procedure. 
We expand 

( ) J 00 dk r -i{J)t () + i{J)t *( )] 1p x, t = -00 (2w)t ake 1pk x + ake 1pk x 

+ Q1pb(X), (6.1) 

with ak time-dependent and q = q+ satisfying ij = O. 
Then (6.1) is the general Hermitian solution of (5.1). 
Using (3.3), (5.6), (5.7), and (6.1), we get, after some 
computations, 

H = L:dx.Je 
= 8m + 8m q'2 + !Joo dkw(a a+ + a+a) 

2 2 -00 k k k k' (6.2) 

The last term in (6.2) has the usual form for bosons, 
whereas the former ones are the nonrelativistic 
approximation for the Hamiltonian of a free particle 
of mass 8m and position operator q. There is no 
interaction between the bosons and the kink, as 
should have been expected in virtue of the remarks 
made after (5.5). 

Imposing on 

i[1p(x, t), 1p(X', t')] = D(x, t, x', t'), (6.3) 

say, the standard causal (D(x, t, x', t) = 0), dynamical 
(5.1), and canonical (i[17(X, t), 1p(X', t)] = b(x - x'» 

conditions, we obtain 

D = iJ 00 dk [e-i{J)(t-t') _ ei{J)(t-t')]1pk(X)1p:(x') 
-00 2w 

t - t' + -- 1pb(X)1pb(X'). (6.4) 
8m 

Comparing (6.3) and (6.4), we get .. 
8m[q, q] = -i, [ak' at] = ()(k - k'), 

[ak , ak ,] = [ak,q] = [ak,tj] = O. (6.5) 

The relations (6.5) imply that (6.2) contains an 
infinite zero-point energy (as in the r/>0 = 0 case) and 
that 8mtj can be interpreted, in this approximation, as 
the bona fide momentum of the kink. 

One point of caution should be made about the 
quantization process: Although 1p is assumed small in 
(5.1), it is easy to see that (6.1) gives in the vacuum 
(for instance) 

(1p)0 = 0, but (1p2)0 = 00. 

Nevertheless, we may redefine (1p2)0 = (1jJ2)0 = (1p!)0 = 
o and keep the expression (5.7) for Je, so that 
(H)o = 8m. Although arbitrary, this is consistent with 
the usual zero-point energy subtraction in (6.2), 
corresponding to the case in which there is no kink. 

Our method of quantization is different from· that of 
Skyrme,2 who introduces singular functions in order 
to represent a localized kink, and from Finkelstein 
and Misner,S who quantize in a finite box of size n
as a consequence of which the contribution of the kink 
to the total energy disappears when n ~ 00. 

7. TRANSPARENCY OF KINKS 

The remarks made just after (5.5) lead us to the 
following question: Is the absence of reflection an 
accidental feature arising from the shape of the mass 
term in the sine-Gordon equation, as stated by Perring 
and Skyrme3 ? Although we do not fully answer the 
question, we will show that, with some qualifications, 
the sine-Gordon mass term is the only one that gives 
zero reflection and is compatible with our r/> manifold; 
this suggests that the sine-Gordon equation could be a 
unique result of some set of phenomenological require
ments, one of which would be the strength of the 
coupling of the 1p field to the r/>0 particle. 

In this section we do not assume from the start that 
r/> ranges over a I-sphere. Let the one-dimensional 
field equation 

r/>tt - r/>""" + I(r/» = 0 (7.1) 

admit the static solution (or solutions) r/>o(x): 

(7.2) 
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expanding 

rP = rPo + fj!, /(rP) =/(rPo) +f'CrPo)fj!, 
fj!(x, t) = e-ifJIt1p{x), 

we obtain 

-fj!" + [['(rPo) - w2]fj! = O. (7.3) 

We shall assume that: 

(a) 1(0) = 0; 
(b) ['(0) = m2 (say); 
(c) rPo ~ 0 as x ~ - 00 ; 

(d) rPo is stable against small perturbations 
and 

(e)' in neutral equilibrium against a rigid (7.4) 
translation; 

(f) (7.3) admits solutions behaving as 
ei(±aH"'), x ~ ± 00, - 00 < k < 00; i.e., 

that (7.3) is a Schrodinger equation with 
zero reflection coefficient at all k. 

By (a) and (b), (7.1) becomes, for small rP, a Klein
Gordon equation; (c) is an arbitrary choice of refer
ence value, and (d) and (e) assure proper particlelike 
behavior of rPo, while (f) amounts to saying that the 
field fj! does not interact, in this approximation, with 
the particle represented by rPo. 

In addition to those "running" solutions (f), (7.3) 
will also admit, in general, a discrete set of bound 
solutions: 

-fj!7 + [f'(rPo) - W;]fj!i = O. (7.5) 

The mathematical problem posed by (7.4f) has been 
completely solved by Kay and Moses,10 who showed 
that the fj!i must be one of the n solutions of 

-fj!" + [Vn(x) + k~]fj!i = 0, (7.6) 
with 

Vn(x) = -2d2/dx 2 log det (b ii + ~AiA;t ~(ki+k;)"') ::;; 0, 
i + ; 

(7.7) 

and Ai and k i are 2n positive constants, otherwise 
arbitrary. 

Comparing (7.5) and (7.6), we obtain (after re
ordering if necessary) 

l'(rPo(X» = Vn(x) + k~ + w~. (7.8) 

Since Vn(x) ~ 0 as Ixi ~ 00, (7.4b) and (7.4c) give 

Numbering the Wi so that w~ ::;; w:+1' from (7.4d) 

10 I. Kay and H. E. Moses, J. Appl. Phys. 27, 1503 (1956). I am 
indebted to Professor J. B. Keller for this reference. 

and (7.4e) we obtain WI = 0; then kl = m and 

w~=m2-k;, i=I,"',n, ki~ki+1' (7.9) 

We can take the k i to be all different from each 
other without loss of generality, because, as is shown 
in the Appendix, if there are groups of r, s, ... k i 

equal to each other, Vn(x) reduces to Vn-.-+1-Hl' . . (x). 
Then (7.9) says that there are n Wi for each Vn , and 
o ::;; Wi < m. In a quantized version this would have 
an obvious physical meaning: The fields rPo(x) + 
fj!i(X, t) describe bound states of a rPo particle with 
fj! particles, with the binding energy 

Ei = m - Wi' Ii = c = 1. 

From (7.2) and (7.8), 

- rP~' + 1'( rPo)rP~ 
= -(rP~)" + [Vix) + k~](rP~) = 0, (7.10) 

i.e., by (7.6), 

(7.11) 

as should have been expected since WI = 0 corresponds 
to a rigid translation of rPo and 

rP~(x) = - ~ rPo(x - xo)I",=«o' 
dxo 

Then, by (7.4c), 

rPo( (0) = Tn' say, 

= L: rPMx) dx,..., L: fj!l(X) dx ¥= 0, (7.12) 

by the well-known oscillation theorem, since fj!1 is the 
"ground-state" wavefunction of (7.6). This, inciden
tally, also implies that rPo is monotonic. Tn is finite 
because Vex) ~ 0 as Ixl ~ 00, so (7.6) shows that 
fj!1(X) ~ e±kl "', as x ~ =f 00, and the J in (7.12) con
verges. This shows that our conditions are sufficient 
for the system to have bound states, in the sense that 
lim rPo, as x ~ - 00, and lim rPo, as x ~ 00, exist and 
are finite. 

Case n = 1,' It can be shown10 that ifi = fj!i(Ai)! 
satisfies, for any n, 

( boo + (A;A;)! e(kiHi)"')iii. = -Ate"""" (7.13) 
" k k T1 ., 

i + ; 
then, for n = 1 we have 

-Alek1x 
0( 

fj!l = 1 + (2k1)-IA1e2/rt'" = cosh kl(x - xo)' 

1 2kl 
Xo = -log- . (7.14) 

2kl Al 
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Then 

and (7.2) becomes 

or 

7T cosh k1(x - xo) 

= + Tlk~ sin 4 tan-1 ek1("-"o) 
27T 

= Tl k~ sin 27T(2Tl tan-1l1(CC-.,o»), 
27T Tl 7T 

f( 4» = ;~ ki sin ~~ 4>, (7.15) 

by which (7.l) becomes the sine-Gordon equation; the 
arbitrariness in Tl corresponds to the possibility of a 
scale transformation of the I-sphere, namely (0, 27T) -,. 
(0, Tl)' 

Indeed, we have proven (7.l5) only for 4>o-i.e., 
for 0 ~ 4> ~ T1-but we may, for instance, extend it 
to all real 4> by analytic continuation. 

Case n > I: Normalizing "Pl(X) so as to make (7.11) 
an equality, we have 

(7.16) 

The expression (7.7) can be brought into the form 
(3.7) 0[10 

VnCx) 

= -2 L~/;(lvePv" + t 1;, (lv(lif3v - f31l)2e(PV+PIl)"'} , 

1 + 2 I (lvePV'" + I (lv(l/Je(PV+PIl )'" 
v.1l 

(7.17) 

where the (l'S are positive constants related to the A's 
and k's, and the f3's are all the possible sums without 
repetition of k's, times 2; ordering them so that 
f3v > f3v+l, we have 

n n-l 

f31 = 2 ~ kp f32 = 2 ~ k" 
1 1 

n-2 

f33 = 2 I k, + 2kn , etc., 
1 

(7.18) 

so that, in a first approximation, 

(l (l (f3 - f3 )2e(Pl+P2)'" 
V(x)--*-2 121 2 

n (l~e2Pl'" 

'" e(P2-Pl)'" = e-2k."" x --* 00, 

--* -2f31lf(lMePM'" '" ePM'" = eU
·."', x --* - 00. 

(7.19) 
Also, as we saw before, 

Then 

unless 

"Pl(X) --* eH1"', x --* ± 00. 

'" lim e±kl"'.!!:.. e±(kl-2kn )", 

",-->±oo dx 
'" lim e±2(lrl-kn )", = 00, 

X-+±oXl 

(7.20) 

(7.21) 

(7.22) 

because then the last step in (7.21) is incorrect; (7.22) 
is then a necessary condition forf(4)) to be three times 
differentiable in the interval [0, Tn]. 

Proceeding as in (7.19), we obtain, in a second 
approximation, 

V (x) --* a e±2kn'" + b e=f2kn - 1", x --* ± 00 n ± ±, . 

Then, evenif(7.22) holds, we again obtainf"'(Tn , 0) = 
00, because k n- 1 oF k n (Appendix), unless k n- 1 = kl 
or 

n = 2. (7.23) 

To sum up, for f( 4» to be three times differentiable 
in the interval [0, Tn], we must have n = I, which 
gives the sine-Gordon equation, or n = 2 and 2kz = 
k 1 • 

Case n = 2,2k2 = k1: Putting ek1'" = y, 9k1/A2 = p, 
and 18k1/A 1 = q, we obtain, after some computation, 

1 
"PI '" ~ y(y + lp), (7.24) 

with 

~ = y3 + py2 + qy + ipq. 

We could now differentiate "PI (to get 4>~) and integrate 
it (to get 4>0)' and substituting in (7.2) obtain an 
equation forj(4)), but here we are out of luck, because 
the equation is in general much more involved than in 
the case n = I (where we knew the solution to start 
with!) and we are not able to solve it. 
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However, we can compute f" (4)0): 

f"( 4>0) t"-J ~ ~ V2(;) t"-J 1. d3310g 1:1. 
"PI dx "PI dx 

~ has three different roots if p2 ~ 3q; writing 

we get 

f"( 4>0) f"-..I ~ ± yiy + Yi) 
(y + tp) 1 (y - Yi)3 

----+ y2 2 Yi = _p 
11 .... 00 y2 ' 

----+ tpq 2 yi = 3q (7.25) 
1/ .... 0 !p _y~ p' 

and since p and q are positive we have 

(7.26) 

If we now assume the I-sphere topology for the 
space spanned by 1> and want 1>0 to be bounded (i.e., 
going to "0" at x = ±oo), by (7.4c) and (7.12) we 
have 

which means that f(1)) , and a fortiori its derivatives, 
ought to be periodic with period T2 ; this is incon
sistent with (7.26) if f'''(1)) is continuous in [0, T2]' 

We have proven, then, that the sine-Gordon equa
tion is the only one compatible with assumptions (7.4), 
if the 4> manifold is a I-sphere and 1>0 - ° (mod T) 
for x- ±oo. 

For certain values of the parameters, f(1)) can be 
easily found: Let p2 = 3q; then 1:1 = (y + tp)3, and 
putting ip = c, we get Yi = -c and 

Ix fHC dz y 
CPo f"-..I "PI dx f"-..I ---; "-' -- , 

-00 C Z Y + c 
or 

y em", 
CPo = T-- = T , 

y + c em", + c 

and from (7.25), 

f"(CPo) "-' (y + c)23 -c(y - c) "-' y - c = 2 CPo - 1, 
(y + C)3 Y + c T 

1'( 1>0) "-' ~ cP~ - CPo + rx, 

f( CPo) "-' 3 ~ cP~ - tcp~ + rxcpo, 

or, upon imposing the boundary conditions/(T) = 0, 
f'(O) = m2,1l 

f(cp) = m2( ;21>3 - ~ cp2 + cp), (7.27) 

with which (7.1) becomes what is known in the litera
ture as the "Thirring model." This is an interesting 
aspect of our problem, but to explore it further would 
take us too far afield. 

8. RELATION TO THE KORTEWEG-DE VRIES 
EQUATION 

The Korteweg-de Vries equation, 

Ut + uu'" + u"''''''' = 0, (S.1) 

of ubiquitous presence in physics,12 has properties 
strikingly similar to the ones we have found for the 
sine-Gordon equation: the existence of bound traveling 
states, their emerging unaltered from (nonlinear) 
interaction with each other, the decay of an initial 
pulselike disturbance into a well-defined number of 
bound states, depending on the width and amplitude 
of the initial disturbance,13 etc. Some of these results 
can be obtained using certain conserved densities that 
(8.1) exhibits in addition to mass, momentum, and 
energy,13.14 and recent results15 indicate that the sine
Gordon equation also has such "unphysical" con
served densities. 

This makes us suspect that (S.1) and sine-Gordon 
may be closely related equations, but serious problems 
arise if we try to prove it: for instance, (8.1) is Galileo
invariant but sine-Gordon is Lorentz-invariant; (S.l) 
is of first order in time and sine-Gordon of second, 
etc. 

We can prove, however, that the respective reduced 
equations, namely, the ones we get by putting 
1>(x, t) = 1>(x - vt) and u(x, t) = u(x - wt), can be 
transformed into each other; more generally, if the 
equation for 1> is 

1>tt - 1>",,,, + J(ep) = 0, (7.1) 

the reduced equations, after adequate scaling of 
variables and functions, are 

1>" = f(1)) (S.2) 
and 

±u' + uu' + u"' = 0; (8.3) 

11 Notice that!(T) = 0 is not an additional assumption: 

!(T) = Sf !'(1p) dtp = S: "'~(x) dx ,..., e'oo 1p~(x) dx = O. 

12 C. S. Gardner, J. M. Greene. M. D. Kruskal, and R. M. Miura, 
Phys. Rev. Letters 19, 1095 (1967), and references therein. 

13 Yu. A. Berezin and V. I. Karpman, Sov. Phys.-JETP 24, 1049 
(1967). 

U R. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys. 
9, 1204 (1968). 

15 M. Kruskal, private communication. 
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we now set 

u = aJ'(cfo) + b = a df + b 
dcfo 

(8.4) 

and easily find that a necessary and sufficient con
dition for u to satisfy (8.3) (except for scalings), if cfo 
satisfies (8.2), is that 

2pVfP + 31'''f = oc1',!, + Pi", (8.5) 

where JP = f J(cfo) dcfo, and IX and P are real numbers, 
with oc + 1 ~ 0. 

It is easy to see that j( cfo) = sin cfo is one solution of' 
(8.5) and also that the other explicit solution to the 
transparency problem obtained in Sec. 8, namely 

(7.27') 

(m and T have been rescaled away), satisfies (8.5) too. 
Although we do not have an explicit expression 

for the general (p2 #= 3q) solution J(cfo) of the trans
parency problem, all the ingredients in (8.5) can be 
written in terms of x, 'lJ!t(x) [see (7.24)J and its deriva
tives, so (8.5) could still be checked as an expression in 
x. The calculation is trivial but lengthy and has not 
been carried out; we suspect, however, that the 
answer is affirmative. 

Notice that (8.2) and (8.4) give also two lower-order 
equations in u, which can be considered as constraints 
on (8.3) and limit our choice of constants of inte
gration. For instance, J = e4> satisfies (8.5) but does 
not allow solitary waves in u, for which u( 00) = 
u'(oo) = u"(oo) = 0, because cfo" = ~ has only peri
odic solutions. However, the two f's that we examined 
above do give solitary waves in u, if we choose b/a 
adequately in (8.4). 

We have, then, made less surprising the fact that the 
Korteweg-de Vries, sine-Gordon, and Thirring equa
tions do all have bound traveling solutions, but the 
other similarities are still not fully understood. Work 
in that direction is currently being done. tS 
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APPENDIX 

Kay and Moses's expression [see Ref. 10, (2.11) and 
(3.4)J for Vn can be written in a slightly more explicit 
form, namely, 

d2 ( n) Vn(x) = -2-
2 

log 1 + ! a. 
dx 1 

d2 ( n [( (v) ) = -2 -2 log 1 +! 2 II Aie2k;'" 

dx V=l(~) 

where (;) indicates that the sum is over all the possible 
combinations of v elements taken from the given n, 
and (v) indicates that the corresponding product is 
between the elements of the given combination. 

If we now build up a Vn+l adding to the A's and 
k's (of Vn) An+l and kn+l = kn' we get 

(A2) 

and it is easy to see from (AI) that, if we rename 
(An + An+l) -- An' we obtain 

a; -- a,., v = 1, ... , n, 

an+! = O. 

Then, since the A's can take any positive value, 
(A2) becomes (AI). Iteration of this reasoning gives 
the result stated in the text, namely, that we can take 
the k i all different from each other without loss of 
generality. 
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In this paper the. effects .of arbitrar~ly anisotropic scatte.ring in establishing the eigenvalue spectrum of 
~he .<!perator assC><:lated .wlth the statIOnary mo~oenerg~tic ~eutron transport equation in a medium of 
mfimte extent are mvestigated through an extensIVe apphcation of the two-sided Laplace integral theory. 
Ho~ ~he contribution of the. discr~te eigenyalues imbedded in the continuous part of the spectrum can 
explicitly. be evaluated wh~n mvertmg the. b!later~l Lapla~ transform of the sought distribution is shown 
by resortmg to the PlemelJ formulas, which are 10 order 10 the theory of the Cauchy integrals. 

INTRODUCTION 

Space-angle dependent problems in neutron trans
port theory have been the object of several investiga
tions during the last few years. Functional analysis 
and eigenfunction expansion methods have mostly 
been used and extended to various physical cases (see, 
for instance, the review article by Zelaznyl). In 
comparison, integral transform methods have re
ceived much less attention, even if they have success
fully been applied in the past to solve neutron 
transport problems with isotropic scattering2 and have 
recently been resumed to study the effects of aniso
tropic scattering once the transformed flux is expanded 
into a series of Legendre polynomials.3 Integral 
transform methods are undoubtedly an interesting 
alternative to the two methods mentioned above when 
the Green's function for an infinite medium is dealt 
with. Actually, solutions of finite geometry problems 
have also been satisfactorily worked out by means of 
special integral transform techniques.4 

With the aim of providing a deeper insight into the 
mathematical structure of the spatially-dependent 
neutron transport theory, a new method is here 
proposed in order to construct the Green's function 
for an infinite medium in the case of the stationary 
monoenergetic space-angle dependent form of the 
Boltzmann equation with arbitrarily anisotropic 
scattering. Such a method largely refers to the two
sided Laplace integral theory and does not resort to 
any supplementary expansion of the transformed flux 
distribution. The point is that, proceeding along the 
lines of the two-sided Laplace integral theory, we can 
first reduce the original transport equation to a 

1 R. Zelazny, Nukleonika 11, 79 (\966). 
• A. M. Weinberg and E. P. Wigner, The Physical Theory of 

Neutron Chain Reactors (University of Chicago Press Chicago 
1958). ' , 

3 K. D. Lathrop, Los Alamos Scientific Lab. Report LA-3051, 
13 May 1964. 

• J. M. Norwood and R. N. Little, J. Nucl. Energy 17.245 (1963). 

Fredholm linear integral equation of the second kind 
for the bilateral transform of the distribution. Because 
the kernel of this integral equation is degenerate, the 
solution is readily obtained by standard technique and 
then transformed back through an extensive applica
tion of the integration rule to yield the sought 
space-angle flux distribution. The spectrum of the sin
gularities of the bilateral transform which is to be 
inverted is seen to consist of poles and branch points. It 
will be verified that, because of the role played by the 
streaming term of the neutron balance equation, one 
of the poles always lies in those regions which, in Qrder 
to insure the analyticity of the considered transform, are 
cut off the complex plane when the equivalent contour 
of integration is drawn to circumnavigate the branch 
points. Such a pole will henceforth be referred to as 
principal pseudopole.6 Furthermore, as a consequence 
of special values that can be assigned to the Legendre 
moments of the scattering kernel and to the scattering 
probability of the medium, other poles, which will be 
referred to as additional or secondary pseudopoles, 
may analogously turn out to be imbedded in the 
deformed integration path connected with the branch 
points. In terms of functional analysis, separation of 
poles, pseudopoles, and branch points implies that the 
spectrum of the eigenvalues corresponding to the 
unsymmetric operator associated with the present 
~orm of:he source-free Boltzmann equation separates 
IOto a dIscrete and a continuou~ part and some of the 
discrete eigenvalues are imbedded in the continuous 
part of the spectrum. 

The existence of principal and secondary pseudo
poles has first been recognized by Mika6 through an 
extension of the eigenfunction expansion method and 
successively by Lathrop,3 who has given conditions 
for the presence or absence of the secondary pseudo
poles when inverting the Fourier transform of the 

5 v. C. Boffi, C.N.E.N. report, Doc. CEC (67)11, May 1967. 
6 J. R. Mika. Nucl. Sci. Engr. 11,415 (1961). 
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fundamental harmonic of the flux.? It is worth noting 
that the explicit evaluation of the contribution due to 
the general pseudopole does strictly depend on the 
adopted method of solution. Thus, for instance, by 
Mika's procedure it is possible to evaluate explicitly 
the contribution of the principal pseudopole, whereas 
only an implicit expression has been given for the 
contribution of the second~ry pseudopoles. In La
throp's work the situation is practically reversed. The 
disappearance of the principal pseudopole contri
bution in the latter case is, of course, merely fictitious, 
as it is in some way contained in the final result for the 
solution. The situation is quite similar to the one 
occurring in the isotropic scattering case when the 
principal pseudopole is treated in the framework of 
the so-called Bo approximation.8 The gap between the 
Mika and Lathrop results is here filled up as we 
succeed in showing by the present integral contour 
approach that the contribution of any pseudopole 
can explicitly be resolved by means of the Plemelj 
formulas, which are of basic significance in the theory 
of Cauchy integrals. 

1. THE SOLUTION OF THE TRANSFORMED 
EQUATION 

For the physical situation already sketched in the 
Introduction, the form of the Boltzmann equation to 
be considered is6 

(1 +ft ~)!(X,ft) 

= 4~ b(x) + ic ~obnP n(fl) ft ifl')!(x, fl') dfl', (1) 

where lex, fl) is the angular flux; x is the optical 
distance measured from the source plane at x = 0; 
ft is the cosine of the angle between the neutron 
velocity v and the positive direction of the x axis; c 
is the scattering probability of the medium (0 < c < 
1); Sex, fl) == (j(X)/41T is the monochromatic, isotropic, 
infinite plane (j-Iike source; P n(fl) is the Legendre 
polynomial of nth order9

; and bn = (2n + l)gn, gn 
being the nth Legendre moment of the scattering 
kernel (go = 1). 

The problem of solving Eq. (I) for lex, fl) can be 
stated as follows. 

By the symmetry of the problem we may confine 
ourselves to positive values of x and seek for a 

, Actually the concept of pseudopole is not used in Refs. 3 and 6. 
This concept is well suited to and better understood in the context of 
the present treatment. 

8 V. C. Boffi, Nukleonik 11, 95 (1968). 
• The P n(P)'s could actually represent any set of polynomials 

orthogonal with respect to the interval (-1,1). For the sake of 
simplicity, however, they are referred to as Legendre polynomials. 

solution of Eq. (1) of the form 

lex, fl) = 4~ . {loamF(km, fl)e-km
'" 

+ LX) A(7])G(7], fl)e-"~ d7]}. (2) 

In terms of functional analysis, the solution [Eq. 
(2)] is recognized to be expressed as a linear combina
tion of regular and singular eigenfunctions, of 
coefficients am and A(7]), respectively. In particular, 
k m is the general eigenvalue belonging to the discrete 
part of the spectrum and F(km' fl) is the corresponding 
regular eigenfunction. The integral term in the bracket 
represents, on the contrary, the contribution of the 
continuous part of the spectrum, and G( 7], fl) is the 
corresponding singular eigenfunction which may 
behave like a distribution. In the eigenfunction 
expansion method, the coefficients am and A(7]) are 
determined, by using the orthogonality theorems for 
the eigenfunctions, from the uniqueness of the solution 
of a singular integral equation, which is derived by 
separately imposing the boundary condition at the 
source plane. Some difficulty in calculating explicitly 
the coefficients am and A(7]) arises when discrete 
eigenvalues are present in the continuous part of the 
spectrum, as the required conditions for doing it are 
only implicitly known. 6 

A solution of the form as in Eq. (2) can, however, 
be obtained by a straightforward application of the 
two-sided Laplace integral theory, as will be discussed 
here in some details. Another goal of the present 
discussion will be a more explicit knowledge of the 
integral term of Eq. (2) in the case when secondary 
pseudopoles are present. 

We begin thus with taking a bilateral Laplace 
transform of both sides of Eq. (1) with respect to the 
space variable; assume the convergence of the 
integraPO 

Lrd!(x, fln == !(p, fl) = L: e-P"'!(x, fl) dx, (3) 

where p = (J.. + iw is a complex parameter. 
As the medium is of infinite' extent, we get from 

Eq. (1) 

(1 + Pfl) . !(p, fl) 

= 4~ + tCJobnPn(fl) L:Pn(fl')!(P,fl') dfl', (4) 

which is to be solved for the transform/(p, fl). 

10 B. Van Der Pol and H. Bremmer, Operational Calculus Based 
on the Two-sided Lap/ace Integral (University Press, Cambridge, 
England, 1964). 
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It is clear that the way by whichf(p, f-t) is extracted 
from Eq. (4) must have a strong influence in establish
ing the spectrum of the singularities associated with 
the analytic behavior off(p, f-t) in the complex plane, 
p = rJ.. + iw. In fact, if we resorted to the usual method 
of solving Eq. (4) by means of an expansion off(p, f-t) 
into a series of Legendre polynomials, we would 
cause the factor 1 + Pfl on the left-hand side of Eq. 
(4) to disappear from the successive calculations.3 

Now, 1 + pf-t is one of the two factors which consti
tute the transform of the rimotion term appearing in 
the operator associated with the homogeneous form 
of Eq. (1). It follows that the singularity, if any, 
corresponding to such a factor will be missing in the 
spectrum of the singularities of f(p, f-t), even if its 
contribution is in some manner retained in the final 
result for f(x, fl),u 

There actually exists a direct way of solving Eq. 
(4) for f(p, f-t). Dividing both sides of Eq. (4) by 
1 + Pf-t yields 

f(p, f-t) = 1. . _._1_ 
47T 1 + Pf-t 

+ tc L~ ~t~(f-t)P n(f-t')f(p, fl') dfl', (5) 

where we have set 

p*( ) = b P n(fl) . 
n f-t n 1 + Pf-t 

(6) 

Equation (5) is nothing else but a Fredholm linear 
integral equation of the second kind with a degenerate 
kernel, in which the functions P~(f-t), as the functions 
P n(f-t') , are linearly independent. As is well known 
from the theory of the degenerate equations, their 
solutions reduce to algebraic equations of the first 
degree.12 

Following Ref. 12 we put 

fn(P) = 27T f/ nCf-t)f(p, fl) dfl, (7) 

which is the usual Legendre moment of nth order of 
f(p, f-t), so that Eq. (5) becomes 

f(p, f-t) = 4
1 

. {-1 +1 + c i P~(f-t)fn(P)}' (8) 
7T Pf-t n=O 

Once the fn(P)'s are known, Eq. (8) represents the 
correct and complete form of the solution of Eq. (4). 
Inserting Eq. (8) into Eq. (5) and equating coefficients 
for the linearly independent functions P~(f-t), we find 

11 We shall see later on that the singular point corresponding to 
1 + PI-A is just the principal pseudopole of f(p, It). 

12 V. I. Smirnov, A Course of Higher Mathematics (Pergamon 
Press, Ltd., Oxford, England, 1964), Vol. 4. 

that the moments fn(P) must satisfy, for any fixed p, 
the system of N + 1 algebraic equations: 

where 

and 

N 

fm(P) - c ~ bnlmnCp)fip) = lmo(P), 
n=O 

m = 0, 1, ... ,N, (9) 

(lOa) 

lmn(P) == lnm(P) =! [lpmCt-t)PnCt-t) df-t (lOb) 
2 J-1 1 + Pf-t 

are certain functions to be specified according to the 
values the parameter p takes in the complex plane. 

For later reference, let us restrict our attention to the 
strip 

-1 < rep < 1. (11) 

We know then by successive iteration that8 

lmo(P) == (_l)m; Qm(;) 

where 

and 

= (_1)m. [loo(P)' Pm(;) - Wm- 1(;);} 

I ( ) 
_ coth-1 (1/p) 

00 P -
P 

(12) 

(13a) 

is the nth Legendre function of the second kind when 
Eq. (11) holds.13 In Eq. (13b), Pm(z) is the nth 
Legendre polynomial of complex argument and 

m 1 
Wm_iz) = ~ - Pl-1(z)P m-lz), (13c) 

1=11 
as listed in Ref. 13. 

As far as the Imn(P)'s [Eq. (lOb)] are concerned, 
two recursion formulas can be established, as is 
usually done in the framework of the EN approxima
tion.14 We in fact distinguish the relation relative to 
the second index, namely, 

+ nl m.n-1(P) = ~mn, (14a) 
p 

13 E. Jahnke, F. Emde, and F. Losch, Tables of Higher Functions 
(B. G. Taubner, Stuttgart, Germany, 1960). 

14 J. hI. Ferziger and P. F. Zweifel, The Theory of Neutron Slowing 
Down in Nuclear Reactors (Pergamon Press, Ltd., Oxford, England, 
1966). 



                                                                                                                                    

270 V. C. BOFFI 

from the one relative to the first index, 

2m + 1 
--'--Imn(P) + (m + I)Im+I.n(P) 

P 

+ mlm_1.n(p) = £5
mn , (14b) 
P 

which follows inasmuch as the Imn(p)'s are symmetric 
in m and n. 

For the purposes of the present discussion, we 
select from Eqs. (14) the expressions 

Imn(P) = (-1)nl om(p)Pn{l/p), for n::::;; m - 2, 

[ 
(_I)m-1] 

Im.m-1(p) = (_I)m Io.m-1(p)P m(1/p) - mp , 

for n = m - 1, 

Imn(P) = (-I)mlon(p)Pm(1/p), for n ~ m. (15) 

At this point, in order to render explicit the knowl
edge of the bilateral Laplace transform I(p, p,) 
CEq. (8)], there remains only to determine theln(p)'s. 
How the parameter p enters the inversion of the 
system, Eq. (9), must also be considered. 

2. THE SOLUTION lip) OF THE SYSTEM, 
EQ. (9) 

By Cramer's rule, the general solution In(P) of the 
system (9) is, with obvious notation, 

I' ( ) _ ~(n)(p, C, go, gl"", gn-1' gn+1'" " gN) 
In P - , 

~(p, c, go, gl, g2' ... ,gN) 

n = 0, 1, ... ,N, (16) 

where ~(n) and ~ are determinants of (N + l)th 
order. If the determinant of the coefficients ~ were 
different from zero, Eq. (9) would give with any 
Imo(p) definite values for the In (p)'s. As a function of 
the complex parameter p, the determinant ~(p, c, go, 
gl' g2' ... ,gN) could indeed vanish for some partic
ular values of p. But these values of p will act at most 
as poles or pseudopoles when transforming back both 
sides of Eq. (8). This important correlation between 
the degeneracy of the kernel of Eq. (5) and the 
spectrum of the singularities of the transform I(p, p,) 
[Eq. (8)] will properly be taken into account later on 
so that we may for now solve formally the system, 
Eq. (9), by supposing d ~ 0. 

A convenient form for the general/n(p) [Eq. (16)] 
is 

In(P) = Rn(l/p) + Sn(1/p)!o(p), (17) 

as can be verified a posteriori (see Appendix). More-
over, since 

N 

d(p, c, go, gl' g2,' ", gN) = J - C 2. bn10n(p)Sn(1/p), 
n=O 

(18) 

one recognizes also that 
N 

~(o) Ioo(p) + C I bnl on(p)RnCl/p) 
!o(p) == - = n=l (19) 

~ N 
1 - c I bn1on(p)Sn(1/p) 

n=O 

In Eqs. (17) and (19), the functions 

Rn(;) == Rn(; , C, gl' g2, ... , gn-1) (20a) 

and 

Sn(;) == Sn(;' C, go, gl' g2,"', gn-1) (20b) 

are polynomials of nth degree in p-1 and can be 
constructed by recursion from the formula 

(n + l)pHn+1(l/p) + (2n + 1)(1 - cgn)Hn (1/p) 

+ npHn_ 1(I/p) = 0, (21) 

where Hn(1/p) stands for either Rn(llp) , n = 1, 
2, ... , N, or Sn(1/p), n = 0, 1,2, ... , N . Equation 
(21) is the same as obtained by Lathrop3 in defining 
the fundamental harmonic!o(p) [Eq. (19)] through an 
expansion of the Fourier transform of his distribution 
into a series of Legendre polynomials. In the present 
case, for the form in Eq. (17) to be really useful in the 
sequel, we can expand as far as we need for the Rn 
and Sn to be given a compact expression which is 
independent of Eq. (21). Since 

Ro(l/p) = 0, So(1/p) = 1, (22) 
we find that 

[(n+l)/2] T(l) (c g ) 
Rn(1/p) = (-lr/2] I (_I)m+I n.m' m, 

m=l p2m-6"o 

n = 2,3, ... ,N, (23a) 
[n/2] T lO ) (c g ) 

Sn(l/p) = (_lpn+I)/2] I (_I)m n.m , m , 
m=O p2m+6no 

n = 1,2, ... ,N, (23b) 

where the symbol [MI2] indicates the maximum 
integer contained in MI2 and £5no is the Kronecker 
index for the oddness of n; that is, 

£5no = 0, for n even, 
£5no = 1, for n odd. (24) 

As far as the dimensionless coefficients T n .m are 
concerned, we have 

T~~~(c, gm) 

1[(n+ll/S)-m=1 1[(n+ll/2)-m-l=/[ (,,+11/0)-.. +2 

2[(n-2)/2]-~"O(I + 1) ... (I + 1) 2. [(n+l)/2]-m 1 

11=10+2 (/[(n+l)/2]-m + 2) ... (II + 2) 
n-1 21 + 1 

x IT 0 (1 - cg/o)' (25a) 
10=1/0 + 1 
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provided the index 10 running from 1 to n - 1 in the 
product is taken to satisfy the inequalities 

10 #; 1[(n+1)/2]-m, h(n+1)/2]-m + 1, 

10 #;/2 ,/2 +1, 

10#;/1> 1 1 +1. 

(2Sb) 

When m = [en + 1)/2], Eq. (2Sa) reduces to 

(1) nn-1 210 + 1 
T n,[(n+1)/2](e, g[(n+1)/2]) = 1 l' (1 - eglo)' 

10=1 0 + 
(2Sc) 

For T~~~(e, gm) we have the slightly different 
expression 

2m+ono 2m+2+o.0 
T(O) (e g ) = '" '" n.m. 'm ~ k" 

1[n/01-"'=0 l[n/21-m-1=1[ .. /11-m+ 2 

2[(n-2)/2]+0 .. 0 (I + 1)·" (1 + 1) I [n/2]-m 1 

11=12+2 (I [n/2]-m + 2)' .. (I1 + 2) 

n-1 21 + 1 . n 0 (1 - eglo)' (26a) 
10=0 10 + I 

where 10 still obeys Eqs. (2Sb) with [nI2] in place of 
[n~ll When m = [nI2], we get 

(0) nn-1 210 + 1 
T n.[n/2](e, g[n/2]) = I 1 (l - eg1o)' (26b) 

10=0 0 + 
The first few of Rn and Sn are listed below: 

Rl(;) = ;; 

R2(;) = - ~ 1 ~2egl ; (27a) 

R3(~) = ~ (1 - eg1)(l - eg2) _ 2 ; 
p 2 p3 3p 

and 

S1 (;) = _ 1 -p e go ; 

S (~) = ~ (1 - ego)(l - eg1) _ ~ • 

2 P 2 p2 2 ' (27b) 

Sa(!) = _{~ (1 - ego)(1 - eg1)(l - eg2) 

p 2 ~ 

- [t(l - eg2) + 1(1 - ego)] ;}. 

In the isotropic case, that is, when bn = gn = 0 for 
n ~ 1, Eqs. (23) sum up to known functions. There 
results 

R~)(;) = (_1)n+1; Wn- 1(;) , 

S~)(;) = (_1)n[Pn(;) -; Wn- 1(;)} (28) 

where Pn and Wn_ 1 are the same as in Eq. (13b). 

3. THE BILATERAL LAPLACE TRANSFORM 
[(P,I1-), EQ. (8) 

Inserting Eq. (17) for !n(P) into the right-hand side 
of Eq. (8) and then using Eq. (19) for !o(p) and Eq. 
(12) for Imo(p) yield for the bilateral Laplace transform 
of the sought distribution 

(29) 

where 

and 

S!(1/p) == SnC1!p) - eRnC1!p) 
[n/2] T*(O)(e g ) 

= (_1)[(n+1)/2] I (_I)m. n.m , m (31) 
m=O p2m+6no 

is the 'same polynomial as the Sn(1!p) [Eq. (23b)] 
provided the factor (l - ego) appearing in each 
coefficient of the latter is replaced by unity. Therefore 
the coefficients T:.(::!(e, gm) of Eq. (31) are still given 
by Eq. (26a) , in which the iridex 10 of the product 
now runs from 1 to n - 1. 

By taking into account Eq. (23b) for Sn(1!p) and 
Eq. (31) for S:(1!p), the two sums in the brackets of 
Eq. (29) become 

i bnP nCll)Sn(l/p) = ~ (-It u nC~' e) , (32a) 
n=O 1/=0 p 

I,b n PnCIl)S!(1/P) = -1 + iC-It U!(~ c), (32b) 
n=1 1/=0 p 

where Un(ll, e) and U:(Il, e) are certain dimensionless 
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coefficients defined as 

UnCfl,C) == UnCfl, c, go,' . " gN) 
[(N-n)j2] 

= ~ (-l) mb2m+n · T~~+n.["j2] . P2m+n(fl), 
m=O 

(33a) 

U!Cfl, c) == U!Cfl, C, gl' ... , gN) 
[CN-n)j2] 

= "~ C -1)mb2m+n . T:~~n.[nj2] . P2m+nCfl)' 
m=O 

(33b) 
Setting 

F (p ) = CPo(p) 
o ,fl 1 ' + flP 

(34a) 

1 
Go(p, fl) = I 

P + fl-
(34b) 

and using Eqs. (32), Eq. (29) is then rewritten as 

f(p, fl) == fl(P, fl) + f2(P, fl) 

= ~. i(-lfUn(/~' c)· Fo(P,fl) + ~ 
47T n=O pn 47T 

. ![GO(P,fl) - i(-lfU!Cfl, c) GO(P:fl)], 
fl n=O P 

(35) 

which is a very convenient form for /(p, fl) to be 
transformed back. By the way, each of the two com
ponents /1(P, fl) and /2(P, fl) of Eq. (35) will be 
separately considered and inverted. 

4. INVERSION OF [ICp, (l), EQ. (35) 

If Fo(x, fl) is the original of FoCp, fl), by invoking 
the integration rule for the bilateral Laplace trans
forms, we know thatlO 

L-1{FO(P, fl)} = 1 lZ F (u u)(x _ u)n-l du 
II n ( 1)' 0, r , p n - . ±'" 

(36) 

where the positive sign holds for rep < 0, the negative 
sign for rep> O. Then, we obtain 

CI~{jl(p, 11-)} 

==fl(X, fl) 

1 {) ~ n U n(fl, c) = - Uo(fl, c Fo(X,fl) + k-(-l) 
47T n=1 (n - 1)! 

x f:",Fo(u, fl)(X - u)n-l du}, (37) 

as follows from the linearity of the considered trans
form. In order to determine Fo(x, fl), we need to 
identify not only the spectrum of the singularities of 

Fo(p, fl) in the complex plane p = IX. + ;W, but also its 
strip of convergence as required by the integration 
rule, Eq. (36). In fact, the constant of integration, 
involved by the two oppo~ite signs in Eq. (36), must 
properly be specified. We have 

(38) 

According to the definition of S:(1/p), Sn(l/p), and 
I'ln(1/p), it is easily seen that 

Fo(P,fl) = FoC-p, -fl), 

lim Fo(p, fl) = O. 
Ipl"'ao 

(39) 

The spectrum of the singularities of Fo(p, fl) consists 
then of the following points: 

(i) The poles for those values of p at which the 
even function of p, 

!lCp, c, go, gl, ... , gN) 

== 1 - ~ i (-l)nbnSn(l)l'ln(l) = 0: 
p n=O p p 

(40) 

This is the equivalent form which expresses the 
vanishing of the determinant of the coefficients of the 
system, Eq. (9), once Eq. (12) is inserted into Eq. (18). 
It has been shown6 that the roots of Eq. (40), when 
0< c < 1, are real and their number is 2(M + 1) 
with M ~ N, N being the order of the considered 
anisotropy. We assume that all these roots are simple, 
lie in the interval (-1, 1), and are ordered as 

0< ko < k 1 ," • , < k1t1 < 1. 

(ii) The pole at p = -1/ fl. 

(41) 

(iii) The essential singularity at p = i= 1, which is a 
branch point for the multivalued function I'ln(1/p). 

We can thus conclude that, since Fo(p,l1-) is even 
with respect to p and fl and has no imaginary poles 
and since the strip of its convergence must contain the 
imaginary axis, its inverse Fo(x, fl) is even, so that we 
can restrict our calculations to the positive values of x. 

Let us go further on: The imaginary axis is from 
now on taken to separate the integration contour 
which is in order, by the Jordan lemma, in the half
plane rep < 0 when positive values of x are considered 
from the integration contour in the half-plane rep> 0 
when x < O. (See Fig. 1.) In particular, referring to the 
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1m 

He 

FlO. 1. The equivalent contour for the complex integral, Eq. (44). 

values rep < 0, that is, x > 0, we realize that 

-1 < rep < ° (42) 

is, except, at most, for the poles at p = -ko, 
- kl' ...• - k M' one of the two strips of convergence 
into which the domain of convergence of Fo(p, ft) is 
divided because of Eq. (36). Actually, the lines 
rep = -km • m = 0, 1 •... , M, separate the strip, 
Eq. (52), into the subdomains 

-ko < rep < 0, 

-kl < rep < -ko, 

(43a) 

-kM < rep < -kM- l , 

and 
-1 < rep < -kM • (43b) 

As far as the behavior of Fo(p. ft) on the boundaries of 
these subdomains is concerned, we note that Fo(p. ft) 
has a first-order pole on the finite part of the left 
boundary of the general strip -km < rep < -km- l , 

m = 0, 1, ... ,M , and an essential singularity on 
the finite part of the left boundary of the last one, Eq. 
(43b). The behavior of Fo(p, ft) at infinity [see the 
second of Eqs. (39)] allows in the present case the 
crossing of the boundaries; we therefore conclude that 
the Mellin-Fourier integral 

with -ko < ('j. ~ 0. can be split up into the sum 

,'If 

Fo(x,ft) = L Fri~~(x,ft) + F~c.s'>(x.ft), (45) 
m=O 

where FJ;~(x, ft) and FJe.s.l (x, ft) represent the contri
bution due to the pole at p = -kw m = 0, 1, ... , 
M., and to the essential singularity at p = -1, 
respectively. 

Another consideration is now necessary and con
cerns the peculiar behavior of the pole at p = -11ft 
when ft > 0. In examining the branch cut in Fig. 1 
which makes the function eXPFo(p, ft) continuous, we 
notice that the pole at p = -1 1ft is left out from the 
integration path when circumnavigating the essential 
singularity at p = -1. The question then arises as to 
how the contributioH. of the pole atp = -11ft to the 
complex integral, Eq. (44), can be drawn out. We 
shall soon see that this contribution does not appear 
in Eq. (45) as a term of the kind as Fri~~(x, ft), but as 
a term which is extracted from Frie.s·)(x, ft) when the 
Cauchy-type integrals, occurring in evaluatingFJe.s.l(x, 
ft) and having a singularity just at p = -11ft, are 
resolved by means of the Plemelj formulas. As it is, 
the pole at p = -11ft will be named principal 
pseudopole. Owing to the method adopted for solving 
Eq. (4), this principal pseudopole is always present in 
the singularity spectrum of f(p, ft), whereas it would 
disappear if, for instance, we had expanded f(p, ft) 
into a series of Legendre polynomials. 

We can finally pass on to evaluate the two terms on 
the right-hand side of Eq. (45). They will be inserted 
into Eq. (37) to give the desired result for flex, ft). 

As far as the contribution due to the general pole 
at p = -km is concerned, by still confining ourselves 
to x > 0, a straightforward application of the 
residue theorem yields 

(46) 
where we set 

'f/J(km • c) 

== 'f/J(km • c, go. gl"", g.v) 

(46') 

In dealing with the contribution of the essential 
singularity at p = -1, we first rewrite the inversion 
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integral, Eq. (44), with rx = 0, as 

F~C.B·)(X, fl) 

= _1 eoo 

~. [X*(1/P) - £. Clo(1/P)Y**(l/P)/ 
27T; J-iOO 1 + flP P 

X(1/p) - ~ a o(1/p)Y(l/P)] dp, (47) 

where, by Eqs. (13b) and (38), 

x(l) = 1 + £. f(-l t bnWn_l (l)Sn(l), 
p p n=l p p 

Y(~) = 1 + il( -ltbn Pn(1/p)Sn(1/p)· (48a) 

X*(ljp) and Y*(l/p) are analogously defined in terms 
of S!(l/p) and 

Y**(l/p) = Y*(l/p) - 1. (48b) 

Referring to the equivalent contour C = L + 
(rl + ra) + AB + r 2 + CD of Fig. 1, we remember 
that13 

along AB (upper edge of the cut) and 

ao(llp) = Qo(1lp) - il7T 

along CD (lower edge of the cut) with 

(49a) 

(49b) 

Qo(1lp) = tanh-l (1lp)· (49c) 

From the application of the Cauchy integral theorem 
to the contour C we deduce that 

~ riR ellJ'PFo(p, fl) dp + ~ r ellJ'PFo(p, fl) dp 
27T1 J-iR 27T1 Jr1+ra 

+ ~ r ellJ'P. Fo(p, fl) dp 
2m Jr, 

1 I-1+ ir cp+(x, p) 
= -- dp 

27Ti -R+ir 1 + flP 

1 I-R- ir cp-(x, p d 
- - p. (SO) 

27Ti -l-ir 1 + flP 

In Eq. (SO), Fo(p, fl)-which is given by Eq. (38)
is a function vanishing at infinity as 1/lpl, when Ipl 
tends to 00 on r 1 + r a, and bounded in the neigh
borhoods ofp = -1, whereas cp+(x,p) and cp-(x,p) 
are continuous and regular functions associated, 
respectively, with the upper and lower edge of the cut 
and given by 

cp±(x; C, go, gl"", gN; p) 

== cp±(x, p) = ellJ'P[v(p) ± i(7TC/2p)w(p)], (51) 

with 

v(c, go, gl"", gN; p) 

== v( ) = Z**(1/p)Z(1/p) + (7Tc/2p)2Y**(ljp)Y(1/p) 
p Z2(1/ p) + (7Tc/2p )2y2(1/ p) , 

and 

== w(p) = [Z2(~) + (;;)2 Y2(~) rl

, (S2a) 

Z**(l/p) = X*(1/p) - (c/p)Qo{1/p)Y**(1/p), 

Z(l/p) = X(l/p) - (c/p)Qo(l/p)Y(l/p). (S2b) 

When fl < 0, by passing to the limit for R ->- 00 

and r ->- ° in both sides of Eq. (SO), we get by 
straightforward algebra 

F~e.s·)(x, fl) = -c - . --1 1-00 e"''P 1 
2 -1 P 1 + flP 

dp 
(S3) 

which is a real integral to be performed numerically 
for any 0, any fl between -1 and 0, and any assigned 
set of the numbers c, gl' g2' ... ,gN' 

Of course, the result of Eq. (S2) is valid only if 

Z2(llp) + (7Tc/2p)2Y2(1/p) =F ° (S4) 

f~r - 00 S rep S -1. We shall later on resume the 
case when the condition, Eq. (S4), is violated. For 
now we stress that Eq. (S4) is just the condition for the 
transcendental equation 6.(p; c, go, gl' ... ,gN) = 0, 
Eq. (40), to have all its own roots lying in the interval 
(-1,1).6 

When fl > 0, as for r ->- ° the integrals along the 
upper and lower edges of the cut become singular 
in the Cauchy sense, the evaluation of F~e.8.l(x, fl) 
requires a more sophisticated treatment. Following the 
theory of Cauchy integrals as developed in the 
Muskhelishvili monograph,15 we observe that 

satisfies the Holder condition on the infinite arc 
(-00, -1)1[(-1, -00)] and then forms the sec
tionally holomorphic functions 

A.+( ) 1 I-I cp+(x, p) d 
'f' X,Z =- p, 

27Ti -00 P - z 

A.-( ) __ 1 i-CO cp-(x, p) d 
'f' x, Z - p, 

27Ti -1 P - z 
(5S) 

, 
16 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhotf, 

Ltd., Groningen, The Netherlands, 1953). 
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when z is not on the corresponding arc. Furthermore, 
r(x, - 00) = 0, so that both q,+(x, z) and q,-(x, z) 
vanish at infinity. 

It is easily inferred now, if r is sufficiently small, that 

lim_l_ f-Hir 
cp+(x, p) dp = q,+(x -! - iO), 

r-+O 27Ti -oo+ir p + (l/fl) , fl 

lim-. ' dp = q,- x, - - + iO . 1 J-oo-ir cp-(x p) (1) 
r-+O 2m -l-ir p + (l/fl) fl 

(56) 

The problem is thus reduced to the one of determining 
the limiting values of the functions q,+(x, z) and 
q,-(x, z) from the right of their own arc of discon
tinuity. If 0 < fl < 1, the Plemelj formulas givelS 

q,±(x, -(l/fl) 1= iO} 

= -icp±[x, -(1/fl)] 1= _1 pf-oo cp±(x, p) dp, (57) 
27Ti -1 P + (l/fl) 

where the capital P indicates that the principal value 
of the considered integral is to be taken. 

By passing to the limit for R ---+ 00 and r ---+ 0 in 
both sides of Eq. (50) and taking into account Eqs. 
(52), (55), and (57), for the contribution ofthe essential 
singularity, when x and fl are both positive, we obtain 

F~e.s.)(X'fl) = v - - + ic P --dp, (58) (
l)e-Z/1l f-oo eZPw(p) 

fl fl -1 1 + flP 

in which we have used the evenness of V(p) , Eq. (52a). 
With the change to the real variable 'Y) = -p, Eq. 
(58) becomes also 

e- IlJ/1l foo F~e.8.)(x, fl) = V(fl} - + ic P e-IlJ"x('Y), fl, c) d'Y), 
fl 1 

(59) 
where 

X('Y),fl, c) == X('Y),fl; c, go, gl"" ,gN) 

= {'Y)(1 - fl'Y){ Z2(~) + (;~r Y2(~) Jrl

, 

(60) 

5. EVALUATION OF flex, II), EQ. (37) 

Entering Eq. (45) into Eq. (37), we find that for 
x>O 

II(X, fl) = 4~{ Uo(fl, c), [J/~~~(X' fl) + F~e.8·)(x, fl)] 

+ i (-If U n(fl, c) ·fllJ[! F~~;n(u, fl) 
n=l (n - 1)! 00 m=O 

+ F~e.8·)(u, fl) ] . (x - u)n-l du, (61) 

as follows from Eq. (36). The integrals involved in the 

right-hand side of Eq. (61) are readily evaluated. By 
reference to Eqs. (46) and (59) they are, respectively, 

f~e-kmu . (x _ ut-l du = (_I)n (n ;::.1)! e-kmllJ, 

(62a) 

f~e-U'll' (x - u)n-l du = (_1)n. (n - 1)! fln. e-z /Il , 

(62b) 

ic P iooX('Y),fl, c)d'Y)f~e-"U(x - u)n-ldu 

= (-It. (n - 1)! ic p roo X('Y), fl, c) e-Z" d'Y), (62c) 
Jl 'Y)n 

for n = 1,2, ... ,N. Equation (61) then becomes 

flex, fl) = l.-{ I tp(km' c) e-kmZ . I U n(fl, c) 
47T m=O 1 - flkm n=O k::' 

e-z/Il N 

+ - . L Un(fl, C)fln 
fl n=O 

+ ic P f U .. (fl, c) (00 X('Y), fl, c) e-:" d'Y)}, 
n=O Jl 'Y) 

(63) 

which determines/lex, fl) when fl > O. When fl < 0, 
the second term in the brackets vanishes and the inte
gral term is not to be taken any longer as principal 
value. 

6. INVERSION OF f2(P, Jl), EQ. (35) 

Let us now turn our attention to the second com
ponent, 12(P, fl), of /tp, fl), Eq. (35). We know that, 
when fl > 0, the strip of convergence of the image 
0o(p, fl), Eq. (34b), is 

-l/fl < rep < 00, (64) 

so that it includes the strip -ko < rep ~ 0 with 
respect to which the inversion of Fo(P, fl), Eq. (44), 
has been performed to yield Eq. (63) for fleX, fl). 
Therefore the integration rule, Eq. (36), can still be 
applied termwise to obtain the original of /2(P, fl) for 
x > O. As a matter of fact, the strip -1 < rep < 0 
with the specifications of Eqs. (43) is the strip of 
convergence for the whole/(p, fl), Eq. (35). With this 
strip of convergence the original I(x, fl) of I(p, fl) is 
uniquely determined by 

I(x, fl) = hex, fl) + /2(X, fl). (65) 
ForlO 

Lri{Go(P,fl)} = e- IlJ/Il . l(x), (66) 
where lex) is the unit function, we get for x and 
fl>O 

f2(x, fl) = - . -' 1 - L U:(fl, c) . fln , (67) 
1 e-IlJ/p. {N } 

47T fl n=O 

as follows from Eqs. (36) and (62b). 
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It is interesting to remark that the point p = -lip, 
which acts as a pseudopole when transforming back 
!1(P, p), is a true pole when dealing with the inversion 
of fip, p). Of course, if p < 0, fix, p) is identically 
zero. 

7. THE SPACE-ANGLE FLUX DISTRIBUTION 
[(x, p,) 

According to Eq. (65), we are now able to write 
down the solution of Eq. (1). Referring to positive 
values of x and to the validity of Eq. (54), we have 

f(x,p) = ~ . {~ 1p(km' c) e-kmx. I. Un(~' c) 
47T m=O 1 - pkm n=O km 

+ e-;/p. [1 + io(V(p)Un(P,C) - U~(p,c»pnJ 

+ tc p f U n(f-t, c) . (00 e-:q 

X('YJ, f-t, c) d'YJ} 
n=O )1 'YJ 

(68) 
when f-t > 0, and 

[(x, p) = ~ . {~ 1p(km' c) . e-kmx I. Un(~' c) 
47T m=O 1 - pkm n=O k m 

+ tc f Un(f-t, c) (00 e-:
q 

X('YJ,f-t, c) d'YJ} (69) 
n=O )1 'YJ 

when f-t < 0. 
Dual expressions are in order when negative values 

of x are considered. We observe that both the solutions, 
Eqs. (68) and (69), are of the form as proposed in Eq. 
(2) and the coefficients Un(p, c) and U!(f-t, c) follow 
readily from Eqs. (33). As far as the coefficients k m 

of the exponential decays are concerned, we remember 
that in most problems of neutron physics M = 0, so 
that the only root ±ko of Eq. (40) can be extracted, as 
done by Holte16 when 11 - cl <{ 1, and as resumed 
successively by other authorsY-19 

Concentrating on Eq. (68), we conclude with the 
following considerations: 

(i) The sum with respect to e-kmx is the contribution 
of the poles lying on the real axis between -1 and 0. 
The term in e-kox survives asymptotically as x increases 
to infinity and the reciprocal of ko is the usual diffusion 
length of the considered medium in terms of the mean 
free path. 

(ii) The term in e-x//l is the direct consequence of 
having solved Eq. (4) in the form of Eq. (8). For the 
solution, Eq. (68), in its whole, we do not need to 
know whether the contribution in e-x//l comes from 

16 G. Holte, Arkiv Mat. Astron. Fys. 35A, No. 36 (1948). 
17 I. Kuscer, J. Math. Phys. 34, 256 (1955). 
18 E. Inonii and A. I. Usseli, Nucl. Sci. Eng. 23, 251 (1965). 
19 V. c. Boffi and T. Trombetti, Nuovo Cimento 47B, 210 (1967). 

the principal pseudopole at p = -1 I p of h (P, p) or 
from the true pole, still at p = -1/ f-t, of !2(P, p). It is 
just the presence of the term in e-x//l which might imply 
the existence of a physically anomalous diffusion 
length. In other words, the term in e-x//l can be 
regarded as a pseudopole effect. 

(iii) The integral term, which is the transient com
ponent of the distribution, represents at last the 
contribution of the essential singularity. 

Let us check now how Eq. (68) reduces in the limit 
of isotropic scattering, that is, when N = 0. It is 
found that 

[(i)(x, f-t) 

1 {ko(1 - k~) e-kox 

= 47T' k~ - (1 - c) . 1 - f-tko 

+ 1 - cf-tQo(p) . e-x
/
p 

[1 - cpQO(p)]2 + (7Tcf-t/2) 2 p 

+ 1.c P (OO~ . 'YJ drJ } 
2 )1 1 - PrJ ['YJ - cQo(1/'YJ)]2 + (7TcI2)2 ' 

(70) 

which coincides with the Case result, as obtained by 
means of the eigenfunction expansion method. 20 

8. VIOLATION OF THE CONDITION, EQ. (54) 

It may happen that, for special values of the scatter
ing probability c and of the Legendre moments 
gl, g2, ... ,gN of the scattering kernel, the condition 
expressed by Eq. (54) is not fulfilled any longer. This 
means, as follows from Eqs. (40) and (48), that the 
function 

!1(p, c,go,gl"" ,gN) 

= X(1/p) - (c/p)tlo(1/p)Y(1/p) (71) 

may .vanish at the edges of the cut of Fig. 1; that is, it 
may possess some roots outisde the interval (-1, 1). 
This is the case when X(I/p) and Y(i/p), which are 
polynomials of 2Nth order, have common zeros in the 
real intervals (- 00, -1) and (1, (0). It can be shown6 

that if 2(M + 1) is the number of the real roots in 
(-1, 1) and 2M* is the number of the real roots 
outside (-1, 1) of Eq. (71), then M + M* $ N. 
Conditions for the absence or presence of the 2M* 
additional roots are given in Ref. 3. We do not enter 
here the details of such a problem, but prefer on the 
contrary to underline the following points. 

As !l(p, c, go, gl' ... ,gN)' Eq. (71), is still the 
determinant, Eq. (18), related to the degeneracy of 

20 K. M. Case, Ann. Phys. (N.Y.) 9, I (1960). 
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the kernel of Eq. (5), we can thus argue on the 
properties of the roots of Eq. (71): 

(i) The real roots, Tko, Tku ... , TkM' lying in 
the interval (-1, I),act as true poles when transform
ing back the solution/(p, 11,), Eq. (8), of Eq. (5). Their 
contributions are asymptotic in the sense of the 
stability of the solution. 

(ii) The real roots outside the interval (-1, 1) 
behave like pseudopoles when dealing with the 
evaluation Of the essential singularity, Eq. (50), of 
the function Fo(p, f-t) [this is the only part of the 
solutions, Eqs. (68) and (69), to be modified). 

The location of all these 2(M + M* + 1) roots 
depends on the set of numbers c, go, gl' ... ,gN and 
their number depends on the degree N of the con
sidered anisotropy. We realize that the principal 
pseudopole at p = -III-' is not included among the 
zeros of !l(p,C,gO,gl,'" ,gN) and is therefore 
independent of the characteristics of scattering. It 
depends only on the purely angular variable associated 
with the streaming term of the transformed balance 
equation. Comparing Eq. (68) with Eq. (71) makes us 
aware that both the anisotropic and isotropic scatter
ing solutions consist, in principle, of the sum of three 
different contributions due to the pole, the pseudopole 
and the essential singularity, respectively. It is only a 
special combination of the values of c and go, gl, ... , 
gN, which, in the case of anisotropic scattering, may 
cause X(l/p) and Y(I/p) to have common real zeros 
outside the interval (-1, 1) and, hence, the condition, 
Eq. (54), to be violated. It follows that additional or 
secondary pseudopoles will appear in the spectrum of 
singularities of/(p, f-t), Eq. (8). 

Let us pass on now to resolve the contribution of 
secondary pseudopoles. In order to simplify the 
notations, we operate the conformal transformation 
u = -I/p in Eq. (47) so that Eq. (50) can be written as 

F~e,s,)(x, f-t) = lim - -, -- , --{
I iHir e-iJ)/u 1 

r->O 27Tl O+ir U U - I-' 

Z**(u) + il7TCUY**(u) , du 
Z(u) + it7TCUY(U) 

1 rO- ir e-iJ)/u 1 

27Ti )l-ir U U - f-t 

Z**(u) - it7TCUY**(u) } . du . 
Z(u) - i!7TCUY(U) 

(72) 

The interval (-00, -1) [(-1, -(0)] thus changes 
into the finite interval (0, 1) [(1,0)]. 

We first examine the case when X(u) and Y(u) have 

a single common real root ki in (0, 1). Let vi = 
VI + 1 be the order of such a root. We may then write 

where X(n+vl*) denotes the (n + v~)th derivative of 
X(u) at u = k~ ;nd 

X(ki) = X(l)(kj) = ... = X(vl)(kj) = O. (73b) 

Analogous expressions hold for Y(u). 
Setting 

~±(X; C, go, gl'" ',gN) == ~±(x, u) 
-iJ)/U 

= _e_. [Z**(u)±iicuY**(u») 
u 

{

2N-Vl* 

. n~o [x(n+vl*)(ki) - cuQo(u)y(n+vl*)(ki) 

± i1 7TCU y(n+vl*)(k*») (u - ki )n}-l (74) 
2 1 (n + vi)! ' 

Eq. (72) becomes 

F (e.s,)( ) _ I' _ 'f X, U d 
{

I i1+ir J.+( ) ° x, f-t - 1m - * U 
r->O 27Ti O+ir (u - f-t)(u - ki)"l 

'f X, u d 1 10-;r J.-() '} 
- 27Ti I-i. (u - f-t)(u _ ki)"l* u, 

When f-t < 0, we further set 

~±(x, f-t; u) = ~±(x, u) 
u-f-t 

and then obtain 

F(e,",)(x f-t) = lim _ _ 'f X, 1-', u du 
{

I i1+ir J.+( .) 

° , r->O 27Ti O+ir (u - kiY1+l 

-- du, 
1 10-ir~-(x,f-t;U) } 

27Ti l-ir (u - kiY1+l 

(75) 

(76) 

(77) 

Because ~+(x, f-t; u)[~-(x, f-t; u») is continuous and 
regular with all its derivatives of any order on the 
edges of the cut and it satisfies the Holder condition 
on the arc (0, I) [(1,0)], we may then form the 
functions 

F+( ) 1 i1
(p+(X,f-t;U)d oX 's=- u 

VI ' I-' , 2' ( )V +1 ' 7Tl ° U - S 1 

F- ( ) 1 iOcp-(X,f-t;U)d *X's=- U 
VI ' f-t, 2' ( )V +1 ' . 7Tl 1 U - S 1 

(78) 

where s is any point of the complex plane outside the 
arcs (0, 1) and (1,0), respectively. 
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Arguing as in the case of the principal pseudopole, 
we recognize that 

On the other hand, since 

the problem expressed by Eqs. (79) reduces to in
vestigating the behavior of the vlth derivative of 
Cauchy integrals 

P+( .) __ 1 II <V(x,p; U)d 
1 x,p. S - • u, 

2m 0 U - s 

P-( .) _ 1- fO cP-(x, p; u} d 
1 x,p, S - . u, 

2m 1 U - S 
(81) 

when s approaches their arc of discontinuity from the 
right-hand side. 

That the limiting value of the vlth derivative of the 
above Cauchy integrals exists when s tends to ki is 
insured21 if the general derivative, from the first to the 
vlth order, of the functions ep+(x, p; u) and ep-(x, p; u) 
satisfies the HOlder condition on the arcs (0, 1) and 
(l, 0), respectively, as occurs in the present context. 
Thus Eqs. (78) represent two sectionally holomorphic 
functions. 

Let us illustrate how the limits on the right-hand 
side of Eqs. (79) can be evaluated in the case VI = 1. 
Then 

R(x P' s) == p+(ll(x P' s) = - ' , du 1 11 ep+(x P' u) 
2 " 1" 27ri 0 (u _ S)2 ' 

( ) 
-(1) ) 1 10 ep-(x, p; u} 

F; x,p; s == PI (x,p; s = -. 2 du, 
2m 1 (u - s) 

(82) 

.1 N. I Muskhelishvili, Some Basic Problems of the Mathematical 
Theory of Elasticity (P. Noordhoff, Ltd., Groningen, The Netherlands, 
1963). 

and it is at once verified that21 

_1_ (1 cP+(x, p; u) du 
27ri Jo (u - S}2 

= _[ep+(x. P; U)J U=l+ ~ (1 cP+(l)(X,p; u) duo 
u - s u=o 27rl Jo u - s 

~ (0 cP-(x, p; u) du 
27ri Jl (u - S)2 

= _[ep-(x. P ; U)Ju=o+ ~ (0 ep-(t)(x,p; u) duo 
u - S u=1 27rl J1 U - s 

(83) 

If ki does not coincide with the ends of the given 
arc of discontinuity and if, in the limit of s tending to 
ki, we apply the Plemelj formulas to the right-hand 
side of Eq. (83), we find 

pt(x, p; kt =t= iO) 

= =t= [cP±(X, p; I} + ep±(x, p; O)J 
l-kt kt 

- tep±(l)(x,p; k:)±- P"" ,p, duo 1 II .L±(l)(x . u) 

27ri 0 u - kt 
(84) 

Using Eqs. (79) and (84) in Eq. (77), we obtain for 
the contribution of the essential singularity for x > 0 
and p < 0, when a secondary pseudopole of multi
plicity 2 is present,22 the explicit expression 

p~e.8.)(x, p) 

= 
ep+(x, p; 0) - ep-(x, p; 0) 

kt 
+ cP+(x, p; 1) - cP-(x, p; 1) 

1 - kt 
+ Uep+(l)(X,p; kt) - ep-(I)(x,p; kt)] 
__ 1_ P t ep+(ll(x,p; u) - ep-(t)(x,p; u) du 

27ri Jo u - kt ' 
(85) 

which holds when ki is in the interior of the interval 
(0,1) and if p -:;f: ki. When p == ki, it is sufficient to 
increase the order of multiplicity of the secondary 
pseudopole at s = ki by unity .. 

The case VI > 1 can be treated analogously by 
proceeding progressively to the higher-order deriv
atives. 

When p > 0, one has to go back to Eq. (75). If 
we denote p -:;f: ki by k:, a partial fraction analysis 
allows us to write the expansion 

1 1 vm· A 
-------=. = I I mn • ,(86) 
(u - k:)(u - kttl m=O n=l (u - k!ym -n+l 

•• The case '" < 0 with a first-order secondary pseudopole is 
analogous to the case when only the principal pseudopole is present. 



                                                                                                                                    

ANISOTROPY OF SCATTERING IN NEUTRON TRANSPORT THEORY 279 

where v~ = 1 and A",n are certain coefficients given 
by 

1 [dn
-

1 (u - k:.rm
o ] 

A",n = (n _ I)! du ll -
1 (u - k~)(u - ktYlo u=kmo· 

(87) 

By using Eq. (86), each term on the right-hand side 
of Eq. (75) reduces to a linear combination of the 
derivatives of the functions Ft(x, 1-'; s) and Fl(x, 1-'; s), 
Eqs. (81), respectively. No difficulty arises then in 
extending the procedure illustrated above for calcu
lating the limiting value of such linear combinations 
when s tends to k: and k: ' separately. 

The general case, when X(u) and Y(u) have more 
than one single common root in (0, I), is also amen
able to the simpler one before considered by still 
resorting to a partial fraction expansion. 
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APPENDIX 

Thatfn(p), as given by Eq. (17), is a solution of the 
system, Eq. (9), can be verified as follows. By intro
ducing Eq. (17) into Eq. (9), we find the condition 
that 

N 

1"'0 - R",{1/p) + c!, bn1",n(p)Rn{1/p) 
fo(p) = N n-1 (AI) 

S",{1/p) - c 2 bn1",ip)Sn{l/p) 
n=O 

for any m between ° and N. By using Eqs. (15) we 
recognize that the numerator and the denominator of 
Eq. (AI) take, respectively, the form 

(-l)mPm{l/p)· [1oo(P) + cntbn1on(P)Rn(l/P)] (A2a) 

and 

(_I)mp ",(l/p). [1 - c ~obn1on(P)Sn(l/P)l (A2b) 

provided 
m 

(-l)",+1Wm_1{l/p) - Rm(1/p) + c 2 bn1mn(p)Rn{l/p) 
n=1 

'" = (_l)mp ",(l/p)c· 2 bn1onCp)Rn(1/p) (A3a) 
n=1 

in the case of Eq. (A2a) and 

m-1 

Sm(1/p) - c 2 bn1mn(p)SnCl/p) 
n=O 

= (_l)mp ",(l/p). [1 - c ]:bnl on(P)Sn(1/P)] 

(A3b) 

in the case of Eq. (A2b). 
After appropriate manipulations and using Eqs. 

(12), (13), and (15), Eqs. (A3) can be rewritten as 

where H", (and H~» stands for either Rm or Sm (and 
for R~) or S~». 

Equation (A4), which permits expressing the poly
nomials H", of the anisotropic problem as a linear 
combination of the polynomials H~) of the isotropic 
case, reduces to the identity when using in it each of 
the pairs R"" R~) and Sm, S~) given by Eqs. (23) and 
(28). The condition, Eq. (AI), forfn(P) [Eq. (17») to be 
a solution of the system, Eq. (9), is thus satisfied. 
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A generalization of the Young tableau is defined, and use is made of this in the study of some of the 
properties of the irred.ucible representations (IR's) of each of the linear groups in n dimensions induced in 
a space defined by mixed tensors without recourse to lowering or raising of indices. A formula for the 
dimensions of any IR of L. is given. Procedures are derived for the reduction of the outer product of such 
IR's and for the decomposition of these IR's into IR's of some subgroups of interest in the theory of 
elementary particles. 

1. INTRODUCTION 

The relationship between the symmetric group on 
a symbols l:a and the general linear group in n 
dimensions, GL(n), was first recognized by Schur. 
The theory of this relationship was greatly developed 
by WeyP who made use of the work of Young con
cerning the representations of l:a. It was proved by 
Weyl that the imposition of maximal symmetry con
ditions on the a indices of the covariant or contra
variant tensors, defining a space in which is induced a 
representation of GL(n), decomposes that space into 
invariant subspaces in which are induced irreducible 
representations (lR's) of GL(n). The maximal sym
metry conditions are just those defined by the Young 
symmetrizers corresponding to a Young tableau which 
specifies an irreducible representation (IR) of l:a. 

By making use of the theory of characters, Murn
aghan2 and Littlewood3 were able to reduce the inner 
and outer products of IR's of the symmetric groups 
into IR's of the symmetric groups. The importance of 
Young's work was particularly stressed by Robinson4 

who derived procedural rules for carrying out these 
reductions. These rules were expressed solely in terms 
of Young tableaux and thus obviated the necessity 
of calculating characters. The results obtained by these 
authors are applicable to those IR's of GL(n) whose 
bases are either covariant or contravariant tensors. 

More generally, .mixed tensors may be used to form 
the bases of IR's of GL(n), but it has been customary 
to raise or lower indices appropriately in order to make 
use of the duality of ~a and GL(n) as expressed in the 
Young tableaux. In Sec. 2 of this paper, a generaliza
tion of the Young tableau is defined and use is made of 
this in Secs. 3-6 to study some of the properties of the 

1 H. WeyJ, The Classical Groups, Their Invariants and Representa
ions (Princeton University Press, Princeton, N.J., 1939). 

• F. D. Murnaghan, The Theory of Group Representations (The 
Johns Hopkins Press, Baltimore, 1938). 

3 D. E. Littlewood, The Theory of Group Characters (Oxford 
University Press, London, 1940). 

4 G. De B. Robinson, Representation Theory of the Symmetric 
Group (The University Press, Edinburgh, 1961). 

IR's of GL(n) induced in a space defined by mixed 
tensors, without recourse to raising or lowering of 
indices. 

The motivation for this work was provided by the 
application of group theory to the study of elementary 
particles. In these applications, the elementary particles 
are considered to be the basis states of the IR's of the 
appropriate symmetry group. In order to account for 
the multiplicity of particles and their strong inter
actions within such a symmetry scheme, it is necessary 
to know the dimensions of these IR's and the reduc
tions of their outer products. These aspects of the 
theory of the IR's of GL(n) and of some of its sub
groups relevant to the theory of elementary particles 
are discussed in Secs. 3 and 4. 

It is known that the symmetry schemes are broken 
so that it is also necessary to discuss some of the 
subgroups of the symmetry group. In particular, 
the decomposition formulas which give the IR's of 
the subgroups GL(m) 0 GL(n) and GL(m) (2) GL(n) 
contained in the IR's of GL(m + n) and GL(mn), 
respectively, are required. The analysis of these 
decompositions is given by the reduction of the outer 
and inner products of the IR's of the symmetric group 
for those IR's of the general linear group induced in a 
space defined by either covariant or contravariant 
tensors. In Secs. 5 and 6, decomposition formulas are 
derived which are appropriate to the generalization 
to mixed tensors. 

The results are discussed in Sec. 7 with particular 
reference to applications to the theory of elementary 
particles. 

2. INEQUIVALENT IRREDUCIBLE 
REPRESENTATIONS OF GL(n) 

The set of mixed tensors 

forms the basis of a representation of GL(n) if all the 
indices may take the values 1, 2, ... , n and if the 

280 
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linear transformation 

(2.1) 

is associated with every nonsingular n X n matrix A. 
The representation is irreducible if the tensors are 
traceless and if the sets of covariant indices lXI' 

1X2, ••• , lXa and contravariant indices fll, fl2, ..• , flb 
satisfy the permutational symmetry conditions defined 
by the Young tableaux {,u]a and [v h, corresponding 
to IR's of the symmetric groups ~a and ~b' respec
tively. 

The set of tensors (2.1) forms the basis of IR's of the 
unitary group V(n) and the pseudounitary group 
V(n - m, m) if the appropriate restrictions are placed 
on A. Similarly, if the additional restriction det A = 1 
is imposed, this set forms the basis of IR's of the 
unimodular groups SL(n), SV(n), and SV(n - m, m).5 

This restriction leads to equivalences between IR's. 
For example, the totally anti symmetric pseudo
tensor Erry2 '" Y

n 
may be used to lower indices so that the 

basis of every finite-dimensional inequivalent IR of 
SLn may be chosen to be a set of covariant tensors 
Tala.,., a.' whose index symmetry is specified by a 
single regular Young tableau6 

[,u]a = [,ul,,u2, ... ,,up]a = (,u~,,u;, ... , ,u~)", (2.2) 

where 

,ul + ,u2 + ... + ,ul) = ,u~ + ,u~ + ... + ,u~ = a 

and 

,ul ~ ,u2 ~ ... ~ ,up > 0, 

,u~ ~ ,u~ ~ ... ~ ,u~ > 0, 

with P =,u~ and q = ,ul' Diagrammatically, the 
tableau f,u]u takes the typical form 

+-q-

with,ui and,u~ "boxes" in the ith row andjth column, 
respectively. Such a tableau [,u]a specifies an IR of ~a 
and also an IR of each of the groups L n , with n ~ p. 

• Hereafter, the line,ar groups GL(n), U(n), and U(n - m, m) are 
denoted collectively by GL", and the unimodular linear groups 
SL(n) , SU(n), and SU(n - m, m) are denoted by SLn • In addition, 
GLn and SL" are denoted collectively by L" wherever this is 
appropriate. 

• In the notation of Ref. I, the tableau [,u]. has signature 
(,u, , It., ... , ,u., 0, 0, ... , 0), and is given by T(/l" II., ... , 
,u., 0, 0, ... , 0). 

However, for the groups Ln with n < p, no such IR's 
exist since the corresponding tensors all vanish 
identically. Distinct diagrams [,u)a with p rows specify 
inequivalent IR's of ~a and of each Ln with n > p. 
However, although all the distinct tableau 

[,u + Ela+n< = [,ul + E, ,u2 + E, ••• , 

,up + E, E, E, .•. , Ela+nf> (2.3) 

with E any integer such that E ~ -,up, specify inequiv
alent IR's of GLn , they also specify equivalent IR's 
of SLn. Thus, all inequivalent finite-dimensional IR's 
.of SLn are specified by the distinct tableaux [,u]a' with 
p < n. 

The tableau conjugate to [,ula is defined by 

[,u]~ = [,u']11 = [,u~,,u~,'" ,,u~]a = (,ul,,u2,'" ,,up)a 

(2.4) 

and is obtained from [,ula by interchanging rows and 
columns. Corresponding to [,u'la, there exists an IR 
of each of the groups Ln with n ~ q. 

The IR of L n , complementary to that specified by 
[,ula, is defined by the tableau 

[,u]: = [,u*]nQ-a = [,ui, ,ut, ... ,,u:-I")nQ-n 

= (fJi, , ,ut" ... ,,u:')nq-a (2.5) 

with ,uj' = n - ,u~-Hl for j = I, 2, ... ,q. Dia
grammatically, [,u *]nq-a takes the typical form 

r 
I I 
I I 
I I 

n-I-I ..... lt 
j-I--'iP 

!:=T.--·,·:::I t 
In the same way, EY'Y'''·Y'' may be used to raise in

dices so that an alternative basis of every inequivalent 
finite-dimensional IR of SLn may be chosen to be a 
set of contravariant tensors 

whose index symmetry is specified by a single regular 
Young tableau7 

[V]b = [VI' V2,"', vrt = (v~, v~,"', V;)b, (2.6) 

where 

VI + V2 + ... + V,, = 1'~ + v~ + ... + Y~ = b 

7 In the notation of Ref. I, the tableau [V]b has signature 
(0,0, ... , 0, -vr , ••• , -v" -v,), and is given by T(v" v., ... , 
vr , 0, 0." . ,0). 
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and 

VI ~ '112 ~ ... ~ Vr > 0, 

V~ ~ V~ ~ ... ~ V~ > 0, 

with '111 = s and v~ = r. It is convenient to distinguish 
between the covariant and contravariant bases of the 
IR's of L n , not only by the use of lower and upper 
indices a and b in Lu]a and [V]b, but also by adopting 
the convention whereby the tableau [V]b takes the 
typical form 

Cffi@"'i '1'1' r' 
. ! 

with 'Ilk and v; "dotted boxes" in the kth row and Ith 
column, respectively. Such a tableau [V]b specifies an 
IR of Lb and also an IR of each of the groups Ln , 

with n~ r. 
The tableau adjoint to Lu]b is defined to be the 

"dotted" tableau 

[,u]a = [,u]a = [,ul,,u2, ... ,,up]a = (,u~, ,u~, ... , ,u~)a. 

(2.7) 

This tableau [,u]a specifies the same IR of La as does 
the tableau [,u]a' However, it also specifies an IR of 
each Ln with n ~ p, which is adjoint or contragredient 
to that specified by [,u]a' 

The tableau conjugate to [V]b is defined by 

['lit = [v't = [v~, v~,"', V;]b = (VI' '112,' . " Vr)b, 

(2.8) 

and the IR of L n , complementary to that specified by 
[V]b, is defined by the tableau 

[V]b* = [v*r·-b = ['lit, v:, ... ,JI!_v:rS- b 

= ('11*' '11*' ... v*')nS-b 
1 , 2, 's ' (2.9) 

with vi' = n - '11;_1+1 for I = J, 2, ... ,s. Clearly, 
with these definitions the adjoint and complement of 
an IR of SLn are equivalent, whereas for GLn they are 
inequivalent. Indeed, to complete the classification of 
all the inequivalent finite-dimensional IR's of GLn, 
the diagrammatic notation may be extended so that 
the general mixed tensors (2.l) are defined by a regular 
composite tableauS 

[v; ,u]! = [VI, '112, ... , Vr; ,ul , ,u2, ... , ,up]! 

= (V{, V~,"', v;;,u~,,u~,'" ,,u~):, (2.10) 

8 The notation adopted here contrasts both with Ref. I 5, in which 
the tableau [v; ,ul: is specified by the Schur function {,u; v}, and 
with Ref. I, in which the tableau [v; ,ul: has signature (,ul' ,u., ... , 
,up, 0, 0, ... , 0, -vr , ••• , -v., -VI), and is given by T(A. l , A.., 
.. , ,0) with [A.l defined by (2.11). 

which takes the typical form 

'i 
p 

! 
so that it is composed of the two regular tableaux 
Lu]a and [V]b joined back-to-back.9 The corresponding 
set of tensors (2.1) is such that Lu]a describes the sym
metry of the covariant indices tXl, tX2, ... , tXa , [V]b 
describes the symmetry of the contravariant indices 
PI' P2' ... , Pb' and the back-to-back notation is 
taken to indicate that the tensors (2.1) are traceless. 
The tracelessness condition implies that the only 
admissible, regular, composite tableaux corresponding 
to IR's of Ln are those for which p + r ~ n. 

Distinct, admissible, regular, composite tableaux 
specify inequivalent IR's of GLn, but for SLn the IR 
corresponding to [v; ,u]! is equivalent to the IR 
specified by 

[A]c = [AI' A2," 'le = (A;, A~,"', A;+q)e, (2.11) 

with 

" , "'m = n - Vs-m+l, m = 1,2," " S, 

= ,u;n-s> m = S + 1, S + 2, ... , S + q, 

so that c = ns - b + a and the tableau [A.]e is formed 
by joining the diagram [,u]a to the last column of the 
tableau [v*]sn-b' The resulting tableau [A.]e is always 
regular since p + r ;:5; n. 

Diagrammatically, [A.]e takes the typical form 

+- s ---+~ q -+ 

The IR of Ln which is adjoint to that specified by 
[v; ,ul! is specified by Lu; 'lin. 

3. THE DIMENSIONS OF THE IRREDUCIBLE 
REPRESENTATIONS OF Ln 

As pointed out in Sec. 2, the set of tensors '(2.1) 
forms the basis of IR's of each of the groups Ln if the 
appropriate restrictions are placed on A. Since these 

9 The very useful back-to-back diagrammatic notation was 
suggested to me by J. Abramsky. 
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restrictions do not affect the number of independent 
components of the tensors, all these IR's are of the 
same dimension. Probably the simplest formula for 
the dimension D .. (p,) of the IR of L .. specified by [,u]a 
is given, in the notation of (2.2), by4.1O 

l' q n-i+j 
Di,u) = II II 1 I" • (3.1) 

;=1 i=1 + ,ui + ,ui - J - ] 

Thus, for example, 

D (4 2 1) = !!. n + 1 n + 2 n + 3 
.. " 6 4 2 1 

n-ln n-2 x---x--. 
3 1 1 

Since mutually contragredient IR's of L .. are of the 
same dimension, it follows that the dimension of the 
IR of L .. specified by [V]b is D .. (v), which is given in 
the notation of (2.6) by 

D (v) = IT IT n - k + I . 
.. k=1 !=1 1 + 'Ilk + v; - k - I 

(3.2) 

Furthermore, the adjoint and complement of an IR of 
an SL .. are equivalent and are therefore of the same 

dimension. It then follows that any IR of L .. and its 
complement are of the same dimension. Thus, in the 
notation of (2.5), 

D .. (,u*) = D .. (,u). (3.3) 

Similarly, since the IR's of SL .. , specified by [v; 1']: as 
defined in (2.10) and by [A]e as defined in (2.11), are 
equivalent, it follows that the IR's of L .. specified by 
these two distinct tableaux are of the same dimension, 
i.e., 

(3.4) 

The application of (3.1) to (3.4), together with the use 
of (3.3), then gives the formulas 

D .. (v;,u) = D .. (,u)D .. _p(v) 

x IT II' n + ,ui - i + 1 , 
i=1 1=1 n + ,ui - v; - i + 1 

Dn(v,,u) = Dn_r(p,)Dn(v) 

II
q 

r n + 'Ilk - k + j x . 
;=1 k=1 n + 'Ilk -,u~ - k + j 

(3.5) 

Using (3.5), it has been proved by Jahn and El 
Samrall that 

D (v' ) = IT IT IT IT (n + 1 +,ui + Vi - i - j)(n - 1 - ,u~ - v; + k + 1) (3.6) 
n ,I' i=1 i=1 k=1 !=1 (1 +,ui + ,u~ - i - j)(l + 1'k + v; - k - 1) , 

with Vi = 0 for j > r and,u~ = 0 for k > q. Thus, for 
example, 

Dn(4, 3,1; 22,1) 
nn-2n-3n-5n+5n+3 - - -- --- --- --- --
I 3 4 6 4 2 

nn-ln-3n+4n+2 nn+2 x --- --- --- --- x ---
1243111 

so that D8(4, 3,1; 22,1) = 20,020,000. 

4. REDUCTION OF THE OUTER PRODUCT OF 
IRREDUCIBLE REPRESENTATIONS OF Ln 

The reduction of the outer product of two IR's of 
Ln, corresponding to [,u]a and [vh, into a sum oflR's 
of L .. , corresponding to [A]aH' is determined by the 
reduction theorem for the decomposition of the outer 
products of the corresponding representations of the 
symmetric group, namely 

[V]b' [,u]a = I mV/l,l[A]a+b' (4.1) 
l 

The procedure P for determining all [A]a+b contained in 
this decomposition and their multiplicities mvJl,l given 

10 J. S. Frame, G. De B. Robinson, and R. M. Thrall, C. J. Math. 
6,316 (1954). 

by Littlewood and Richardson12 and proved by 
Robinson13 is well known. This procedure is given by 
P: The tableau [vh is written down and 1'1 letters a, 
1'2 letters b, 1'3 letters C, etc., are added to it one by one, 
alphabetically, in all possible ways such that, at each 
stage in this procedure, 

(i) the resulting figure corresponds to a regular 
Young tableau if each letter is interpreted as a box, 

(ii) the resulting figure contains no two identical 
letters in the same column, and 

(iii) the series of letters, obtained by reading from 
right to left along each row taken, in turn, from top 
to bottom of the resulting figure, is a lattice permuta
tion of the added letters, i.e., if the series is terminated 
at any point and the truncated s'eries contains PI' P2, 
Ps, ... letters a, b, c, ... , then PI ~ P2 ~ P3 ~ ..• 
for all possible points of termination. 

The multiplicity mV/l,l is just the number of dis
tinctly labeled figures corresponding to the tableau 
[AJaH obtained by this procedure. 

11 H. A. Jahn and N. El Samra (unpublished); N. El Samra, thesis, 
The University, Southampton, England, 1969. 

12 D. E. Littlewood and A. R. Richardson, Phil. Trans. Roy. Soc. 
London A233, 99 (1934). 

18 G. De B. Robinson, Am. J. Math. 60, 745 (1938). 
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The corresponding reduction theorem for Ln is 
obtained from (4.1) by retaining only those terms in 
the sum for which the number of rows A~ of [AJaH is 
such that 

Similarly, 

[v Jb . [,u]a = L m Y!"J.[A]aH, 
J. 

with mY!")' = my!,,;" 

(4.2) 

(4.3) 

The procedure P may be used to carry out the 
reduction 

[V*].n-b· [,u]a = L my"!',.,.[a].n-Ha, (4.4) .,. 

and then using the equivalence of the IR's of SLn 
specified by (2.5) and (2.7) and the equivalence of the 
IR's of SLn specified by (2.10) and (2.11), it is 
straightforward to carry out the related reduction 

For each value of t between zero and the minimum of 
a and b, the procedure Q for determining all [p; A]~=: 
contained in this decomposition and their multi
plicities m::~ is given by Q: The tableaux [V]b and 
[,uJa are written down back-to-back with the dotted 
boxes of [V]b replaced by dots and the undotted boxes 
of [,u]a replaced by ,ul, ,u2, ,us, ... letters a, b, c, ... in 
the first, second, third,'" rows, respectively. An 
overbar is set above all possible sets of t letters of this 
figure, and all the t-bar letters are then superposed one 
by one, alphabetically, on the dots of the figure in all 
possible ways such that, at each stage in this procedure, 
we have the following: 

(i) the resulting figure corresponds to a regular 
composite tableau if each unbarred letter, each dot, 
each barred letter, and each superposed letter is inter
preted as an undotted box, a dotted box, an undotted 
box which has been removed, and a dotted box which 
has been removed, respectively; 

(ii) the resulting figure contains no two identical 
superposed letters in the same column; 

(iii) the series of letters, obtained from the resulting 
figure by reading the unbarred letters from right to 
left along each row taken in turn from top to bottom 
and then reading the superposed letters from right to 
left along each row taken, in turn, from bottom to top, 
is a lattice permutation of those letters. 

The multiplicity m;:~ is just the number of distinctly 
labeled figures corresponding to the tableau [p; A]~=: 
obtained by this procedure. 

The corresponding reduction theorem for Ln is 
obtained from (4.5) by retaining only those terms in the 

sum for which the number of rows, A~, of [A]a-t, 
the number ofrows, p~, of [p]b-t, and the number of 
the row, i~, of [,u Ja from which came the uppermost 
letter superposed on a dot in the first column of [V]b, 
counting from the right, are such that 

(4.6) 
and 

i~ + p~ ~ n. (4.7) 

These restrictions arise in the derivation of Q from P 
based on the equivalence of (4.4) and (4.5) as shown 
in the Appendix. An example of the application of this 
procedure Q and the restrictions (4.6) and (4.7) is 
provided by the reduction of [4,3,1]8. [22,1]5' The 
resulting figures, obtained by using Q for all possible 
values of t, together with the corresponding minimum 
value no of n obtained by using (4.6) and (4.7), are 
given by 

t = 0, no = 6, .aa 
· b b, 
· c 

t = 1, no = 6, .aa b. .aa 
b. .bh · bh, 

· c · c 

no = 5, .aa .aa 
.bh · bb, 
be c C 
.aa c . . aa 

c. .bb · b b, 
.C .C 

t = 2, no = 6, b . a a 

no = 5, 

a .. bh, 
.c 

.aa b. 
b . . b h 

· aa .... aa 
.bh b .. bh, 
ac c C ac 

.. .. aa 
bc.bh 

c . . aa b ... aa 
b .. bh c .. bh, 

· c 
b .. . aa 

.. b b, 
cc 

.C .C 

no = 4, . . a a c... a a 
c .. bb .. bb, 

b c b c 
t = 3, no = 5, b ... a a b ... a abc . . a a 

a .. bb ac.bh a .. bh, 
cc .c .c 
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no = 4, .ail e . .ail b . . ail 
be. bb b. .bb e . . b b, 

ae ae ae 
.aa e . .aa b . . aa 

be. b b b. .bb e . . b b, 
be be be 

e. .aa be . . aa 
bb.bb b. .bb, 

. e .e 

t = 4, no = 4, b. .ail be. .ail be . . ail 
ae.bb a. .bb ab.bb, 

be be e 

no = 3, e . .ail be .ail 
bb.bb b. . b b, 

ae ae 

t = 5, no = 3, be . . illi 
ab.bb. 

at 

Hence, the corresponding reduction formula is 

[4,3, 1]8. [22, 1]5 

= 16[4,3,1; 22, 1]: + 15[4,3; 22U + 15[4,3; 2, 12U 

+ 15[4,2, 1; 22]r + 16[4,2, 1; 2, 12]~ 

+ 15[32, 1; 22]1 + 16[32, 1; 2, 12]~ 

+ 25+4[4,2; 2,1]: + 15[4,2; 13]: 

+ 15[4,12; 2,1]: + 25+4[32; 2,11: + 15[32; 13]~ 

+ 25+5[3,2,1; 2,1]: + 16[3,2, 1; 13]: + 14[4, i; 2]~ 

+ 14[4, 1; 12]~ + 24+4[3,2; 2]~ + 35+4+4[3,2; 12]~ 

+ 14[3, 12; 2]~ + 15[3, 12; 12]~ + 14[22, 1; 2]~ 

+ 15[22, 1; 12]~ + 24+3[3, 1; 1]: + 24+3[22; 1]: 

+ 14[2,12; 1]t + 13[2,1; O]g, (4.8) 

where the subscripts added to the multiplicities m;',i 
indicate the minimum values no of n, for which each 
of the m;:~ tableau specifies an IR of Ln which should 
be included in the reduction formula for the outer 
product of two IR's'of Ln. Thus, the reduction formula 
for Ln with n ~ 6 is given by (4.8) with the subscripts 
removed from the multiplicities. However, the corre
sponding reduction formula for Ln with, e.g., n = 4 
is given by 

L 4 : [4,3,1]8. [22,1]5 

= [4,2; 2,1]: + [32; 2, 1]: + [4, 1; 2]~ 

+ [4, 1; 12]~ + 2[3, 2; 2]~ + 2[3,2; 12n 
+ [3, 12; 2]~ + [22, 1 ; 2]~ + 2[3, 1; l]t 
+ 2[22; l]t + [2,12; 1U + [2,1; On. (4.9) 

The reduction formula (4.5) specifies the reduction 
in terms of an irreducible set of mixed tensors of the 
outer product of irreducible sets of covariant and 

contravariant tensors. Thus the tensors associated with 
[A; p]~=~ are traceless tensors constructed from the 
tensors associated with [,u]a and [V]b by taking a trace 
over a set of t indices. It is therefore instructive to 
consider the direct product subgroups ~a-t 0 ~t and 
~b-t 0 ~t of ~a and ~b' respectively. The formula for 
the decomposition of the IR of ~a, specified by the 
tableau [,u]a into a sum of IR's of ~a-t 0 ~t' is given 
by 

[,u]a -- I ([A]a-t, [,uIA]t), (4.10) 
;. 

where [,uIA]t denotes14 the tableau which is obtained 
from the regular tableau [,u]a by the removal of the 
regular tableau [A]a_t. Such a tableau [,uIA]t is, in 
general, a skew tableau corresponding to a reducible 
representation of ~t. The reduction into IR's of ~t is 
specified by 

[,uIA]t = I m).cr,,,[a]t· (4.11) 
11 

Hence, 

11 

Similarly, the formula for the decomposition of the 
IR of ~b' specified by the tableau [V]b into a sum of 
IR's of ~b-t 0 ~t' is given by 

[V]b __ I mPT,V([p]b-t, [Tn (4.13) 
PT 

If sets of t indices of the tensors associated with [,u]a 
and [V]b have their symmetry specified by [a]t and 
[T]t, respectively, it is only possible to take a trace over 
these sets if [a]t and [T]t specify the same IR of ~t. 
This corresponds to the obvious statement in the 
notation of (4.5) that 

(4.14) 

where 0 refers to an empty tableau corresponding to a 
scalar which may be denoted by [0]0, [0]°, or even 
[0; O]g. Such a tableau is conventionally represented 
diagrammatically by 1. It then follows from (4.12) 
and (4.13) that 

[V]b. [,u]a = I m).cr,,,mPI1,V[p; A]~=f, (4.15) 
API1 

and, therefore, in (4.5) 

(4.16) 

The evaluation of m;',i may thus be carried out by 
using the relationship (4.16) together with the pro
cedure P, rather than by using the procedure Q. For 
example, the coefficient of [3,2; J2]; in (4.8) may be 
evaluated by reducing the skew tableaux [22 ,1/12]3 
and [4,3, 1/3,2]3. The procedure P may be used to 
generate the tableau [22 , 1 h from the tableau [12]2 in 

14 The notation used here is that of Ref. 3 which contrasts with 
that of Ref. 4, in which [pfA] is denoted by [.ttl - [A]. 
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just two ways. The corresponding resulting figures are 

a c 
Thus, 

Similarly, the tableau [4, 3, 1]8 may be generated from 
the tableau [3, 2]5 in four ways using the procedure P. 
The corresponding resulting figures are 

aCED, a[I]J, a[I]J, aCIIl. 
Q[IJ aco bTIJ bTIJ 

a b a c 
Thus, 

[4,3, 1/3,2]3 = [3]3 + 2[2,1]3 + [J3]3. (4.18) 

A comparison of (4.17) and (4.18) indicates that 

[4,3,1]8. [22, 11s = ... + 3[3, 2; 12]~ + . ". (4.19) 

The multipicity of three occurring in (4.19), derived 
from (4.15) by the use of the procedure P, is of course 
the same as that occurring in association with the 
tableau [3, 2; }2)~ in (4.8), derived from (4.5) by.the 
use of the procedure Q. However, it is assumed in the 
derivation of (4.15) that the sets of tensors involved 
are the bases of IR's of Ln with n sufficiently large for 
all the tensors to exist. As a result, it follows that the 
information relevant to applications to IR's of Ln with 
n small, implicit in the subscripts associated with the 
multiplicities in reductions like (4.8), is not contained 
in reductions like (4.19). J n fact, it can be seen from 
(4.6) and (4.7) that (4.5) and thus also (4.15) are 
applicable without restriction only to IR's of Ln with 
n ~ ,u~ + v~, where ,u~ and v~ denote the number of 
rows of [,u)a and [V)b, respectively. 

In the reduction formula (4.5), it follows from the 
procedure Q that m;·.~ = 1 and, therefore, 

[v;,u]~ = [p)". [,u]a - L m;:np; AJ~=;, (4.20) 
;'*Il 
(J:;:'V 

where the summation excludes any term corresponding 
to t = O. Similarly, 

[ . ']O-t _ [ ]b-t. ['] ~ I),T[. ]"-t-" (421) p,II.,.-t- P Aa_t-""m;',<tT,a,,_t_ ... , . 
":F-i.. 
T*P 

where the summation excludes any term corresponding 
to u = O. It follows that any regular composite tableau 
may be expressed as a sum of outer products of regular 
Young tableau, i.e., 

( 4.22) 

It is possible to determine all the outer products con
tained in this expansion and their multiplicities n;:~ 
by using the procedure Q to evaluate all the coefficients 
in (4.20), (4.21), and all the relevant formulas of the 
same type. However, it has been shown by Littlewood15 

that 

[v;,u]! = .!(-I)tm;..,. llm
P<t',V[p]b-t. [A]a-t, (4.23) 

).p<t 

where [a]t and [a']t are mutually conjugate tableaux. 
Moreover, mllv .). = mll,v'.)." so that from (4.23) and 
.(4.5) 

[v;,u]~ = .!(_I)tm;:{[p]b-t· [AJa-t. (4.24) 
).p 

This expansion formula may thus be evaluated by 
making use of the procedure Q to carry out the 
reduction 

(4.25) 

from which the coefficients m;:{ may be obtained. 
If the initial tableau [v;,u)! is admissible and thus 
specifies an IR of L n , then the expansion formula 
(4.24) specifies the expansion of this IR without any 
restriction like those of (4.6) and (4.7). As an example, 
it follows from (4.8) that 

[3,22, 1; 22, 1]: 

= [3, 22, 1]8. [22, 1]5 - [3, 22j1 . [22]4 

- [3, 22j1 . [2, 12]4 - [3, 2, 12j1 . [22]4 

- [3, 2, 12f . [2, 12]4 - [23
, 1j1 . [2214 

- [23, Ij1 . [2,1 2)4 + 2[3,2, 1]6. [2, 1]3 

+ [3,2,1]6. WJ3 + [3,1 3]6. [2, 1]3 

+ 2[23J6 . [2, 1]3 + [23]6 . [1 3]3 

+ 2[22, 12]6. [2, 1]3 + [22, 12t· [13]3 

- [3, 2]5 . [2]2 - [3, 2]5 . [12]2 

- [3,1 2]5. [212 - [3,12]5. [1 2h 
- 2[22, 1]5. [2]2 - 3[22,1]5. [12]2 

- [2, 13]5. [2]2 - [2, 13]5. [1 2]2 

+ [3, 1]4. [lh + 2[22]4. [n 
+ 2[2, 12]4 . [1]1 - [2, 1]3. [0]0' (4.26) 

Clearly, [3,22 , 1; 22 , l]~ is only an admissible tableau 
corresponding to an IR of Ln if n ~ 7, and for these 
values of n the expansion (4.26) is valid. 

The reduction of an outer product of two fR's of 
Ln specified by admissible, regular, composite tableaux 
may be carried out, firstly, by expanding these tableaux 
as two outer products of dotted and undotted 
tableaux using (4.24); secondly, by reducing the outer 

15 D. E. Littlewood, Phil. Trans. Roy. Soc. London A235, 387 
(1943). 
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products of the pairs of dotted tableaux and the pairs 
of un dotted tableaux using (4.3) and (4.1); and finally, 
by reducing the outer products of the resulting 
tableaux using (4.5). Thus, 

[v;p]!· [p; A]: = I m;t~['T; O']~, (4.27) 
",T 

with 

mVp,T - ~ (-l)tm v' .fI'( -l)UmP' .6' m mfl6 ,4>mt.,T 
p;',(1 - k }l,« A,,), «y,8 ,(1' 

(4.28) 

where the summation is over all the tableaux (lX]a-t, 
[P]b-t, [Y]e-u, [6]d-U, [O]a+c-t-u ,and [1> ]b+/J-t-u , so that 
e = a + c - t - u - v andf= b + d - t - u - v. 

It should be noted that, in the evaluation of the 
coefficients m",f';.'~ appropriate to the decomposition of 
an outer product of IR's of Ln specified by admissible 
composite tableaux, the only restrictions for small 
values of n occur in the last stage of the process 
involving the evaluation of mt:: . 

For example, 

ccg·ITJ = (IT]. B -0'0 + 1) 
'(0'0 -1) 

=I-I-I-I-BJ +I-I-I-I-§ 

+CHBJ+qj-§ 

-IT]'IT]-B'[TI 
-2IT]'B -B'B 
+20'0- 1 

=l,I-I-I-U I+I.~ 

1 + Is e+.+=l 
~ 

+ 1, 1'1·1 1 

LLl 

+ 13/ . 1 . / 1 1 + 24+3 o=g 
+ l'EB. + la[IJ. (4.29) 

From (4.6) and (4.7), it follows that this expansion 
formula is applicable to the IR's of all Ln with n ~ 5, 

but that, for n = 4, the tableau 

is excluded while, for n = 3, the expansion is 

La cr:g . IT] = 1 . 1 . 1 . E1~ + 1 . 1 . 1 

+ cr:g +[IJ. (4.30) 

Of course, for n = 2, no such expansion exists. 

5. DECOMPOSmON OF THE IRREDUOBLE 
REPRESENTATIONS OF Lm+n WITH 

RESPECT TO Lm 0 Ln 

An IR of Lm+n may be decomposed into IR's of the 
subgroup Lm 0 Ln and the associated sets of tensors 
with indices lXi' such that lXi = 1,2, ... , m + n are 
correspondingly decomposed into sets of tensors of 
the same rank but with each index lXi such that lXi = 1, 
2,'" ,m or lXi = m + 1, m + 2,'" ,m + n. Fol' 
the IR of Lm+n specified by [A]e, it follows that this 
decomposition is determined by the decomposition of 
the corresponding IR of ~e into IR's of all the sub
groups ~a 0 ~b with a + b = c. Thus, from (4.12), 
the relevant decomposition formula isl6,l7 

[A]e - I mIlV,;.([P]a, [vh)· (5.1) 
IIV 

Similarly, of course, 

[A]e _ I mIlV,).([u]a, [V]b). (5.2) 
IIV 

The corresponding decomposition formula for the 
composite tableau ['T; O']~ is established by expanding, 
using (4.24), then decomposing, using (5.1) and 
(5.2), and finally reducing, using (4.5). Hence, 

with 

[ . 0']' ~ pT,VP([ • lJ.]b-t [ . A]d-U) 'T, e- k ".11). V,,.. a-t' p, e-u' 
II V).P 

(5.3) 

(5.4) 

where the summation is over all the tableau [1X]a, [P]b, 
[Y]c> [!5]d, [Ole-v, and [4>]1-", so that e - v = a + c 
and f - v = b + d. 

Formulas (5.1), (5.2), and (5.3) specify the decom
positions of IR's of Lm+n into IR's of the subgroup 
Lm 0 Ln, provided that the restrictions (4.2), (4.6), 

10 M. L. Whippman. J. Math. Phys. 6, 1534 (1965). 
17 C. Itzykson and M. Nauenberg, Rev. Mod. Phys. 38, 95 (1966). 
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and (4.7) are used to exclude certain terms from the 
summations involved. 

The outer-product multiplication rule (4.1) is both 
commutative and associative so that 

(5.5) 
and 

2 m"v,l1m;'a,p = 2 m"I1,pmv;',a' (5.6) 
a a 

Furthermore, from (4.5) and (4.24) it follows that 

(5.7) 

Using (5.5), (5.6), and (5.7), together with (4.16), we 
straightforwardly derive from (5.4) the very much 
simpler result conjectured by AbramskyI8: 

[T; ern - 2 m:',tm,,;.,8mVP'~([v; ,u]!, [p, A]~), (5.8) 

where the summation is over all the tableaux [In.-II 
and [4>]'-", so that e - v = a + c and f - v = b + d. 
It should be stressed that the formula (5.8) may not be 
applicable to the decomposition of the IR's of Lm+n if 
m or n is small, since the derivation of (5.8) depends 
upon (4.15). However, the reduCtion theorem corre
sponding to (4.15) for IR's of Ln is obtained from 
(4.15) by retaining in the sum all the terms for which 
n ~ p~ + A~, provided n ~ ,u~ + v~ - 1. It follows 
that (5.8) is applicable to the decomposition of IR's 
of Lm+n if the terms included in the sum are only those 
for which 

Therefore, using (4.5), we have 

lIB -la,o(I'\' d' 1) + 10,ae' lIB) 
+ 12,1 (\ • I . I I, 0) + IIi 0, \ . I . I j) 

+ 11'2(OJ, 8) + 12'l(tj' OJ) 
+ la,1(qj' 0) + 11,3(°, qj) 
+ 12,2(IT], [1]) 
+ 12,1([L\, 1) + 11,2(1, [L\) 

+ 11,2([]' D) + 12,1(0, D), (5.12) 

where the subscripts' on the values of the coefficients 
P~',":.. indicate the minimum values of m and n for which 
the corresponding pair of tableaux specify an IR of 
Lm 0 Ln, which should be included in the decom
position of the IR of Lm+n' Thus, the corresponding 
decomposition formulas for various values of m and 
n are, e.g., given by the following: 

L 4+2: rr=a -(I . I . B' 1) + C\ . I . I \, D) 

+ (0, I . \ . 1 I) + (qj' D) 

+ (B,IT]) + (IT], 8) 
m ~ ,u{ + v{ and n ~ A{ + p~, 

provided that 

(5.9) + ([IJ, [IJ) + ([0, 1) 

+ (1, [IJ) + (0, D) + (0, D), (5.13) 

m _> er1' + T1' - 1 and n -> er1' + T{ - 1, (5.10) ITE 0 0 L2+2: .. - C\ . I . I /, ) + ( , 1 . / . I D 
where ,u~, v~, A~, p~, er~,and T~ denote the number of 
rows of the tableaux [,u]a, [V]b, [A]., [p]', [er]., and 
[T)'. 

An example of the application of (5.3) is provided 
by the decomposition of 

,.\. LI = CO' B -rl'o + 1. 
(5.11) 

From (5.1), 

\=0 - (rn, 1) + (0, [J) + (1, [IJ), 

8-(8,1) +(0,0)+ (1,8), 
0-+ <0,1) + (1, [J), 

0- (0,1) + (1, D), 1- (1,1). 

18 J. Abramsky, Ph.D. thesis, The University, Southampton, 
England, 1969. 

+ (0], CIJ) + (ITJ, 1) 

+ (1, ITJ) + (0, D) + (0, D), (5.14) 

and 

L 2+1: coa -<!. ,., I, D) + (8' CD) 
+ (CD, 1) + (0, D)· (5.15) 

Results (5.13) and (5.14) may be obtained more 
quickly by the use of (5.8), since in these cases condi
tions (5.10) are satisfied. In fact, (5.8) yields (5.12), 
without, of course, giving the values of the subscripts, 
and the application of restrictions (5.9)-(5.12) gives 
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(5.13) and (5.14) for the appropriate values of m and n. 
However, (5.15) cannot be obtained by the use of (5.8) 
since conditions (5.10) are violated. 

All these results may be readily checked by the use 
of the formulas for the dimensions of the IR's of Ln 
given in Sec. 3. 

6. DECOMPOSITION OF THE IRREDUCIBLE 
REPRESENTATIONS OF Lmn WITH RESPECT 

TO Lm 0Ln 

An IR of Lmn may be decomposed into IR's of the 
subgroup Lm ® Ln. The associated tensors, with 
indices OC i such that OCi = 1, 2, .. " mn, are corre
spondingly decomposed into tensors of twice the rank 
obtained by replacing OC i by a pair of indices Yi~i such 
that Yi = 1,2,' .. ,m and ~; = 1,2, ... ,n. For the 
IR of Lmn specified by [Ala' it follows that this decom
position is determined by the reduction formula for the 
inner products of IR's of ~a • This reduction formula is 
specified by16.17 

Lula X [vla = I kl1v .;.[Ala, (6.1) 
;. 

where the procedure K for obtaining all TAla con
tained in this reduction and their multiplicities k l1v,). is 
well known.19 The associated decomposition formula 
for the IR's of Lmn is specified by 

with 
k"V

.;. = k I1V.). • 

The corresponding decomposition formula for the 
composite tableau [T; O'l~ is established by expanding, 
using (4.24), then decomposing, using (6.2) and (6.3), 
and finally reducing, using (4.5). Hence, 

[7-; O')~ => I k~:;&([v; ,u)!=:; [p; A)~=~), (6.4) 
I1V;'P 

with 
(6.5) 

where the summation is over all the tableaux [oc)a' 
[,B]b, [Y]a, [~)b, [O]e-v' and [4> ]I-v, so that a = e - v and 
b =/- v. 

Formulas (6.2), (6.3), and (6.4) specify the decom
positions ofIR's of Lmn into IR's of Lm ® Ln provided 
that the restrictions (4.2), (4.6), and (4.7) are used to 
exclude certain terms from the summations involved 
in (6.4) and (6.5). 

The application of (6.4) to the decomposition of 
(5.11) involves the use of the following decom
positions which may be derived from (6.2): 

IT] => (IT]; IT]) + (8; 8)' 

8 => (CD; B) + (8; 8)' 
I1V 

Similarly, 
[Ala => I k"V').([,ula; [vla), 

"V 

0=>(0;0), 0=>(0;0), 1=>0;1). 

(6.3) Then, using (4.5), we have 

ITf1 => 12;3(' . 1 . 1 I; ITB) + 13;2(ITf1;' . I . I I ') + 13;4(EfTI; EE) 
+ 14;3(EE; EfTI) + 12;3([1]; ITB) + 13;2(cql ITJ) 

+ 12;4(OJ, EB) + 14;2(EB; OJ) 
+ 11;ae; ITB) + 13;1(ITf1; 1) + 13;3(EfTI;0]) + 13;3(0]; EfTI) 
+ 12;2(1.'.' , I;ITJ) + 12;2([IJ;! ·1·1 1 D + 13;2(EfTI; 1) + 12;3C; EfTI) 

+ 3S;2+2;3+2;iLIJ; [1]) + 12;2([1]; 1) + 12;2(1; [1]), 

(6.6) 

where the subscripts on the values of the coefficients k~·.;& indicate the minimum values of m and n for which 
the corresponding pair of tableaux specify an IR of Lm ® L n, which should be included in the decomposition 
of the IR of Lmn. Thus, the corresponding decomposition formulas for various values of m and n are, e.g., 

18 G. De B. Robinson and O. E. Taulbee, Proc. Nat!. Acad. Sci. U.S. 40, 72l (1954). 
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given by 

L 32 : erg => (ccg; I· I . I I I) + (I' I . B; CD) + (I=ca; 1) + (I' I . I I I; IT]) 
+ ([IJ; 1·1·1 I/)+ (p; 1) + 2(ITJ; IT/) + ([IJ; 1) + (1, [IJ) 

(6.7) 

and 

L22 : I· I . I I => (I . I . I 
U 

I; CD) + (1=:0; 1 . I . I /) + (CD; [1]) 

Once again all these results may be checked by 
making use of the formulas of Sec. 3. 

7. DISCUSSION 

In the preceding sections of this paper an attempt 
has been made to establish rules appropriate to the 
evaluation of some of the properties of the IR's of Ln 
induced in a space defined by mixed tensors. The key 
result is the statement of the procedure Q together 
with the restrictions (4.6) and (4.7). The derivation 
of this result depends upon the equivalence of certain 
IR's of SLn , but the result itself is applicable to the 
IR's of each of the groups Ln for all values of n. The 
same is true of other results such as (4.28), (5.4), and 
(6.5) which depend upon the reduction (4.5) and the 
expansion (4.24). 

This is of importance in the applications of group 
theory to the study of elementary particles. For ex
ample, in quark models based on SU(3), the mesons 
and baryons of lowest mass are thought to be com
posed of a quark-antiquark pair and of three quarks, 
respectively. It is, therefore, natural to specify the 
corresponding IR's of the symmetry group, whether it 
be SU(3) itself or a larger group such as SU(6), U(6) , 
or SU(6, 6), by the tableaux occurring in the reduc
tions 

O'D=~+l 
and 

for mesons and baryons, respectively. It then follows 
that any composite tableau such as [v; ,tt]! specifies an 
IR of the symmetry group corresponding to particles 
composed of a quarks and b antiquarks having baryon 
number B = !(a - b). Some applications of the com
posite tableau notation to the consideration of 
particles composed of one antiquark and four quarks, 

+ (CD; 1) + (1; [1]). (6.8) 

within the context of a model based on the symmetry 
group SU(6,6), have been published elsewhere.lo It 
was found that the evaluation of the reductions, 
expansions, and decompositions involved in this work 
just cited could be carried out very simply using the 
results presented in this paper. In fact, the alternative 
to the use of composite tableaux such as [v; ,tt]! with 
a = 4 and b = 1 is, in this model, the use of con
ventional tableau such as [A]c with c = 15. Unfortun
ately, the multiplicities mJlv.J. and kJlv.J. have only been 
tabulated for all tableaux such that, in the notation of 
(4.1), a + b ~ 10,17.21.22 and in the notation of (6.1), 
a::;; 8,17·23 

Another example of the use of composite tableaux 
is provided by the decomposition ofthe IR of SU(6, 6) 
specified by [3, 19]12 into IR's of SU(4) ® SU(3). This 
decomposition lies outside the range of the tables 
referred to, but may readily be evaluated by carrying 
out the decomposition of the equivalent IR of SU(6, 6) 
specified by [2; 12]~. In fact, this decomposition is given 
by (6, 6) which, by means of equivalence relationships, 
may be written in the form 

[3, I9]a=> ([32,2]8 + [2,12],; [4,2]8) 

+ ([4,22]8 + [2, 12], + [0]0; [32]8) 

+ ([22], + [2, 12
], + [0]0; [3]3) 

+ ([32,2]8 + [3, I], + [2,1 2],; [0]0) 

+ ([4,22]8 + [32,2]8 + [3, I], + [22], 

+ 3 [2, J2], + [0]0; [2, l]s). (7.1) 
The decompositions of a large number of the IR's 

of SU(6) into IR's of SU(4) 0 SU(2) and into IR's of 
SU(3) ® SU(2) have been tabulated by Hagen and 
Macfarlane.2u5 The decompositions (5.13) and (6.7) 

10 J. Abramsky and R. C. King, Phys. Rev. Letters 20, 1408 (1968). 
21 F. D. Murnaghan, Am. J. Math. 59, 437 (1947). 
II F. D. Murnaghan, Am. J. Math. 60, 44 (1938). 
.. F. D. Murnaghan, Am. J. Math. 60, 761 (1938). 
Ii C. R. Hagen and A. J. Macfarlane, J. Math. Phys. 6, 1366 

(196S). 
16 C. R. Hagen and A. J. Macfarlane, J. Math. Phys. 6, 1355 

(1965). 
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correspond to the decompositions of the IR of SU(6) 
specified by [3, }3]& of dimension 280. However, the 
slightly more general results (5.12) and (6.6) are 
expressed in a form which is eminently suitable for 
application to quark models in which the symmetry 
group is extended, e.g., from SU(6) to SU(6, 6). This 
is made clear by the derivation of (7.1). Moreover, the 
composite tableaux notation immediately yields the 
specification of the hypercharge Y associated with 
each IR of SU(4) 0 SU(2) occurring in (5.13). In fact, 
in the notation of (5.3), 

Y = l(a - b) - Hc - d). (7.2) 

This result (7.2) also applies to the decomposition of 
the IR's of SU(3) into IR's of SU(2) 0 U(1) when the 
IR's of SU(2) correspond to isotopic spin multiplets. 
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APPENDIX 

In order to derive the procedure Q from the pro
cedure P, it is useful to define a third procedure R 
which may be used to carry out the reduction 

[V]b' [,u]a = I mv!',p;,[p]b+tP']a-t, (AI) 
p). 

where [p]b+tP']a-t denotes a tableau, which in general 
is irregular, formed by the adjunction of two regular 
tableaux [phH and P']a-t. For each value of t between 
zero and a, the procedure R for determining all 
[p]b+t [).]a-t, contained in this reduction, and their 
multiplicities mv!"p'" is given by R: The tableau [vh 
is written down and ,ul , ,u2 , ,us, ... letters a, b, c, ... 
are added to the first, second, third,'" rows, 
respectively, in such a way that these letters form the 
regular tableau [,u]a with the first letter of each row, 
reading from the left, appearing in the column imme
diately to the right of the last column of [V]b' again 
counting from the left. An over bar is put above all 
possible sets of t letters of this figure, and all the t
barred letters are then added to the columns of the 
tableau [vlb , one by one, alphabetically in all possible 
ways such that, at each stage in this procedure, 

(i) the resulting figure corresponds to the adjunction 
of two regular tableaux if each unbarred and each 

added letter is interpreted as a box and if each barred 
letter is disregarded, 

(ii) the resulting figure contains no two identical 
added letters in the same column, and . 

(iii) the series of letters, obtained from the resulting 
figure by reading the unbarred letters from right to 
left along each row taken, in turn, from top to bottom 
and then reading the added letters also from right to 
left along each row taken, in turn, from top to bottom, 
is a lattice permutation of those letters. 

The multiplicity mv!"p" is just the number of dis
tinctly labeled figures corresponding to the adjunction 
of [p]b+t and [).]a-t obtained by this procedure. 

The equivalence of the application of P to (4.1) and 
the application of R to (AI), together with any restric
tions which may be necessary, depends upon the 
interpretation of the adjunction of [P]bH and [).]a-t as 
a regular tableau [a]aH' In order for such an inter
pretation to be possible, it is necessary to match up 
the symbols in the last column of [p]b+t and those in 
the first column of [).]a-t, both counted from the left. 
In the notation of Sec. 2, ,u~, v~, ).~ , and p~ denote the 
lengths of the first columns of [,u]a, [V]b' [).]a-t, and 
[p]b+t. In addition, v: and p~ denote the lengths of the 
last columns of [vh and [p]b+t. It is also convenient to 
use i~ to denote the number of the row of [,u]a from 
which came the last letter, counting from the top, 
added to [V]b in the last column, counting from the left. 

With this notation, if 

(A2) 

the matching is trivial since the adjunction [p]b+t[).]a-t 
always corresponds to a regular tableau, and the 
figures are all such that no added letters appear in any 
row containing either barred or unbarred letters. Thus, 
if the barred letters are disregarded, there is a one-to
one correspondence between all the figures obtained by 
the application of R to (AI) and those obtained by the 
application of P to (4.1), provided [,u]a and [V]b are 
such that (A2) is satisfied. 

For example, the use of R may give rise to the 
following typical figures: 

a a a ii aaaii 
b b h b b h 
c c c c C c 
d d 
e e 

c e a c 
FIG.!. FIG. 2. 
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In these figures, 
, 

v~ A' p~ v' 
, 

i~ ttl 1 • P. 
FIG. I 5 7 4 8 5 7 3 
FIG. 2 5 7 4 8 5 7 5 

Clearly, both these figures may be arrived at by the use 
ofP. 

Similarly, if 

(A3) 

the adjunction [p]b+t[A]a-t always corresponds to a 
regular tableau, and the figures obtained using Rare 
such that no added letters appear in any row containing 
unbarred letters. Thus, there is a one-to-one corre
spondence between the figures satisfying (A3) ob
tained by the application of R to (AI) and by the 
application of P to (4.1). 

The following are typical figures which satisfy (A3) 
but not (A2): 

aaaii 
b b h 
c c c 

I--~C---I 
d 
e 

c e 
FIG. 3. 

In these figures, 

ft~ 
FIG. 3 5 
FIG. 4 5 

v~ 
6 
6 

A' 1 

4 
4 

aaaii 
b b h 
c c C 

~--!,---I d 

a c 

p~ 
7 
7 

e 

FIG. 4. 

v' • 
4 
4 

, 
P. 
6 
6 

3 
S 

Once again, both these figures may be obtained by the 
use of P. 

It should be noted that in all the figures satisfying 
(A3), the only letters added to the mth row, counting 
from the top, are barred letters from the topmost m 
rows of [tt]a' In particular, it follows that 

i{ ~ p~. (A4) 

This inequality is clearly satisfied by Figs. 1-4. 
If the condition (A3) is not satisfied, but rather 

(AS) 

the adjunction [p]b+t[A]a-t always corresponds to a 
regular tableau, but the figures obtained using Rare 
such that both added and unbarred letters appear in at 
least one row. The necessary and sufficient condition 
that in each such row all these letters are in alphabeti
cal order reading from left to right is just the condition 

(A4). In general, the procedure R gives rise to figures 
satisfying (AS) but not (A4). However, there is a one
to-one correspondence between the figures satisfying 
both (AS) and (A4) obtained by the application of R 
to (AI) and by the application of P to (4.1). 

This one-to-one. correspondence is valid despite 
the fact that for these figures the series of letters 
relevant to (iii) of Rand P are, in general, different. 
In fact, if these series are each terminated at some 
position in the mth row of [p h+t, then the numbers of 
each of the first m letters of the alphabet in each series 
are the same, but the series relevant to (iii) of R 
contains in addition the unbarred letters from [Ala-t 
which are later in the alphabet than the mth letter. 
However, since [A]a-t is a regular tableau, it follows 
that the series relevant to (iii) of Rand P are such that 
either both or neither are lattice permutations. 

The following typical figures satisfy (AS): 

III !Hd 
I a d 
bee 

c e 
FIG. 5. 

EfEJ!E" 
~d 
c e e 

FIG. 7. 

In these figures, 
, 

ttl 
FIG. S S 
FIG. 6 5 
FIG. 7 5 
FIG. 8 5 

v' 
1 

S 
5 
4 
4 

A' 
1 

4 
4 
4 
4 

II: !~r 
led 
bee 

a c 
FIG. 6. 

Effi !H" ~d 
ace 

FIG. 8. 

, 
Pl v' • 
6 3 
6 3 
5 2 
5 2 

, 
P. 
S 
5 
4 
4 

i~ 
3 
5 
3 
5 

Figures S, 6, and 7 may all be arrived at by the use 
of P even though the series of letters obtained from 
Fig. 7, relevant to (iii) of P, is not the same as that 
relevant to (iii) of R. Figure 8, on the other hand, may 
not be arrived at by the use of P, and it is the only one 
of these figures which does not satisfy (A4). 

Finally, if the condition 

(A6) 

is not satisfied, the adjunction [p1b+t[A]a-t never corre
sponds to a regular tableau. The following are typical 
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figures which do not satisfy (A6): 

~ 
aaaii 
b b b 
e c c 

c e d 
e 

FIG. 9. 

In these figures, 

FIG. 9 
FIG. 10 

#~ 
5 
5 

v~ 
3 
3 

~::ha 
ttt~ ecc 
a c d 

e 
FIG. 10. 

A~ P~ 
4 4 
4 4 

v' 
8 

1 
1 

I 

Ps 

3 
3 

3 
5 

Neither of these figures may be arrived at by the use of 
P even though Fig. 9 satisfies (A4). 

From these results it follows that if, in the applica
tion of R to (AI), only those terms are retained which 
satisfy both (A4) and (A6), then the final set of 
figures corresponds exactly to that obtained by the 
application of P to (4.1). 

It is known that the corresponding reduction 
theorem for IR's of SLn is obtained from the applica
tion of P to (4.1) by retaining only those terms in the 
sum for which (4.2) is satisfied. This reduction theorem 
can therefore be obtained from the application of R 
to (AI) by retaining only those terms in the sum which 
satisfy (A4), (A6), and the condition 

pi S n. (A7) 

Moreover, the definitions of Rand Q are such that 
the application of R to (AI), together with the restric
tion (A 7), is exactly equivalent to the application of 
Q to 

[ *]Sn-b. [11.] _ ~ mV*'P*[p*' A]8n-b-t 
V r a - ~ 1',). 'a-t' 

p,). 

(AS) 

where [v*]8n-b and [p*]8n-b-t specify IR's of SLn which 
are equivalent to those specified by [V]b and [p Jb+t. 
In addition, if (A6) is satisfied, the composite tableau 
[p*; A]!~tb-t specifies an IR of SLn which is equivalent 
to that specified by the adjunction [p]b+t[A]a-t which is, 
itself, a regular tableau as a consequence of (A6). The 

corresponding reduction theorem for IR's of SLn is 
therefore obtained from the application of Q to (AS) by 
retaining only those terms satisfying (A4) and (A6). 

The following typical figures may be obtained using 
Q: 

aaaa 
e e . b b h 

bee C c 
ad 

e 
FIG. 11. 

aaaa 
ae.bbb 

bee e c 
cd 

e 
FIG. 12. 

In these figures, 

FIG. 11 
FIG. 12 

#~ v~ ;.~ p~ 
5 n-·2 4 n-I 
5n-24n-I 

v; p; i~ 

n-4 n-2 3 
n-4 n-2 5 

Figures 11 and 12 are equivalent for the appropriate 
values of n between nine and five, to all the odd
numbered and all the even-numbered figures given 
previously. From (A4) and (A6), it follows that 
Figs. 11 and 12 only specify IR's of SLn which should 
be included in the reduction (AS) if n is greater than or 
equal to six and seven, respectively. 

It should perhaps be stressed that the geometric 
transformation connecting [p ]b+t [A ]a-t and [p * ; A]!~b-t 
is such that reading [in (iii) of R] the added letters 
from right to left along each row taken, in turn,from 
top to bottom gives the same result as reading [in (iii) 
of Q] the added letters from right to left along each 
row taken, in turn, from bottom to top. Furthermore, 
although the columns of [P]bH are counted in the usual 
way from left to right, the dotted diagram notation is 
such that the columns of [p*r-b- t are counted from 
right to left. Thus, if [v*]sn-b and [p*]sn-b-t are replaced 
by [v]b and [p]b-t, respectively, (AS) is transformed 
into (4.5) and p~ is transformed into (n - pD. There
fore, (A4) and (A6) are transformed into (4.7) and (4.6), 
respectively, and the corresponding reduction theorem 
for IR's of SLn is obtained from the application of Q 
to (4.5) by retaining only those terms satisfying (4.6) 
and (4.7). 
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Charged particles whose motions are described by the Lorentz-Dirac equation are considered. It is 
proved that, for an arbitrary collection of such classical charges moving solely under mutual electro
magnetic interaction, the position of each charge and the force acting on each are infinitely differentiable 
functions of the proper time throughout any time interval for which the particle separations are all non
zero. A corollary of this result is then shown to be that discontinuous-, step-, or o-function-type external 
boundary forces which might act on nonzero-size charged particles are not permissible. 

I. INTRODUCTION 

The Lorentz-Dirac equation which governs the 
motion of classical (nonquantum) radiating charges 
has by now been derived from several quite different 
points ofview.1- 4 This, together with recent considera
tions of Plass5 which show that meaningful solutions 
do exist for very general types of force fields actually 
encountered in physical situations, means that these 
equations must be heeded seriously. Therefore, for 
instance, the provocative prediction of the "pre
acceleration" effect that arises from this equation 
must be considered carefully. However, it seems fair 
to say that the entire notion of causality as related to 
this effect seems poorly understood at present. 

The motivation for the present work arose from a 
desire to understand such effects in the customary 
context of classical physics. As will be seen, even 
though the problem is not resolved here, several 
results will be discussed which may have an important 
bearing on the matter. 

In the following it will be proved that, for an arbit
rary collection of classical charged particles (each 
governed by the Lorentz-Dirac equation) moving 
solely under mutual electromagnetic interaction, the 
position of each charge and the force acting on each 
are infinitely differentiable functions of the proper 
time throughout any time interval for which the 
particle separations are all nonzero. As a corollary 
it will then be shown that, therefore, discontinuous-, 
step-, or t5-function-type external boundary forces 
which might act on nonzero-size charged particles are 
not permissible. 

II. DIFFERENTIABILITY THEOREM 

Consider a system of classical charged particles 
(with motions governed by the Lorentz-Dirac equa-

1 P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938). 
2 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 11, 425 

(1949); 17. 157 (1945). 
8 F. Rohrlich, Ann. Phys. (N.Y.) 13, 93 (1961). 
'J. Cohn, Am. J. Phys. 35, 949 (1967). 
6 O. N. Plass, Rev. Mod. Phys. 33, 37 (1961). 

tion) moving solely under mutual electromagnetic 
interaction. The particles may be radiating and may 
be moving relativistically. It is, however, stipulated 
that they are moving in such a manner that mutual 
particle separations are nonzero throughout some 
specified time interval. (The unfortunate consequent 
restriction that, for certain situations, the specified 
time interval cannot be infinite is unavoidable, if the 
present method of proof is to be valid. For situations 
where the particle separations are always nonzero, 
the time interval may be taken as infinite. In other 
cases, like the "simple" case of one charge approach
ing another along a straight line, the time interval 
cannot be infinite.) Then it will be shown that the 
position of each charge as well as the force acting on 
each are infinitely differentiable functions of the 
proper time throughout the specified time interval. 

Throughout the present work all Greek indices take 
on values from 1 to 4; Latin indices take on values 
from 1 to 3; the invariant arc length dT is defined by 

3 

_c2 dT2 = ~ dx i dxi 
- dx 4 dx\ (1) 

i=1 

where .x4 = ct, and the metric gil> is taken as the 
diagonal matrix (1, 1, 1, -1). For the most part, the 
notation to be used will be that found in Rohrlich's 
recent book.8 

We single out one of the particles and refer to its 
coordinates as x ll , fJ, = 1, ... , 4. The equation of 
motion of this charge is then 

d2XIl 2 e2 d3XIl m--=----
dT2 3 c3 dT 3 

2 e2 d2X 17 d2X dX" e dX 
- 3' ~ dT2 d'/ dT +; FIl> dT v, (2) 

where FIlV is the retarded-field tensor produced by all 
the other charges at the location of the "preferred" 

• F. Rohrlich, Classical Charged Particles (Addison-Wesley, 
Reading, Mass., 1965); see esp. Chaps. 4 and 6. 
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charge and where e without subscript refers to the quantity 
preferred charge. 

We can rewrite this equation as follows: 

VII _ b-1VIl + b-1c-2VaVaVIl = ec-1£llvVv, (3) 

where VII == dXIl/dT, the dot refers to differentiation 
with respect to T, and b-1 = 2e2/3mc3 

• 

In general, FIlV is given by the expression 

Fllv = ~ {(ekjp:c)(V~U; - V;V~) + (ek
jpkc

2
) 

k 

X [(A~V; - A~V~)C-l - U~(V;Aukjc + A~) 
+ U~(V~A"Jc + A~)]}ret' (4) 

where the sum is over all charges ek other than the 
preferred one, Ull is a spacelike 4-vector orthogonal 
to VII and All is the acceleration 4-vector, Pk is the 
distance from the retarded location of particle k 
to the field point (in that charge's rest system), and 
AUk == A:(Ua)k' Now, 

dFIlV aF'lY dXa 
--=----
dT ax" dT 

(5) 

and we can evaluate a£llv/aXa by considering the 
following relations (where we momentarily drop the 
superscript k): 

aVIl _ (_ All R ) aAIl = 
aXa - pc a ret' aXa --R (

All ) 
pc a ret' 

etc., and 

ap = (Ua + AuRa) , 
aXa c2 ret 

(6) 

aUIl _ [_! ap RI' 
ax" - p2 axa 

+ 1 (~: + VI' Ra) + ~ AI' RaJ ' 
p pc c p ret 

where Ril is t~e null vector going from the respective 
charge to the field point. 

From the above relations we see that the quantity 

!! (FIlVV) = FllvA + V dFllv (7) 
dT v v v dT 

depends only on the following quantities: VII, All, 
A=(ret), A=(ret), U=(ret), V=(ret), Pk == Pk(ret). 

We now construct the following argument: In Eq. 
(3) we know that £IlvVv exists for all T in the specified 
interval, since the particles do not have zero separation. 
Therefore, PIl, VI', VII exist for all such T, where 
quantities without the subscript k refer to the pre
ferred charge. Similarly then, we can assert that the 
PI:, VI:, VI: exist (for all k)for all such T. Therefore, the 

exists for all such T. Therefore, 'VIl exists for all such T. 

Similarly then, we can again assert that V: (for all k) 
exists for all such T. Therefore, the quantity 

if. (£IlVV) 
dT2 v 

exists for all such T, ••• etc. Therefore, derivatives of 
FIlVVv and XII exist to all orders in the specified time 
interval. 

It is interesting to note that this derivation would 
not work if the Schott term (involving p) were absent 
from the Lorentz-Dirac equation. 

It is again to be noted that it was necessary to 
require that the particle separations be nonzero, since 
otherwise the field tensor may become singular and 
the method of proof would not work. 

III. COROLLARY 
The above theorem together with a particular 

stipulation leads to an interesting corollary. 
This ansatz we take to be the following statement: 

Since the Lorentz-Dirac equation is a formulation 
only involving classical electromagnetic fields, we can 
allow only such fields even as boundary or initial 
conditions. That is, even the boundary forces can 
only arise from mutual classical electromagnetic 
interactions. 

This requirement, then, precludes boundary or 
initial forces which are either nonelectromagnetic, or 
short-range forces which necessarily arise from 
quantized systems. Thus, electron emission from an 
atom or metal or collisions of electrons with atoms 
or gravitational interactions comprise inadmissible 
boundary conditions. 

It follows as a corollary to the above theorem that the 
boundary forces themselves must be infinitely differ
entiable functions of the time, for nonzero size 
particles (that is, for particles whose separations are 
always nonzero). 

Therefore, the well-known ~-function and step
function forces that have been used as boundary 
conditions on the Lorentz-Dirac equation (see Ref. 5) 
are not admissible for such particles. 

However, it is by the use of such boundary con
ditions (see Refs. 1 and 5) that one customarily 
demonstrates the existence of the preacceleration effect 
with the theory. Unfortunately, the problem is not 
thereby disposed of, since the preacceleration effect 
supposedly still exists even for boundary forces 
which are infinitely differentiable (See Ref. 6, p. 151). 
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We t~eat the ~l~tr?ma~netic .fields a~isin~ from the ~assage. of a point source through an interface 
separatmg two. d~sslmIiar dIspersIve medIa. ~mce the me.dla are dIspersive, they are partially characterized 
by a c~aractef1stlc frequency A. Our expansIOns are valId for Aafc » I, where a is a characteristic length 
and c IS the speed of lIght. 

t. INTRODUCTION 

Transition radiation is an electromagnetic phenom
enon associated with the passage of a point source 
through an interface between two media with different 
electromagnetic properties. It is well known that, if 
such a source travels with sufficiently high speed in a 
dispersive medium, then it will emit Cerenkov radia
tion. Compared to this radiation, the transition 
radiation is a second-order effect. 

For a dispersive medium, the time-dependent 
equations governing the electromagnetic field are an 
integro-differential system. The system, as treated here, 
involves a large parameter A which is a characteristic 
frequency of the medium and which will be our ex
pansion parameter. Since the notion of a "character
istic frequency" may be an unfamiliar one to the 
reader, we cite the example of an isotropic plasma in 
which case the dielectric permeability is given by 
I - cp/(w2 + ivw). In this case the "plasma fre
quency" cp might serve as the characteristic frequency 
A. (For a more general example, see Lewis,I Appendix 
D.) An equivalent dimensionless parameter is Ao = 
).a/e, where "a" is the distance between the source and 
observation p.oints and "e" is the speed of light. Our 
aim is to obtain an asymptotic expression for the 
transition radiation fields for large A (or large 1.0), 

The phenomenon of transition radiation has been 
previously discussed by several Russian physicists. 2. 3 

These authors have examined the radiation fields which 
arise from sources such as monopoles or dipoles 
moving on a straight line with constant velocity 
through a plane interface. The analysis given here 
pertains to a general class of point sources which 
includes as special cases all multi poles. Moreover, our 
source moves on an arbitrarily prescribed trajectory 

• This research was supported by the Office of Naval Research 
under Contract No. NONR 285(48). Reproduction in whole or in 
part is permitted for any purpose of the United States Government. 

1 R. M. Lewis, Arch. Ratl. Mech. Anal. 20, 191 (1965). 
• G. M. Garibian, Zh. Eksp. Teor. Fiz. 33, 1403 (1957) [Sov. 

Phys.-JETP 6, 1079 (1958)1. 
• V. E. Pafomov Zh. Eksp. Teor. Fiz. 36, 1853 (1959) [Sov. 

Phys.-JETP 9, 1321 (1959) • 

which intersects a plane interface. An advantage of 
treating the case of an arbitrary trajectory is that the 
source may be supposed to start and stop smoothly. 
Thus, we may avoid assumptions involving infinite 
path lengths or infinite accelerations. There are two 
basic underlying mathematical differences between 
our procedure for obtaining the asymptotic expansion 
and the procedures used previously. First of all, we 
exploit the method of multiple stationary phase,4 while 
the earlier authors considered only problems which 
contained enough symmetry so that the integral repre
sentation of the solution could be reduced to a form 
in which stationary-phase (or saddle-point) evaluation 
was needed only for single integrals. A second 
difference lies in the distinction between the "explicit" 
and "parametric" viewpoints (see Sec. 3), both of 
which may be employed in our problem. When the 
method of stationary phase is applied to the integral 
representation of the solution, it leads naturally to a 
parametric representation of the asymptotic solution 
involving certain straight lines called "rays." This 
parametric representation shows that we may think 
of transition radiation as being a burst of radiation 
emitted from the "transition point" (i.e., the space
tim!:) point at which the source intersects the interface) 
and which is carried on rays from that point. In Fig. 
I we have depicted this family of rays and also the 
family of rays associated with the Cerenkov radiation. 
When appropriately specialized, the results given here 
agree with those appearing in the literature. 

In Sec. 2 we formulate the interface problem and 
give an integral representation for its solution for an 
arbitrary source. We also carry out some preliminary 
steps in the asymptotic expansion of the integral 
representation which are valid for any source localized 
in space. Finally, we consider the special case of a 
moving point source whose trajectory intersects the 
interface. In Sec. 3 we complete the asymptotic ex
pansion to obtain an expression for the fields associated 

, R. M. Lewis, in Asymptotic Solutions of Differential Equations 
and Their Applications (John Wiley & Sons, New York, 1964). 
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t 

• • 

I 
I 

JI 
J . " .. • • • 

____ ~~ ____________ +_-------------------X, 

FIG. I. Projection of ray configuration in t - Xl space. The particle 
trajectory is shown as dashed. In general, the Cerenkov rays (shown 
here for a single emission frequency) are emitted from all points 
along the trajectory. The transition rays are all emitted from the 
"transition point" (see text) with all speeds between ± c. The limit
ing rays are shown as dotted. 

with transition radiation. In the Appendix we list and 
discuss all the assumptions made about the dielectric 
permeability function. 

This paper was motivated by the research of Lewisl 

into the applicability of "ray methods" to problems 
involving integro-differential systems such as the one 
which appears in this paper. Using the expansion 
derived in Ref. I and the results given here and by 
Handelsman,s one could obtain the radiation fields 
arising when the source considered here moves in a 
medium consisting of two smoothly varying inhomo
geneous media separated by a smooth interface. How
ever, we do not carry out this procedure here. 

2. INTERFACE PROBLEMS FOR MAXWELL'S 
EQUATIONS IN DISPERSIVE MEDIA 

In a homogeneous isotropic medium, Maxwell's 
equations in Gaussian units take the form 

a - !D - eV x Je = -41TJ at ' 
E.. $ + eV x & = 0 at ' 

V·!D = 41TP, 

V· $ = O. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The source terms pet, X) and J(t, X) must satisfy the 

(2.3) and (2.4) are automatically satisfied if they are 
satisfied at any given time to. In a homogeneous, 
isotropic, electrically dispersive medium the consti
tutive relations are6 ' 

~(t, X~ = fJ(t)&(t - T, X) dT, (2.6) 

.'B(t, X) = .uJe(t, X). (2.7) 

Here .u is a real, positive constant and let) is a real
valued "memory" function,7 for which we assume the 
causality condition 

J(t) == 0, for t < O. (2.8) 

The dielectric permeability € is then given by 

We now set 

€(w) = f eit,'l(t) dt. (2.9) 

W = WIA, €(w) = lew). (2.10) 

Here A is to be a characteristic frequency of the 
problem, while w is to be dimensionless and inde
pendent of A. Thus, Eq. (2.9) may be written in the 
form 

J(t) = .l. fe-acotE(W) dw. 
21T 

(.2.11) 

We shall seek expansions for the transition radiation 
fields valid in the limit A -- 00. In Ref. I it is shown 
that the true physical interpretation of such an ex
pansion is that it is valid for large values of the 
dimensionless parameter 

AO = Aale. 

Here "e" is the speed of light in vacuo and "a" is a 
characteristic length for the given problem. Following 
Lewis,l we will always impose the "initial conditions" 

&(t, X) == 0, Je(t, X) == 0, for t ~ to. (2.12) 

In this case it follows from (2.6), (2.7), and (2.8) that 

!D(t, X) == 0, $(t, X) == 0, for t < to. (2.13) 

Our problem involves a plane interface at Xl = O. 
Thus, if N is a unit vector along the positive Xl axis, 
we must satisfy the interface conditions 

[N • ~] = [N • ~] = [N x &] = [N x Je] = O. 
(2.14) 

continuity equation Here we have employed the notation 

a 
- p + V·J = o. at (2.5) 

By taking the divergence of (2.1) and (2.2), we see that 

6 R. Handelsman, J. Math. Phys. 7.1982 (1966). 

[h(t, X)] = lim h(t, X) - lim h(t, X) (2.15) 
"'1~0 "'Ito 

8 L. D. Landau and E. M. Lifshitz, Electrodynamics o[Continuous 
Media (Pergamon Press, New York, 1960). 

7 More precisely, [(t) = ~(t) + [l(t), where [l(t) is real-valued and 
integrable. 
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and have assumed that the source term J is continuous 
at Xl = O. 

We will assume that our source function 

J(t, X; A) = (jl,h,ja) (2.16) 
satisfies8 

J(t, X; A) == 0, for t ~ C, t ~ t+, (2.17) 

where 
to < c <t+. (2.18) 

If we now define p consistently with (2.5) and (2.17), 
it follows that p vanishes for t ~ c. Thus, by (2.18) 
and (2.13), it follows that (2.3) and (2.4) are satisfied. 

Thus, for each given J(t, X; A), we need only satisfy 
(2.1), (2.2), (2.12), and (2.14). In order to be able to 
express the solution to this problem in a convenient 
form, we make the following definitions: 

K = (0, k2' k s), for k2' ks real, 

, = a/ax, 
fit2 = (W2/C2)l-'f, 
ii2 = fh2 _ 1(2, 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

G(t, X, k2' ka; A) = (gl' g2, ga) 

and 

f = i+, 

=i_, 
N2 N2 
n = n+, 

(
. ka . k2 . k2 . ka . ) 

= 11'212 - 2 Ja , 212 + 2 Ja , 
I( I( K K 

Xl> 0, I-' =1-'+, 

Xl < 0, = 1-'-, 

Xl> 0, ~2 ~2 m =m+, 

(2.23) 

Xl> 0, 

Xl < 0, (2.24) 
Xl> 0, 

= ii:, Xl < 0, = fh:, Xl < o. 
Also we define ii as the square root of ii2 which has a 
positive-imaginary part at W = O. By the use of 
Fourier-transform techniques and by the introduction 
of the Hertz polarization potential, we find that the 
solution to our problem can be expressed by 

&(t, X) = (2:ridWfdk2fdks 

x exp {iA(k2X2 + kaxs - wt)} 

x .1 {(p~ + A2fh!PI + iA1(2p~)N 
E± 

+ A2fh!P2(K X N) + iA(p~ - iAii;Pa)K}, 
(2.25) 

:re(t, X) = (2:ridW f dk2f dka 

x exp {iA(k2X2 + kaxa - wt)} 

iAw {. 1 2 N (. 1 ') X - IAK P2 - IAPI - Pa 
c 

X (K X N) - p~K}, (2.26) 
• 1+ could be +00. 

where for j = 1,2,3, 

plw, Xl, k2' ka) 

and 

= ± :7T 1t

+ dTfd~2fd~s 
lAW t-

X exp {-iA(k2~2 + k3~S - WT)} 

X {ti~ f'ld~l exp {± iAii±(xl .,... ~l)} 
X giT, ~l' ~2' ~s, k2' ks; A) 

+ ti~ (±oo d~l exp {T iAn±(xl - ~l)} 
J:tl 

X giT, ~l' ~2' ~a, k2' ka; A) 

+ b~ i±ood~l exp {±iAn±(xl + ~l)} 
x gi(T, ~l' ~2' ~s, k2' ks; A) 

x ~ (0 d~l exp {±iA(ii±Xl - ii:;:~l)} 
w~J:;:oo 

X gi(T, ~l' ~2' ~a, k2' ks ; A)} (2.27) 

(2.28) 

(~, :2 ' :a) 
w± w± w± 

1 (i± I'-± Ii:;: i± ) 
= j A ii±i:;: + ii:;:i± ' n±l-':;: + ii:;:I-'±' ii± ii:;:i:!: + n±i:;: . 

(2.30) 
In Eqs. (2.25)-(2.30) the upper signs in the subscript 
± or T refer to Xl > 0, while the lower signs refer to 
Xl < O. The contour c in (2.25) and (2.26) is parallel 
to and just above the real w axis. We may note that the 
exact solution [(2.25)-(2.30)] simplifies considerably 
in the special case where h = ja = O-for then 
g2 = ga = 0 and, hence, P2 = ps = O. 

From (2.27) we see that the Pi consist of the sum of 
four integrals. Since by (2.25) and (2.26) the solution to 
the interface problem consists of a multiple integral of a 
linear combination of the Pi' we conclude that the 
fields & and Je also consist of a linear combination of 
four corresponding integrals. These four integrals can 
be given a useful physical interpretation. In the order 
given in (2.27), the first two integrals correspond9 to a 
"primary wave" emitted by the source, the third to a 
"reflected wave" produced by the incidence of the 
primary wave on the interface, and the fourth to a 
"transmitted wave" corning from the other side of the 

• From (2.27) the ;1 integrals of the first two terms can be com
bined in the form 

a~ ftoo d;lexP{±iAII± IX1- ;ll}gl' 
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interface. Moreover, of the two integrals representing 
the primary wave, the first corresponds to a wave 
which is moving away from the interface, while the 
second corresponds to a wave moving towards the 
interface and which is thus incident on the interface. 
This identification will be borne out in the expansions 
we will develop. 

We will henceforth assume that the media which 
occur in our problem are "weakly dissipative," that is, 

E(w)""", t(w) + (ij),,)~(w), )" -- 00, (2.31) 

where t(w) and ~(w) are real functions for real w. 
It then follows from (2.22) that 

ii,...., n + {lj),,)n', (2.32) 
where 

n = [(W2!itjc2) - Ki]l, n' = w2!i~/2c2n. (2.33) 

It follows easily that we obtain a preliminary 
asymptotic expansion of our solution by merely 
removing the symbols "~,, from E, ii, iii, a~, b~, and 
w~ everywhere except in the exponentials defining 
the Pi' where instead we replace ii by the expression 
(2.32).10 Hereafter, when we refer to the equations 
defining these quantities, we shall assume that these 
approximations have been made. 

Handelsman5 has discussed the representation of a 
multipole oscillating about an arbitrary trajectory 
X = yet) by the source function 

J(t, X; ),,) = )"dF[t, )"{X - Y(t)}]e-o.(/(t). (2.34) 

Here, d is a real number to be chosen for conveniencell 

and for each t, F [t, X] is assumed to vanish identically 
for X outside some sphere of finite radius in X space. 
Moreover, by (2.17) we must also stipulate that F[t, X] 
vanishes for t outside the time interval L ~ t ~ t+. 

We note that, by the assumptions made on F[t, X], it 
follows that, as)" -- 00, the region in which J(t, X; ),,) 
is nonzero shrinks to 

X = Yet), L ~ t ~ t+. (2.35) 

Hence, it is reasonable that (2.34) represents the motion 
of a point source along the trajectory given by (2.35). 
In fact, this source is a generalization of the commonly 
used monopole source traveling on a straight line with 
constant velocity V which is given by 

J(t, X;),,) = )"deV~[A.(X - V(t»] 

== )"d-aeV~[X - Vt]. (2.36) 

By using (2.34), we simultaneously treat moving 
multipoles and more general moving localized sources. 
The inclusion of the factor e-iAq(t) enables us to 

10 More precisely, we define n by the first equation of (2.33) and 
replace fl by n everywhere except as noted above; we define rn l = 
(w"'cl)pe [cf. (2.21)] and replace in everywhere by rn; we define 
a~ = (ljM±) (I, I, I) and replace a~ by a~ everywhere, etc. 

11 Changing the number d in (2.34) merely has the effect of 
multiplying all fields by the same power of A. 

account for the effect of the point source making 
small oscillations about the trajectory (2.35) or for the 
effect due to oscillation of the source strength.5 

For the sake of being definite, we will stipulate that 
in (2.34) 

d = 2, Yl(U < O. (2.37) 

The latter condition means that the source starts on 
the left side of the interface. Furthermore, to simplify 
the analysis we will assume that 

Yl (t1) ~ h(t2), for tl > t2 • (2.38) 
We can now obtain an asymptotic expansion for 

& and Je by making use of the special form of the 
source function (2.34). The functions g; defined by 
(2.23) now have the form 

g;('T, ~., k2' ka; ),,) 
= ),,2h j ['T, ),,{~v - Y.('T)}, k2' kale-iM(d, 

where v, j = 1, 2, 3, (2.39) 

Thus, if we make the change of variables 

Yv = ),,{~v - Yv('T)}, v = 1,2,3, 

then (2.27) is replaced bylll 

p; ,....., ± .4: (t+d'TfdY2fdYa 
,)" w )t-

(2.41) 

x exp {-i),,[ k2yk) + kaYa('T) - W'T + q('T) 

-± (k2Y2 + kaYa)]} 

x {ai exp {±i)"( n± + ~ n~ ) [Xl - YI('T)]} 

f
).["'l-lIl(rl] 

X dyle'fin±Ylh;['T, Yv, k2' ka] 
-).lIl(t) 

+ ai exp {Ti)"( n± + 1 n~ ) [Xl - Yl('T)]} 

x (±OC> dYle±ill:±?lh;['T, Yv, k2' ka] 
L'r"'l-Yl(t)l 

+ hi exp { ± i)" ( n± + 1 n~) [Xl + h( 'T)]} 

x f±OC> dYle±ill±~lhi['T, Yv, k2' ka] 
-).lIl(t) 

+ :~ exp {±i)"[ (n± + 1 n~ )XI 
- (n'f +1n~)Yb»)} 

x f'f-~lIl(t)dYle'Fi"'f1lh;['T' Yv, k2' ka]}, 

v,j = 1,2,3. (2.42) 

11 Here and below we also make use of the weak dissipation ex
pansion described in the paragraph following Eq. (2.33). 
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We now consider the case in which the trajectory 
X = yet) intersects the interface Xl = 0. By (2.37) 
and (2.38), it then follows that there exists a unique 
time of crossing t e such that 

h(t) < 0, for C ~ t < to, 

h(t) > 0, for te < t ~ t+. (2.43) 

We introduce the Heaviside step function 

1][X] = 1, X ~ 0, 

= 0, X < 0, 

and the transform 

H*[T, K] = (hi, hi, ht) 

(2.44) 

= III dYI dY2 dYae-iK.rH[T, r, k2' ka]· 

(2.45) 

Then we obtain from (2.42) the further asymptotic 
approximation for large A: 

47T { 'i t

± Pi""' ±-. 2- a~ dTexp{iA[±n±[XI- yiT)] 
IA W Ie 

- k2Y2(T) - k3Y3(T) + WT - q(T)]} 
X e'Fn±,[Xl-1I1(T)]1][±{XI - YI(T)}] 

* X hi [T, ± n±, k2' k3] 

+ a~ (t± dT exp {iA[=Fn±[XI - yiT)] 
Jte 

- k2Y2(T) - k3Y3(T) + WT - q(T)]} 
X e±n±'[xI-Yl(T)]1][=F{XI - ylT)}] 

X hj[T, =Fn±, k2' k3] 

+ b~ (t± dT exp {iA[±n±[XI + YI(T)] Jle 

- k2Y2(T) - k3Y3(T) + WT - q(T)]} 

X e'Fn±'[XI-Yl(rl]h*[T In k k] 
] ,T ±' 2, 3 

+ ~ (todTexp {iA[±n±XI =F n=FYI(T) 
w~ Jq : 

- k2Y2(T) - k 3Ya(r) + (J)r - q(r)]} 

X e=Fn±'Xl±n±'vl(dh*[T ±n k k]} (2.46) 
" 'F' 2, 3 • 

We note that, if instead YI (t) < ° for C ~ t ~ t+, 
then in the expression analogous to (2.46) the last 
integral vanishes for Xl < 0, while for Xl > ° the first 
three integrals vanish. 

The vanishing of these integrals is easily explained 
in terms of the physical meanings previously ascribed 
to them. For since the particle remains in the region 

Xl < 0, there can be no transmitted wave in the region 
Xl < ° and no primary or reflected wave in the 
region Xl > 0. 

In the next section we shall employ the asymptotic 
expansion (2.46) for the Pi to obtain an asymptotic 
evaluation of the electromagnetic field corresponding 
to the phenomena of transition radiation. 

3. ASYMPTOTIC THEORY OF TRANSITION 
RADIATION 

As explained in Sec. 1, transition radiation is an 
effect due to the passage of a moving source through 
an interface. Thus, to obtain an asymptotic expression 
for the electromagnetic fields associated with this 
phenomena, we assume in this section that the tra
jectory (2.35) definitely intersects the interface Xl = 0. 
For convenience, we assume that the time of crossing 
te , defined by (2.43), is t = ° and that the point of 
crossing is the origin, that is, 

c < te = ° < t+, YeO) = 0. (3.1) 

In Sec. 2, we pointed out that the exact solution 
consisted of linear combinations of multiple integrals 
of four distinct types. This basic form has been 
preserved in the partial asymptotic expansion given by 
(2.25), (2.26), and (2.46). The four types of integrals 
referred to above may be distinguished by their phases, 
which (aside from a factor A) are 

lP~ = ±n±[xi - Yl(T)] + k2[X2 - yb)] 

+ k3[X3 - Y3(T)] - w[t - T] - q(T), (3.2) 

lP~ = =Fn±[xi - Yl(T)] + k2[X2 - Y2(T)] 

+ k3[X3 - YiT)] - w[t - T] - q(T), (3.3) 

lP"± = ±n±[x1 + h(T)] + k2[X2 - yb)] 

+ k3[X3 - Ya(T)] - w[t - T] - q(T), (3.4) 

lP~ = ±n±xl =F n=FYl(T) + k2[X2 - Y2(T)] 

+ ka[xa - YiT)] - w[t - T] - q(T). (3.5) 

Here we have superscripted the four phases in a 
manner which is suggestive of the interpretations 
ascribed to the corresponding integrals. Thus, lP~ is 
the phase we have associated with the wave moving 
away from the interface and similarly lP~, lP;;', and lP~ 
are, respectively, the phases we have associated with 
the waves which are incident on, reflected from, and 
transmitted through the interface. 

The primary tool that will be employed in obtaining 
the asymptotic evaluation of the integrals that define 
the fields E and Je for large A is the method of multiple 
stationary phase.4 
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There are two equivalent viewpoints which may be 
taken. The explicit viewpoint is that for each fixed 
(t, X) we find the values of the variables of integration 
for which the phase is stationary; then the given inte
gral is asymptotic to a sum of contributions from these 
values. The parametric viewpoint is that for each fixed 
set of values of the integration variable we find the 
locus of all points (t, X) such that this set of values 
makes the phase stationary; then the given integral 
is asymptotic to the sum of contributions from those 
loci which contain (I, X). 

We will find that, in general, the locus corresponding 
to each set of values of the integration variables is a 
straight line in (t, X) space. We shall refer to this line 
as the ray1a associated with the given set of values of 
the integration variables. The form of the rays asso
ciated with each contribution to the asymptotic ex
pansion of the electromagnetic field will allow us to 
ascribe an appropriate physical interpretation to each 
of these contributions. Thus, the rays assume the 
highest importance in our theory. 

In order to carry out the stationary phase evaluation 
of the integrals [(2.25) and (2.26)] defining e and .re, 
we deform the contour c to the real w axis. From (2.46) 
and Lemma 5 of the Appendix, we can see that the 
solution is exponentially small in A for real w, k2' ka 
such that 

(3.6) 

Furthermore, the contributions from the real branch 
points (W2fl±E±/C2 = K), are of lower order than those 
we will consider.14 Thus, in our stationary phase eval
uations we may confine our attention to the "param
eter spaces" :I' ±, defined as the set of all real triples 
(w, k2' ka) such that 

(3.7) 

The leading term of the electromagnetic field defined 
by (2.25), (2.26), and (2.46) and (3.1) is obtained by 
performing multiple stationary phase with respect to 
w, k2' ka, r. We adopt the parametric viewpoint and 
obtain the loci (rays) which, for each fixed set w, k2' 
ka, r, make the phases 9'~, 9'~, 9':;', 9'~, defined by 
(3.2)-(3.5), stationary. We consider only values of w, 
k2' ka which lie in :I' ± and only those values of r which 
lie within the limits of the respective integrations over 
r in (2.46). 

Consider, for example, an integral defining the 
electromagnetic field for Xl > 0 which contains the 

13 In the cases treated here, these rays are identical to those pre
dicted by the ray theory presented in Ref. I. 

14 It can be shown that the branch-point contributions are at most 
O().-l). We shall only investigate terms which are 0(1) and O().-t). 

phase ~. These integrals have the form 

",,(t, X; A) = J dw J dk2J dkaf+ drA(w, k2' ka, r)eiA'P+G 

(3.8) 
The stationary phase relations 

oa oa oa oa 0 
ow 9'+ = Ok2 9'+ = oka 9'+ = Or 9'+ = 

yield the equations 

X = Y(r) + [n+(n+)",]-lK(t - r)lkl=n+, 

w = q(r) + K· Y(r)/kl=n+' 

(3.9) 

(3.10) 

where the dot denotes differentiation w.r.t. r and where 
we have 

(w, k2' ka) in :I'±, O:S;; r:S;; t+. 

Here we have introduced the vector 

K = (kl' k2' ka) 

and have used the notation 

(3.11) 

(3.12) 

(3.13) 

The rays defined by (3.9) evidently emerge from the 
particle trajectory X = yet) at the time 1 = r, with 
the velocity vector [n+(n+).,]-IKlkl=n . Moreover, 
(3.10) is just the familiar "Doppler-C;renkov law" 5 

governing the emitted frequencies on these rays. We 
can thus conclude that the leading term of the ex
pansion of the integrals of the form (3.8) corresponds 
to Doppler-Cerenkov radiation. Moreover, in the 
parameter space :1'+, we have, by Lemma (6) of the 
Appendix, that 

Thus, the ray (3.9) propagates in the direction of in
creasing Xl' that is, away from the interface. This 
bears out the significance given to the integrals con
taining the phase 9'~ in Sec. 2. 

In a similar manner we could investigate the leading 
contributions from the other types of integrals which 
occur in our partial expansion [(2.25), (2.26), and 
(2.46)]. For each of them we could obtain equations 
analogous to (3.9) and (3.10), and in each case we 
would find that this leading term corresponds to 
Doppler-Cerenkov radiation and that the associated 
rays propagated in a way consistent with the inter
pretation ascribed in Sec. 2 to the various integrals. 
The multiple stationary phase formula' would then 
allow us to obtain a parametric representation of the 
electromagnetic fields due to Doppler-Cerenkov 
radiation. Since these effects are discussed in great 
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detail in Ref. 5, we shall not examine them further 
here. However, we remark that these terms are all 
0(1) with respect to A. 

The next highest order contributions to the fields 
E and H come from "edge-critical points" on the 
boundary of the domain of integration.15 They can be 
obtained by integrating by parts with respect to 'T and 
then performing a stationary phase evaluation with 
respect to the remaining integration variables, w, k2' 
-and k8 • We observe from (2.46) that there are three 
such end-point contributions in 'T, namely. 'T = L. 
'T = te = 0, and 'T = t+. The first and third of these 
give rise to transient effects.le Here we will assume that 
the point source starts smoothly from rest at t = L 
and goes smoothly to rest again at t = t+ .17 In this 
case the contributions from 'T = t± are of lower order 
in A than the contribution for 'T = 0, and we shall 
neglect them. 

Denoting the contribution from 'T = 0 by a super
script T (for-"transition radiation"), by integration by 
parts in (2.46) we obtain 

P
T ,...., ± 47T e.,-i.<Q(OI 
i A8W 

X {a1 exp [±iAn±xl ] exp [=Fn~xl]1'}[±Xl] 
hnO, ±n±, k2 • ka] x .,. 

w - q(O) =F n± Yl(O) - k2 Y2(0) - ka Ya(O) 

+ a1 exp [=FiAn±xl] exp [±n~xl]1'}[=Fxl] 

hnO, =Fn±, k2' ks] x ... 
w - q(O) ± n± Yl(O) - k2 Y2(0) - ka Ya(O) 

+ bi exp [±iAn±xl] exp [=Fn~xl] 

h:[O, =Fn±, k2' ka] x .,. 
w - q(O) ± n± Yl(O) - k2 Y2(0) - ka Ya(O) 

- ~ exp [±iAn±xd exp [=Fn~xl] 
w± 

hf[0,±n'f,k2,ka] } 

x w _ q(O) =F n'f Yl(O) - k2 Y2(0) - ka Ya(O) . 

(3.14) 

Here we have used the values to = 0, Y(O) = 0 given 
by Eq. (3.1). 

Since the upper (lower) sign refers to Xl > 0 
(Xl < 0), we see that 1] [±Xl] = 1, 1][=FXl] = O. Thus, 
the second term in (3.14) vanishes. This is the term 
which we have associated with a wave moving towards 

15 D. S. Jones and M. Kline, J. Math. & Phys. 37. 1 (1958). 
18 R. M. Lewis, "Asymptotic Theory of Transients," in Proceedings 

of the Delft Symposium, 1965 (Electromagnetic Wave Theory) 
(Pergamon Press, New York, 1967). 

17 That is, the source function (2.34) is supposed to vanish 
smoothly at t = '±' 

the interface. Since we expect the transition radiation 
to emerge from the interface, the vanishing of this 
term is entirely consistent with the meaning assigned to 
it. Thus, using the notation developed in (3.12) and 
(3.13), we have 

{ 
; hj[O, K] I x a± • 

w - q(O) - K • Y(O) kl=±n± 

+ b~ .hnO, K] . I 
w - q(O) - K • Y(O) kl==t=n± 

1 hnO, K] I } 
wi w - q(O) - K· Y(O) kl=±"'f . 

(3.15) 

We notice that in (3.15) the three phases corre
sponding to the waves away from. reflected from, and 
transmitted through the interface have reduced to a 
single common phase. This means that the three 
waves corresponding to these phases can no longer be 
distinguished from one another. This is again con
sistent with the notion that the transition radiatioQ 
emerges from a point on the interface. 

By (3.15) we have 

Thus, by (2.25) and (2.26), we have 

&T(t, X) ,...., ~ fdwfdk2fdka 
(27T) 

x exp [iA(k2x2 + kaxa - wt)] 

1 x - [(p[ - n±pf)K2N + m;pf(x x N) 
E± 

- (p[ - n±Pf)n±x], (3.17) 

JeT(t, X),...., AS a fdwfdk2fdka 
(27T) 

X exp [iJl(k2X2 + ksxs - wt)] 

X ~ [-piK2N + (pi - n±pf) 
c 

X (x x N) + pIn±K]. (3.18) 

[Here we have also used the weak dissipation assump
tion (2.31). See the discussion following (2.33).] We 
now perform stationary phase evaluation of (3.17) and 
(3.18) with respect to w, k2' ka • We adopt the para
metric viewpoint and obtain the loci (rays) which, for 
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each fixed set co, k 2 , ka in ~ ±, make stationary the 
phase 

({!± = ±n±xI + k2X2 + kaxs - cot - q(O) (3.19) 

appearing in the expansion given by (3.15), (3.17), 
and (3.18). 

The stationary phase relations 

(ojoco)({!± = (olok2)({!± = (oloka)({!± = 0 

yield the equations 

(3.20) 

From the stationary phase formula4 we obtain from 
(3.15), (3.17), and (3.18) a parametric representation, 
with parameters co, k2' ka, of the transition radiation 
fields given by (3.20) and 

t;T "" (2)t exp [i),({!T - n~ t + i1T sig ({!;,;] 
),1T (n±)co 4 

x [Idet ({!;';lrt 

x _1_ [err - n±ri)K2N + m;rl{x x N) 
COE± 

- (rr - n±rDn±x], (3.21) 

Je T "" (2)t exp [i)'({! T _ n~ t + i 1T sig ({!;,;] 
),1T (n±)co 4 

x [Idet ({!';lrt 

x 1 [-rl' K2N + (rr - n±rD 
c 

x (x x N) + rl'n±x]. (3.22) 

Here and below the upper (lower) sign refers to 
Xl > 0 (Xl < 0) and 

and 

({!T = (~ _ co) t - q(O), 
(m±)co 

(3.23) 

(3.24) 

(3.25) 

r; = ±),[a~ hf[O, K] . I 
co - ti(O) - K • YeO) k,=±n± 

+b*----h~j~[O~,~K~]~ __ 1 

' co - ti(O) - K • YeO) kl='fn± 

1 hf[O, K] I ] 
- W~ co - q(O) - K • YeO) k,-±n'f . 

(3.26) 

The quantities m~, n~, a~, b~, IjW~ are defined by 
(2.21), (2.22), (2.28), (2.29), and (2.30), respectively,18 
and the hj [0, K] are defined by (2.34), (2.40), and 
(2.45). Since the quantities a~, b~, 11 W~ all contain 
the factor II)', the r; are 0(1) with respect to ), and, 
thus, the fields t;T andJeT given by (3.21) and (3.22) are 
O(),-t), a half-order lower than the Doppler-Cerenkov 
fields. 

The rays defined by (3.20) emerge from the point 
X = 0 at the "time of transition" t = 0, with the 
velocity vector [n±(n±)",]-lK\k1_:l:n ±' Thus, we conclude 
that the contribution t;T, JeT to the asymptotic ex
pansion of the electromagnetic field is, indeed, transi
tion radiation. We also note that in the parameter 
spaces ~ ± Lemma 6 of the Appendix shows that 

is positive for Xl > 0 and negative for Xl < O. Thus, 
in both media we have propagation away from the 
interface. 

It is a general feature of asymptotic solutions to 
partial differential equations that, on the common ray 
between contributions of different orders, the lower
order contribution becomes singular. This is ex
emplified in the expansion just derived-for by (3.26) 
our expansion fails when 

co = ti(O) + K· YeO), kl = n+, n_, -n+, or -n_, 

(3.27) 

and (3.27) is just the Doppler-Cerenkov law19 for the 
various waves of the zeroth-order field evaluated at the 
time when the source trajectory crosses the interface. 

The expansions obtained so far for the transition 
radiation fields have been derived under the assump
tion that both media are actually electrically dispersive. 
An expansion which is valid for the case when one 
medium is nondispersive is of obvious interest for com
parison with experiments. In a nondispersive medium, 
however, E is not a function of co, and this has the con
sequence that det ({!fv vanishes.20 Thus, the expansions 
(3.21) and (3.22) are not valid in this case. 

Since the expansions (3.15), (3.17), and (3.18) are 
valid for all weakly dispersive media, we will use them 
to obtain asymptotic expansions for the transition 
radiation fields in the case where the region Xl > 0 is 

18 It is understood that we are to remove the symbols ,,~ .. in 
these expressions. 

19 Compare (3.27) with (3.10). 
2. For a nondispersive medium, m = (w/c)(Ep,)l, where E and p, 

are independent of w. Hence, m",,,, = O. 
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a vacuum.21 We then have 

E+ = E+ = 1, ft+ = 1, n!::;: (W2jc2) = K2, 

m! = (W
2jc2

), n~ = O. (3.28) 

In the vacuum we perform stationary-phase evaluation 
only with respect to k2' ka in :J' ±. By (3.19) the 
stationary-phase relations yield the equations 

X2 - (k2jn+)x1 = 0, Xa - (kajn+)xl = 0, (3.29) 

which, when solved for k2 and ka, yield 

k 
_ WX2 

2-
C(X~ + X~ + X~) , 

k 
_ WXa 

3-
C(X~ + X~ + x~) 

(3.30) 
We define 

( 2 2)! p = X2 + Xa , 

Then, at the stationary point, we have the relations 

K2 = (W2jc2)(p2/R2), n+ = wXljcR. (3.31) 

Thus, by (3.19), 

rp+ = rp(Rjc - t) - q(O). (3.32) 

If we define the vectors 

Nl = N = (1,0,0), N2 = (0, 1,0), 

Na = (0,0, 1), (3.33) 

then, from (3.15), (3.17), and (3.18), we obtain the 
following representation of the fields in the vacuum: 

SV ,.....,.l:.- fdW 
?TC

2 

X exp [iA[ w(~ - t) - q(O)] + i; sig rpJ;] 

X [Idet rpJ;n-!w[ (rf - :;1 rr) ;: Nl 

(3.34) 

(3.35) 

11 Similarly, we could deal with the case where Xl < 0 is a vacuum. 

Here 

det rpJ; = c2R4jw2Xl' sig rp0 = - 2 sgn w, (3.36) 

and the rf arise from the rj given by (3.26) if we make 
the substitutions given by (3.30). 

We note that the expansions (3.34) and (3.35) have 
the form of an outgoing spherical wave from the point 
t = 0, X = 0, which is entirely consonant with our 
intuitive notions about transition radiation. 

Finally, we wish to show that our results agree with 
those given in the literature for certain special cases of 
(2.34). For this comparison the paper of Garibian2 

is the most convenient to consider, since he obtains a 
preliminary expansion analogous to that given by 
(3.15), (3.17), and (3.18). In this paper, Garibian 
considers the special case of (2.34) given by 

q(t) == 0, Y = (vt, 0, 0), F = (fl' 0, 0), (3.37) 

where 

1 11 = ,12 vec5(x1 - vt)c5(x2)c5(xa) 

= Avec5[A(Xl - vt)]c5[AXa], (3.38) 

in media where qissipation may be entirely ignored. 22 

It then follows from (2.40) and (2.45) that 

hNo, K] = ;2 ve, h:[O, K] = 0, h:rO, K] = 0. 

(3.39) 

Hence, by (3.15), pf = if = ° and 

where 

n = G: ± ~ n~ ) / (:2
2 
- n!) 

+ (-1~~n'f)/(:22 -n~). (3.41) 

Thus, by (3.17) and (3.18), for the special case under 

II That is, we set the <5(00) appearing in (2.31) equal to zero. Con
sequently, the quantity n'± = O. 
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consideration we have 

ET(t, X) ,..., ± +. fdwfdk 2fdka 
217 AIV 

X exp {iA[±n±xI + k2Xa - wt]} 

x 'Yj [/(2N - n±)(], 
n±€'F + n'F€± 

,JeT(t, X) ,..., ± +. fdwfdk2fdka 
217 AIV 

(3.42) 

X exp {iA[±n±xI + k2x2 + kaxa - wt]} 

(3.43) 

The expressions (3.42) and (3.43) agree with Eqs. (4) 
and (9) of Ref. 2, except for the appearance here of the 
expansion parameter A and changes in notation.2a 

APPENDIX: LEMMAS CONCERNING n AND 
RELATED QUANTITIES 

In Sec. 2 we defined ~(w) by 

~(w) = 1 + f ei&'lI(t) dt. (AI) 

Here we assume that fI(t) is real valued, integrable, 
and that it vanishes for t < O. These conditions on 
fI(t) imply (a) that ~(w) is analytic for 1m w > 0, 
(b) that ~(w) is free of singularities for real w, (c) that 
~(-w*) = ~*(w), and (d) that ~(O) is real. Landau 
and Lifshitz24 show that further appropriate physical 
assumptions about ~(w) are (e) ~(oo) = 1 and (f) 
1m ~(w) > 0 for w real and positive. In order that 
e(w) as defined by (AI) should satisfy properties (e) 
and (f), it is sufficient (although not necessary) to 
assume that 

fI(t) -- 0, t -- 00, fI(t I) ~fI(t2) > 0, tl < t2• 
(A2) 

Elsewhere25 Landau and Lifshitz develop the notion 
of "generalized susceptibility." Conditions (a)-(f) are 
sufficient to show that feW) is a generalized suscepti
bility in this sense. It then follows easily that ~(w) and 

fi2(w) = (w2/e2)f-tE - /(2 (A3) 

are also generalized susceptibilities. 
From a general property of generalized suscepti

bilities proved in Ref. 25, we have the following: 

13 Garibian's notation is related to ours by the following relations: 
w/v = k .. n_ = -At. n+ = A •• n±£'F + n'F£± = -,. (w"/v") + 
1(1 = kl. Also. he replaces our w integration by a k. integration using 
the relation dw = v dk •• 

14 L. D. Landau and E. M. Lifshitz. Ref. 6. 
16 L. D. Landau and E. M. Lifshitz. Statistical Physics (perga

mon Press. New York. 1958). 

Lemma 1: For 1m w > 0, fi2(w) is real only on the 
positive imaginary axis, where it decreases monotoni
cally from _1(2 at w = iO to - 00 at w = ioo. 

In Sec. 2 we defined n as that square root of n2 which 
takes on the value il( at w = O. As consequences of 
Lemma 1, we have: 

Lemma 2: 1m new) > 0 for 1m w > O. 

Also we have: 

Lemma 3: 1m new) > 0 and sgn Re new) = sgn w 
for w real. 

We now obtain some related results which follow 
from the "weak dissipation" condition 

E(W) -.. E(W) + ~ o(w), A. -- 00. 
A 

(A4) 

Here E(W) and dew) are real valued for real w. From 
(A3) and (A4) it follows that, for A. __ 00,26 

. 2)t 2 .Il _ I, Wp'E 2 ,w u 
n ,..., n + - n n = (-- - I( n =-L 

A ' e2 ' 2e2n . 

(A5) 

Using (A5) and the Lemma 3 we can establish the 
following: 

Lemma 4: If w2f-t€/e2 > 1(2, then n' ~ 0, sgn n = 
sgn w. 

In Ref. 24 it is shown by physical arguments that, 
whenever Re feW) » 1m e(w) is a real frequency range, 
then the inequality 

d~ [£0 Re e(w)] > 0 (A6) 

must hold in that frequency range. We will assume that 
feW) actually has that property. It then follows at once 
that, whenever E(W)>> A-Id(w) in a real w interval, the 
inequality 

d 
- [WE(W)] > 0 
dw 

is satisfied. We now can establish the following: 

10 Again. we choose the square root such that n(O) = tl(. 
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The notion of a local internal symmetry is discussed with reference to local physical theories and 
tentative definitions are presented. It is shown that under fairly general assumptions commonly made 
about local theories a local internal symmetry commutes with all translations. 

I. INTRODUCTION 

In this paper we shall be concerned with a general 
property of local fundamental theories, such as the 
theory of local von Neumann algebrasl or orthodox 
quantum field theory.2 It is a characteristic assumption 
of such theories that all physical phenomena can be 
described in terms of local variables: i.e., physical 
variables associated with arbitrarily small regions in 
space-time, and such that the variables associated 
with any two spacelike separated regions are physically 
independent. 

Consider a bounded region R in space-time. We 
might define a local internal symmetry G as a unitary 
transformation G which maps, by conjugation, the 
variables associated with the region R onto itself. 
It might then be conjectured that G will commute 
with all translations in the Poincare group. We shall 
prove that this conjecture is indeed correct under 
some fairly general assumptions commonly made 
about local theories. 

We shall first discuss this question within the 
framework of the theory of local von Neumann 
algebras and prove a theorem which expresses the 
translation invariance of a local internal symmetry. 
In order to show what the conclusion really depends 
on, we shall, at first, not assume more about the local 
theory than is necessary for the proof of the theorem. 
After that, we shall discuss additional conditions on 
local internal symmetries, which seem to us to be well 
motivated on physical grounds. Finally, we shall 
show how our methods can be modified to prove the 
translation invariance of a local internal symmetry 
within the framework of orthodox quantum field 
theory. 

• Research supported partially by the Air Force Office of Scientific 
Research, Office of Aerospace Research, United States Air Force, 
under Grant No. AF-AFOSR-68-1471. 

1 A. S. Wightman, Ann. Inst. Henri Poincare t, 403 (1964). 
I R. F. Streater and A. S. Wightman, peT, Spin & Statistics, and 

All That rH. A. Benjamin, Inc., New York, 1964). 

II. LOCAL INTERNAL SYMMETRIES IN THE 
THEORY OF LOCAL VON NEUMANN 

ALGEBRAS 

We base our discussion on the following assump
tions: 

(i) Local algebras of operators: The physical states 
are described by vectors in a separable Hilbert space 
.re. With every bounded open set R in four-dimensional 
configuration space is associated a von Neumann 
algebra B(R) of bounded operators on.re, i.e., B(R) is 
a weakly closed *-algebra of bounded operators such 
that B(R) = B(RY' , where B(R)" is the commutant 
of B(R)', which is the com mutant of B(R). [The 
physical interpretation of B(R) is that it is the von 
Neumann algebra generated by the operators which 
describe physical observables associated with R.] 

(ii) Translation invariance: The Hilbert space Je 
carries a strongly continuous unitary representation 
of the translation group, with elements 

T(x) = f ei""'P dEep). (1) 

The set of local algebras transforms onto itself 
under' conjugations by translations, i.e., for any 
bounded open set R, 

T(x)B(R)T(x)-l = B(R + x), (2) 

where (R + x) denotes the set of all points x + y 
withy ER. 

(iii) Spectral condition: The support of the spectral 
measure E{p) in the common spectral resolution (1) of 
the translations is contained in the closed forward 
cone V'+ in momentum space, 

supp {E(p)} C 11+ = {p I p . p ~ 0, P4 ~ O}. (3) 

(iv) Cyclic vacuum state: There exists pne and only 
one vector, Ivac), which is invariant under transla
tions. For every bounded open set R, Ivac) is cyclic 
with respect to B(R), i.e., the set of vectors B(R) Ivac) 
is dense in .re. 

306 
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(v) Locality: For every pair of bounded open sets 
Rl and Ra in 4-space which are spacelike separated 
from each other, all operators in B(Rl ) commute with 
all operators in B(Ra), i.e., 

B(Rl ) c: B(Ra)', whenever Rl c: ~~, (4) 

where we employ the notation R' to denote the 
interior of the set of all points which are spacelike 
with respect to R. 

We shall now state and prove a theorem concerning 
the translation invariance of a unitary transformation 
G under two assumptions which we feel are appro
priate for local internal symmetries. 

Theorem 1: If G is a unitary operator on Je such 
that 

G Ivac) = Ivac) (5a) 

and such that, for every pair of bounded open sets 
Rl and Ra in 4-space which are spacelike separated 
from each other, all operators in GB(R1)G-l commute 
with all operators in B(Ra), i.e., if 

GB(R1)G-l c: B(Ra)', whenever Rl c: R~, (5b) 

then G commutes with all translations 

T(x)GT(x)-l = G, for all x. (5c) 

Proof: We give the proof in several steps. 
(i) In our proof we will actually need condition 

(5b) only for regions Rl and Ra which are in the set of 
all regions obtained by translations of a fixed region 
Ro. The choice of Ro is in fact immaterial, but for 
simplicity we shall make a definite choice as follows. 

(ii) For any point x in 4-space we denote by V+(x) 
the interior of the forward light-cone with x as apex 
and by V_ex) the interior of the backward light-cone 
with x as apex. Let Xo be a point such that Xo E 

V+( -xo): i.e., the four-vector Xo is forward timelike. 
We choose Ro to be the nonempty bounded open set 

Ro = V+( -xo) n V_(xo) , (6a) 

and we also define a larger bounded open set R. by 

R. = V+( -2xo) n V_(2xo). (6b) 

With these definitions it follows that Ro is spacelike 
separated from (Ro + x) whenever x E R:. 

(iii) Let a unitary operator G satisfy the premises 
of the theorem and let bi and ba be any two elements 
of B(Ro). With the notation 

G(x) = T(x)GT(x)-l, b(x) = T(x)bT(x)-l, (7) 

we then have 

[G(y)b1G(y)-\ b2(x)] = 0, for any x E R;, all y. 

(8) 

(iv) We introduce the function 

F(x, y) = (vacl [G (y)b1G (y)-l , b2(x)] Ivac) 

= <vacl b1G(y)-lba(x) Ivac) 

- (vacl b2(x)G(y)b1 Ivac), (9) 

which is bounded and continuous in both variables. 
The condition (8) implies that 

F(x, y) = 0, for any x E R;', all y. (10) 

(v) As a motivation for what follows, let us state 
that the crucial step in the proof is the demonstration 
that the Fourier transform t(x, q) of F(x,y) with 
respect to the variable y vanishes identically as a 
function of x whenever q ¢ O. That this is so will be 
seen to follow from the nature of the support of 
t(x, q) in x space [which is essentially determined 
by the local character of the transformation G as ex
pressed by (10)] and the nature of the support of the 
Fourier transform (with respect to x) of t(x, q) in 
momentum space [which is essentially determined by 
q and by the spectral condition (3)]. Once this property 
of t(x, q) has been established, it readily follows that 
each term in the extreme right-hand side of (9) is 
independent of y for every x, which, in effect, expresses 
the translation invariance of G. 

(vi) Let q' ¢ 0 be a point in 4-space. Let 'YJ(q') be a 
(nonzero) forward timelike 4-vector such that the 
origin in q space is not included in the set 

V+(q' - 2'YJ(q'» n V_(q' + 2'YJ(q'». 

Such an 'YJ(q') can obviously always be found, given q'. 
In the following we shall abbreviate 'YJ(q') by 'YJ, the 
above constraint being understood: 

Let K(q') be the neighborhood of q' defined by 

K(q') = V+(q' - 'YJ) n V_(q' + 'YJ). (11) 

Let h(q; q') be an infinitely differentiable function 
of q with support in K(q'). We denote its Fourier 
transform by hey; q'), that is, 

hey; q') = I d4(q)h(q; q')exp(iy' q), (12a) 

and we define the function F(x; h) by 

F(x; h) = f d'(y)F(x, y)lI(y; q'). (12b) 

We then have 

F(x; h) = 0, for any x E R~, (12c) 

which we can express in terms of the support of F as 

supp {F(x; h)} c: V+( -2xo) u V_(2xo), (13) 
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where here and in the following P+(x) denotes the 
closure of V+(x) and V_ex) denotes the closure of 
V_ex). 

(vii) Let us write 

F(x; h) = Fl(x; h) - F 2(x; h), (14a) 
where 

Fl(x; h) = f d4(y) (vacl blG(yrlb2(X) Ivac)h(y; q'), 

(14b) 

F 2(x; h) = f d4(y) (vacl b2(x)G(y)bl Ivac)h(y; q'). 

(14c) 

The functions F(x; h), Fl(x; h), and F2(x; h) are 
continuous bounded functions of x and, hence, 
tempered distributions. Their Fourier transforms 

Pl ,2(P; h) = f d4(x)Fl ,2(X; h) exp (- ix . p), (15a) 

Pep; h) = Pl(p; h) - Plp; h) (15b) 

will accordingly also be tempered distributions. 
Because of the spectral condition (3) and because the 
support of h is confined to K(q'), we obtain 

supp {Pl(p; h)} c P+ n V+(q' - 'YJ), 

supp {P2(p; h)} c V_ n V_(q' + r/), 

from which it readily follows that 

supp {Pcp; h)} c (V+ U V-Cq' + 'YJ» 

(16a) 

(16b) 

n (V_ U V+(q' - 'YJ». (17) 

(viii) We note that the condition (17) is, in general, 
less restrictive than the conditions (16). For our 
purpose it will be convenient to replace the condition 
(17) by a still weaker but simpler condition as follows: 
for every q' there exist two points q+ and q_ such that 

supp {pep; h)} c V+(q+) U V_(q_) (18a) 

and such that 

V+(q+) n V_(q_) = O. (18b) 

To see that the support of pep; h) satisfies such a 
condition, we note that, by the selection of 'YJ in (vi) 
above, the origin in p space is not contained in the set 
f1+(q' - 'YJ) n V_(q' + 'YJ); this means that at least one 
of the sets V+ n V_(q' + 'YJ) and V+(q' - 'YJ) n V_ is 
empty. If V+ n V_(q' + n) is empty, we select q+ = 0, 
q_ = q' + r/; otherwise, we select q+ = q' - n, 
q_ = O. In both cases the condition (17) implies 
condition (l8a) and condition (I8b) follows from the 
choice of q+ and q_. 

(ix) Let $ denote the complement of the set 
V+(q+) U V_(q_). As a tempered distribution PCp; h) 
accordingly vanishes in $. We shall now make use of a 
theorem proved by Araki,3 which asserts that, given 
a region $ in which a tempered distribution [in our 
case Pep; h)] vanishes and given that the support of 
its Fourier transform F(x; h) satisfies the condition 

(13), there exists a region $, in general larger than $, 
in which the distribution Pep; h) will also vanish. 
We shall show that on the basis of the principles 
presented in the quoted paper for the determination of 

$ the region $ will, in fact, be all of p space, i.e., the 
distribution Pep; h) = O. 

The ideas which underlie the discussion in Araki's 
paper can be briefly described as follows: 4-dimen
sional p space is interpr-eted as the plane s = 0 in a 5-
dimensional pseudo-Euclidean space in which the 
Cartesian coordinates are (s, p) and in such a way that 
the s axis is of a spacelike character and orthogonal 
to the plane s = O. Araki then shows that there is 
associated with every tempered distribution (in p 
space) which vanishes in an open region $ and whose 
Fourier transform satisfies the condition (l3), an 
infinitely differentiable solution f(s, p) of the wave 
equation in the 5-dimensional space, such thatf(s,p) 
and its normal derivative vanish on the plane s = 0 
in a region $1 which is contained in $ and which can 
be chosen to approximate $ arbitrarily closely. 
Furthermore: the given tempered distribution will 
vanish in every region on the plane s = 0 in which 
f (s, p) and its normal derivative vanish. In view of the 
above, known uniqueness theorems for hyperbolic 
differential equations with constant coefficients can be 

exploited in the determination of the region $: The 

region & is the region on the plane s = 0 in which 
every solution of the wave equation will vanish 
together with its normal derivative, provided it 
vanishes together with its normal derivative in the 
region $ on the plane s = O. In particular, $ will be 
all of p space if there exists a spacelike plane ~ 5 in the 
5-dimensional (s, p) space, such that every solution 
of the wave equation vanishes together with its normal 
derivative on ~5 whenever the solution vanishes to
gether with its normal derivative in the region $ on the 
plane s = O. This is, in fact, the situation in our case, 
as can be seen as follows: 

(x) In view of the conditions (18) there exists a 
spacelike plane ~ in p space such that the cone 
V+(q+) lies on one side of ~ and the cone V_(q_) lies 

3 R. Araki, Relv. Phys. Acta 36, 132 (1963). We refer specifically 
to Lemma 8. It may be noted that in our discussion the roles of the 
position and momentum coordinates are reversed relative to their 
roles in Araki's paper. 
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on the other side and such that the plane (J' passes dense in the Hilbert space Je, it follows that 

through the point t(q+ + q-). Let (J'6 ·be the plane T(y)GT(y)-l = G(y) = G, (24) 

(19) 

and let n be the unit normal to (J' 5' Let p' be any 
point of (J' and let A > 0 be such that the line 
segment [p' - An,p' + An] lies in $. Now if a solu
tion of the wave equation in (s, p) space vanishes 
together with its normal derivative in $ on s = 0, 
then the solution will vanish together with its normal 
derivative in the region 

S2 - (p - p')2 < ).2, (s,p) E~5' (20) 

in the plane (J'6' A trivial computation now shows that 
for every (s, p) E (J' 5 there exist a p' E (J' and a corre
sponding A, such that the inequality (20) is satisfied. 
[We can select p' such that it is "sufficiently large" and 
perpendicular to p and to the projection of (q+ - q_) 
into (J'.] It follows that the solution of the wave equa
tion will vanish together with its normal derivative 
everywhere on 3'5 and, hence, everywhere in (s,p) 

space. The region $ is thus all of p space, and the 
distribution F(p; h) accordingly vanishes for all p.4 

(xi) According to the relations (16) the supports 
of the two distributions FI(p; h) and F2(p; h) are 
disjoint in p space. Since we have shown that their 
difference F(p; h) vanishes identically, it follows that 
each distribution separately must vanish identically. 
We thus have 

F2(p; h) = 0, F2(x; h) = 0, for all x. (21) 

In view of the definition (l4c) and the second rela
tion (21), we then have 

F 2(0; h) = f d4(y) (vacl b2G(y)bI lvac) hey; q') = O. 

(22) 

(xii) Since the tempered distribution 

is actually a continuous bounded function of y, it 
follows immediately from the validity of (22) for all 
q' ¥- 0 that 

(23) 

Since bl and b2 are arbitrary elements of B(Ro) and 
since we have assumed that the set B(Ro) Ivac> is 

, A very similar situation concerning the supports of a tempered 
distribution and its Fourier transform has been discussed by one of 
us elsewhere: L. J. Landau, Commun. Math. Phys. 13, 246 (1969). 

which thus establishes the theorem. 

III. DISCUSSION 

It is clear from the proof of this theorem that the 
assumptions can be relaxed. It suffices, for instance, 
that for a fixed region Ro the vectors B(Ro) Ivac> are 
dense in Je and that the condition (Sb) holds only for 
all regions Rl and R2 obtained by translations of Ro. 
Such a sharpening of the theorem does not seem to 
increase its physical interest. 

The condition (Sa) that the vacuum state vector is 
invariant under G cannot, however, be omitted. A 
simple counterexample is provided by the case of the 
system of algebras generated by a single Hermitian 
free scalar field 1>(x): for a real test function rex) the 
unitary transformation exp (i1>[r)) (which does not 
preserve the vacuum state) satisfies the condition (Sb), 
but it obviously does not commute with all transla
tions. 

In a realistic local theory we require invariance 
under (the identity component of) the entire Poincare 
grouP? rather than under the subgroup of transla
tions. We should therefore replace the postulate (ii) by 
the following: 

(ii)' Poincare invariance: The Hilbert space Je 
carries a strongly continuous unitary representation 
U().) of the Poincare group"j. The set of local algebras 
transforms onto itself under conjugation by U(A) as 
follows: 

U().)B(R)U().)-l = B(R;) (25) 

for every A E"j, for every bounded open set R, and 
where R;,. is the image of R under the action of ).. 

The conditions on G in the theorem are minimum 
conditions which a "local (internal)" symmetry ought 
to satisfy . We shall here present a definition. 

Tentative definition: A local internal symmetry G 
is a unitary operator G on the Hilbert space Je such 
that 

G Ivac) = Ivac) 
and such that 

GB(R)G-l = B(R) 

for any bounded open set R. 

(26a) 

(26b) 

The conditions (26) are apparently stronger in 
general than the assumptions in Theorem 1. With this 
definitio~ of a local internal symmetry we have 
another theorem. 
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Theorem 2: 
(a) The set ~ of all local internal symmetries form a 

group. If G is in ~, so is U(A)GU(A)-l for all A E i: the 
group ~ is mapped onto itself under conjugation by any 
element of the Poincare group i. 

(b) Every local internal symmetry commutes with 
every translation, that is, 

T(x)GT(x)-l = G, for all G E ~ and all x. 

The first assertion of this theorem is trivial; the 
second corresponds to our earlier Theorem 1. In view 
of these theorems, we feel that our definition above is a 
reasonable mathematical expression of the physical 
meaning of the phrase "local internal symmetry." li 

The ideas presented so far must be modified some
what if we deal with a system of local algebras in the 
presence of superselection principles. In this case, the 
vacuum vector will not be cyclic with respect to B(R), 
if B(R) is the von Neumann algebra of local observables 
associated with R. One approach to this situation,6 

which is in the spirit of a local basic theory, is to 
consider a system {F(R)} of "local field algebras" 
F(R). Here F(R) will contain the von Neumann 
algebra of local observables B(R), but F(R) will also 
contain elements which change the superselection 
quantum numbers, such that the vacuum state vector 
is cyclic with respect to F(R). The field algebra F(R) is 
assumed to be generated by elements each one of 
which has either a boson or a fermion character, 
subject to the familiar constraints by which locality is 
expressed, namely, that commutators or anti
commutators vanish for spacelike separations. It 
should be clear that, under appropriate assumptions 
about the local internal symmetry G, theorems 
analogous to our Theorems 1 and 2 can be proved 
with minor modifications of our procedure. We shall 
not pursue the matter further here, but instead 
consider the case of a local symmetry in a conventional 
field theory. 

IV. LOCAL INTERNAL SYMMETRIES IN 
QUANTUM FIELD THEORY 

We shall here discuss an analog to our Theorem 1 
within the framework of an orthodox quantum field 
theory. Since the method of proof in the case of a 
field theory is essentially the same as in the case of the 

6 For related discussions ofintemal symmetries we refer to R. F. 
Streater, "Spontaneous Breakdown of Symmetry," in Mathematical 
Theory of Elementary Particles, R. Goodman and I. Segal, Eds. 
(MIT Press, Cambridge, 1966) and to D. W. Robinson, "Symmetries, 
Broken Symmetries, Currents and Charges," in Symmetry Principles 
and Fundamental Particles, B. Kursunoglu and A. Perlmutter, Eds. 
(W. H. Freeman and Company, San Francisco, 1967). 

• For discussions of this approach see H. J. Borchers, Commun. 
Math. Phys. 1,281 (1965) and also R. F. Streater, Ref. S. 

theory of local von Neumann algebras, it will suffice 
to outline the procedure. 

We shall base our discussion of field theory on the 
well-known axioms formulated by Wightman. 7 In 
such a theory we have a set of operator-valued tem
pered distributions «fi(X) , i = 1,2, ... ,n, where we 
assume, for simplicity and without loss of generality, 
that the adjoint of each member of the set is contained 
in the set. The set of all physical states is, as before, 
associated with the vectors in a separable Hilbert 
space Je, which carries a strongly continuous unitary 
representation of the Poincare group. There exists a 
dense set D of vectors in Je such that (ex I «fi(X) IP) is a 
tempered distribution for each i = I, ... , n and for 
all vectors ex, P E D. Furthermore, «fi[f] D c D for 
every f = I(x) in the set of test functions S, where 
«f,[f] denotes the quantum field «fi(X) averaged by f 
As before, there exists a unique vacuum state invariant 
under all transformations in the Poincare group. The 
vacuum state Ivac) is assumed to be contained in D, 
and it is further assumed that Ivac) is a cyclic vector 
with respect to the polynomial algebra generated by 
the operators «fi[f). The spectral condition (3) is 
assumed for the translations, which satisfy the 
condition 

T(Y)«flx)T(y)-1 = «f.(x + y). (27) 

The condition of locality is expressed through the 
relations 

where the constants aii have the values + 1 or -1 
depending on the boson or fermion character of the 
fields involved. 

Within this framework we state the result. 

Theorem 3: If a unitary transformation G on Je 
satisfies the conditions 

G Ivac) = Ivac), 

GD=D, 

and 

G«f.(X)G-lf{Ji(Y) = ai/«fi(y)G«fi(X)G-l, 

(29a) 

(29b) 

whenever (x - y)2 < 0, (29c) 

then G commutes with all translations, that is, 

T(x)GT(x)-l = G, for all x. 

7 Specifically, we shall adhere to the formulation in Chapter 3 of 
Ref. 2. 
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Proof' 
(i) Let Ro be the open region defined in (6a). We 

consider arbitrary monomials b in the averaged fields 
of the form 

b = 'Pi(ll [JI]'Pi(2l [J2] ... 'PiU:l[Jk]' (31) 

where the indices i(r) assume values in the set {I 2 '" " , 
n} and where each one of the test functions f.. has its 
support confined to Ro. Let bl and b'J, be two such 
monomials. With the notation in (7) we then have, in 
place of the condition (8), 

G(y)b I G(y)-lb2(x) = O'b2(x)G(y)b I G(y)-t, 

for any x E R; and all y, (32) 

where the factor 0' is equal to either + 1 or -1 
depending on the fields which appear in the monom~ 
ials bl and b2 and on the basis sign factors 0'. . 

(ii) The appearance of the sign factor 0' 'does not 
affect the essential arguments in the proof of Theorem 
1, and we immediately arrive at the analog of the 

conclusion (23), namely 

(vacl b2G(y)bl Ivac) = (vacl bsGbl Ivac), (33) 

for arbitrary monomials bl and bs constructed as 
above. We now refer to a theorem of Reeh and 
Schlieder8 which asserts that the vacuum state vector 
is cyclic with respect to the polynomial algebra 
generated by all operators 'Pi [J], where the test 
functions f have their support confined to an arbitrary 
open set, which in our case will be the set Ro. The 
linear sp~n of the vector Ivac) and all vectors b Ivac), 
where b IS any monomial of the form (31), is accord
ingly dense in .le, and it follows immediately from (33) 
that 

G(y) = T(y)GT(y)-l = G, 
as asserted. 
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The problem of a scalar particle interacting with a planewave external field is solved in terms of the 
complete set of normalized in-states which are present in the asymptotic past. By expressing the field 
operator in terms of the annihilation and creation operators for the in-states, we show that the normal 
LSZ asymptotic condition holds allowing an unambiguous interpretation of the wavefunctions, i.e., in 
the sharp-momentum limit of the wavepacket Volkov solutions, the momentum parameter appearing 
in the solution is the momentum of the particle before the particle entered the beam. A brief discussion 
on how to include other interactions is also presented. 

There has been some discussionl - 3 in the literature 
as to the correct interpretation of the Volkov-type 
solutions' which occur in the problem of a charged 
particle interacting with an external planewave 
electromagnetic field. In this paper we introduce the 
asymptotic in- and out-states and solve for the field 
operator in terms. of the annihilation and creation 
operators of these asymptotic states. In order to 
simplify the problem, we work with a scalar charged 
particle and a scalar "photon," since the vector nature 
of the photon is not relevant. For this field operator 
we prove an LSZ-type asymptotic condition and this 
will give us a clear interpretation of the solution since 
the asymptotically free states are physical states before 
and after the charged particle interacts with the 
external field. 

The method used in this paper was motivated by 
the work of Capri, as reported by Wightman.5 Capri's 
work was directed toward constructing the non
perturbative solution for higher-spin fields in the 
presence of an external electromagnetic field which 
vanishes rapidly in both spacelike and timeIike 
directions. Besides studying only a scalar field in the 
presence of a scalar external field, we demand only 
that the external field vanish rapidly in a lightlike 
direction. The cutoff in both the timelike and space
like directions is then obtained by studying only the 
matrix elements of field operator between normalized 
states. This procedure gives us only weak convergence 
for the field operator instead of the strong convergence 

• Work supported by the U.S. Atomic Energy Commission. 
1 T. W. B. Kibble, Phys. Rev. 138, B140 (1965); Lee M. Frantz, 

Phys. Rev. 139, 1326 (1965). 
IOldwig von Roos, Phys. Rev. 150, 1112 (1966); Z. Fried, A. 

Baker, and D. Korff, Phys. Rev. 151, 1040 (1966). 
S P. Stehle and P. G. DeBaryshe, Phys. Rev. 152, 1135 (1966). 
4 D. M. Volkov, Z. Physik 94, 250 (1935). 
• A. Capri, thesis, Princeton University, 1961; A. S. Wightman, 

in Proceedings of the i967 international Conference of Particles and 
Fields, C. R. Hagen, C. Guralink, and V. S. Mathur, Eds., (Inter
science Publishers, Inc., New York, 1961), p. 208. See also A. Capri, 
J. Math. Phys. 10, 515 (1969). 

obtained by Capri, but has the advantage that the 
formal operator obtained is essentially covariant. 

The equation of motion for a charged particle 
interacting with a planewave external electromagnetic 
field is 

The term quadratic in All creates an apparent mass 
shift, for, if we take All '"" cos k· x, then A! '"" 
HI + cos 2k . x) and the constant term has the form 
of a mass term. The same apparent mass shift occurs 
if a scalar external field interacts with a charged 
particle with the equation of motion6 

Our model will have the equation of motion given in 
(1), and in order to solve it we take the external field A 
to be a function of n . x alone, where 

nil = (n, ino) and n2 = O. 

Normally we take n2 = n~ = 1, since this condition 
just specifies the frequency in the particular reference 
frame in which we are working. A is further required 
to be in the form of a wavepacket, i.e., A and all of its 
derivatives approach zero faster than any inverse 
power of n . x as In' xl goes to infinity. The Fourier 
transform of A will be peaked about a frequency Wo. 
One example of an A satisfying these properties is 

. I(). A(n . x) = ae,wo"'(/)e-ti "'(/) , 

but, since we will nowhere need an explicit form for 
A, we will not choose one. 

In order to solve (1), we introduce a complete set 
of in-states, obtained from the vacuum using the 

6 Our metric is such that p • x = p. x - PoXo, Pil = (p, ipo), (}I = 
V'2 - a:. 
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creation operators7 

a~ = - i f d3xf,.(x)~'Prn(x), (2) 

where f,.'s are a complete set of normalized solutions 
to the free-field Klein-Gordon equation 

( _02 + m2)fa = 0 and i f d3Xf:(x)~fp(x) = fJ afJ · 

The a's satisfy the comutation relation 

faa' a;J = d"fJ' 

The state IIX.) = a! 10) represents the state which in 
the remote past is a free particle with momentum
space wavefunctionfip), where 

fa(x) = (27Trf f d4pO(Po)fJ(p2 + m2)fip)ei'I)'(J) 

and 

f d4pO(Po)fJ(p2 + m2)f:(p)ffJ(p) = fJ afJ · 

In terms of the a's, 'Pin can be written as 

'Pln(X) = 2 {aaUx) + b~f:(x)}, (3) 
a 

where bIt annihilates the antiparticles and the sum 
over IX. in this expression for 'PIn is a formal sum with 
the interpretation that for any two normalized states 
11) and 12) we have 

(11 ~ 0" 12) == ~ (11 0" 12). (4) 
" a 

In particular, if the states 11) and 12) are members of 
a complete set of states formed by applying the a!'s 
to the vacuum, the sum over IX. in (4) will ~ over a 
finite number of terms. 

We now assert that the solution to (1) satisfying the 
proper boundary conditions is, in terms of these in 
operators, 

'P(x) = ~ {F"(x)a,, + F:(x)b~}, (5) 
" with 

Fix) ==f,,(x) - A,.(x) (6) 

= (27T)-f f d'pr5(p2 + m2)O(po}fa(p) 

where 

X exp (iP ' x - if~dY'Jp(y'»), (7) 

A,,(x) == e2f d4x'fix')A2(y') 

x ~R(X - x', m2 + M2(y, y'», (8) 

Jin' x) == (e2/2n . p)A2(n· x), (9) 
---

1 For the present we will use only in operators and will not label 
them as "in." When we later use out-states they will be explictly 
labeled as aOut, etc. 

and y = n . x, y' = n' x'. The sum over Ot is inter
preted as in (4), and ~R is the usual free-field retarded 
commutator but with a mass m2 + M2 where 

M2(y, y') == ~ (II dy"A2(y") ~ o. 
y - y J", 

(10) 

We note that M2 is not only positive, but also bounded 
above by max [e2A2] 2 M2. In Appendix B we show 
the equivalence of the forms (6) and (7) for F.8 That 
(5) is indeed a solution to (1) can be obtained directly 
from (7). Here we will use the form (6) for F since it 
is not familiar in the literature. In order to do so we 
will first show that ~R(X - x', m2 + M2) is the 
retarded Green's function for (1), namely 

(-02 + m2 + e2A2)~R(X - x', m2 + M2) 

. = r54(x - x'). (11) 

This type of solution for the Green's function was 
obtained by Brown and Kibble.9 Here we will prove 
it directly. The usual Fourier transform for the free
field retarded commutator gives the integral repre
sentation for ~R (but not its Fourier transform since 
M2 still depends upon y, y'): 

~R(X - x', m2 + M2) = --4 d4p 2 e 2 2 • 
1 i ip'(:c-",') 

(27T) OR P + m + M 

(12) 
Equation (12) gives 

-02~R = __ d4p _~e ___ _ 1 f ip'(_"") 

(27T)4 p2 + m2 + M2 

X {p2 _ 2 in . P(OM
2
/0Y)} (13) 

p2 + m 2 + M2 ' 

since o"g(y) = n,,(oloy)g(y). Now 

1 n" a 1 
(l + m2 + M2)2 = - 2n· pOp,,(p2 + m2 + M2)' 

(14) 

so that an integration by parts in the second term of 
(13) gives 

-02Ll _ __ d4 _~e ___ _ 1 f. iP'(:C-"") 

R - (27T)4 P p2 + m2 + M2 

{ 
2 ( ') OM2} ( ) 

X P - Y - Y oy' 15 

From (10) we have 

oM2 1 - = -- [e2A2(y) _ M2] 
oy Y - y' 

8 If in (1) we let f --+ !5(I,(P - Q)(21T)f/2Po, we obtain the normal 
Volkov-type solution. 

II L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A70S (1964) 
(especially the appendix). 
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so that (15) becomes 

-02d
R 

= __ d'p _....:.e ___ _ 1 f 12,.(11:-"") 

(277)4 p2 + rn 2 + M2 

X (p2 + rn2 + M2 _ rn 2 _ e2A2(y)] 

= b4(x - x') - (rn 2 + e2A2)dR • 

which proves (11). Since CR in (12) avoids the poles in 
the Po plane by going above them, we have 

dR(x - x', rn2 + M2) = 0, for Xo - x~ < 0, 

so that d R is, indeed, the retarded Green's function 
for (1). 

Since rp(x) given by (5) is to be used only between 
normalized states and this effectively makes the sum 
over ex finite or absolutely convergent, we need only 
show that each term in (5) satisfies (1). Using the form 
(6) for F" we have from (11) that 

(-02 + rn2 + e2A2(y)]F .. (x) 

= (_02 + rn2 + e2A2)f" - e2A% = 0, (16) 

since (-02 + rn2)f. = O. 
We are left with showing that the boundary con

ditions are satisfied. In Appendix A we show that the 
product f,.(x)A2(y) is a "good" function in the sense 
that it and all of its derivatives decrease faster than 
any inverse power of Ilxll == X2 + x~, as Ilxll-- 00.10 

In particular, since d R is a distribution, this means 
that the integral defining A exists in the distribution 
sense. Further, since dR is nonzero as a function of x' 
only in the past light cone about the point x, if we let 
Xo -- - 00, then the only contribution to the integral 
comes from large negative x~ where the product fA2 
decreases faster than CN/(X~)N, N arbitrary. Hence 
we have A .. (x) -- 0, as Xo -- - 00, and 

(17) 

The limit in (17) is obtained faster than any inverse 
power of Xo' Since derivatives of d R with respect to 
x are zero for Xo - x~ < 0, similar limits as in (17) 
will hold for any derivative of F ... In particular, this 
gives 

if d3Xf:(x)~FP(x) 

= tJ .. P - ie2f d3Xf:(x)~A .. (x) -.,o--+---oo~~ tJ .. P' (18) 

sincef: is bounded by C(x) Ixol!, as IXol-- 00. Thus 
remembering that we are using rp only between 

10 In mathematicallanguage,fA1E S •. 

normalized states ,we have 

"'ol~~oo if d3XF:(x)~rp(x) = a .. , (19) 

which is the usual LSZ asymptotic condition.l1 
Another useful formula that can be obtained is 

~"P == if d3XF:(x)~Fp(x) = tJrzp , Xo arbitrary. (20) 

If we show that ~"P is independent of time then the 
result follows immediately by taking Xo -- - 00. 

Since F .. satisfies (16),we have 

a'~"fJ = if d3x( -a~F:)FfJ + F:a~Fp] 

= if d3x( _V2 + rn 2 + e2A2)F:Fp 

- F:( _V2 + rn 2 + e2A2)Fp] 

=0 

by integrating by parts, where this is possible since 
both J.. and A decrease strongly in a spacelike 
direction, the spacelike decrease for A following in 
the same manner as for Xo -- - 00. This proves (20). 

So far we have only used a complete set of in-states. 
We now introduce a complete set of out-states with 
the annihilation operators 

a~ut = if d3XJ:(X)~rpout(x). (21) 

Then we can write the solution for rp(x) of (1) as 

rp(x) = ! {G,,(x)a~ut + G:(x)btout} (22) 

with 
Gix) = fix) - A~ut(x) (23) 

= (277)-!f d'ptJ(p2 + rn2)O(po)f .. (p) 

where 

X exp (iP . x - i f~oo dy' Jp'(y'») , (24) 

A~ut(x) = e2 f d4x' A2(y')fix') 

x d.A(x - x', rn 2 + M2(y, y')], (25) 

where d A is the free-field advanced commutator 
(Eq. (12) with CR replaced by CAl. Then, in the same 
manner as above, we have 

G,,(x) ~ fix), (26) 
~o-+OO 

lim ifd3xJ:(X)~rp(X) = a:ut, (27) 
::co-+co 

11 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 
Cimento 1, 205 (1955). 
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and 

if d3xG:(x)atGpCx) = 6,.fJ· (28) 

Equation (28) gives us a~ut in terms of the a's 
(= a1n,s): 

a~ut = if d3xG:(x)atcp(x) 

= t afJif d3xG:(x)atFfJ(x) (29) 

== I afJS,.J1. (30) 
fJ 

The S,.p defined by (29) and (30) are independent of 
Xo in the same way that ~"fJ above was. Since 
G: - f: as Xo - 00, in order to evaluate S,.p we need 

rl1.fJ == lim ifd3xf:(X)~Fp(X). (31) 
%0-+ 00 

This is done in Appendix C, with the result 

r,.fJ = S,.fJ = f d4p{j(l + m2)O(po)J:(p)fp(p) 

X exp (-if:
oo 

dY'JiY'»), (32) 

This result would follow immediately if we could take 
y - - 00 (xo - 00) in the upper limit of the integral 
over J'IJ(y') in the expression (7) for F. Knowing the 
constants S,.fJ then allows us to easily calculate S
matrix elements. For example, the single-particle-to
single-particle S-matrix element is given by 

«(I. out I fJ in) = (01 a~ut IfJ in) 

= I S"fJ' (01 afJ' IfJ in) = S,.fJ· (33) 
fJ' 

Since aout is linear in the a's, a more complicated 
S-matrix element will be a simple composition of the 
above S,.fJ's. This then completely solves the dynamical 
part of the theory. 

To extend the above to the problem to vector 
photons instead 'of scalar photons, the work of Brown 
and Kibble9 shows us that we have only to make the 
replacement 

Jiy)-(2n· p)-1[-2ep"A" + e2A!] E IiY) 

in (7) for F,.. The other formulas such as (8) and (20) 
become more complicated but retain the same 
structure. With this replacement the ordinary Volkov 
solution to the problem of an external planewave 
electromagnetic field interacting with a charged 
particle can be properly interpreted, namely that the 
wavefunction J,.(p) which appears in F,.(x) as in (7) 
is the momentum-space wavefunction of the particle 
before it entered the external field, and, similarly, the 
J in G as in (24) is the momentum-space wavefunction 

of the particle after it leaves the external field. This is 
where the momentum of a particle is usually measured 
in a scattering experiment. In particular, the vacuum
to-one-particle expectation values of cp are just 

(01 cp(x) 1(1. in) = F,.(x) <l>o--+- oo ~ f,.(x) 
and 

(01 cp(x) 1 (I. out) = G,.(x) "'0--+00 ~ f,.(x), 

in agreement with the results of Brown and Kibble, if 
we further take the sharp-momentum limit 

f,.(p) - 2PO{j3(p - q). 

One more generalization that is of interest, since the 
problem above is rather trivial, is to a field satisfying 
the equation of motion 

(_02 + m2 + e2A2)'Y = j. (34) 

The usual LSZ asymptotic condition is 

lim - ifd3Xf,.(x)~'Yt(X) = a~in. 
"'0-+- 00 

(35) 

Equation (17) lets us write this as 

lim - ifd3XF,.(x)~'Yt(X) = a!in. (36) 
xo-+-oo 

Then the usual LSZ reduction procedure leads to 

a!in = lim - ifd3XF,.(x)~'Yt (x) 
2:0"'" 00 

+ if d4xF,.(x)[-a2 + m2 + e2A2]'Ytcx). (37) 

The first term in (37) is easily found to be 

~ atoutS 
4. fJ fJ,. 
fJ 

and represents the scattering which would take place 
if j were equal to zero. Equation (37) is now in a form 
that allows the external field to be taken into account 
exactly and the extra interaction described by j to be 
treated as a perturbation, since (37) can be written 

a!ln = t a~outSfJ. + if d4xF,.(x)/(x). (38) 

Note that in (38) a!Out is not the out operator intro
duced eatlier but is the out-state resulting from the 
total interaction described by (34). Also note that 
(38) does not totally separate out the external field 
interaction since j will in general still depend upon 
the external field. 

APPENDIX A 

In this appendix we wish to show that A2(y)f,.(x) is 
a "good" function (E S,). Dropping the (I. we have, 
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for the Fourier transform, 

i 
H(p) == (217) Id4xe-iJl'~f(X)A2(y) 

(217)4 

where 

= [(217)4r1I d4xe-i
J)"X 

X I d4p' (j(p,2 + m2)O(p~)f(p')eiJl"~ 

X I dwI( w )eiOJ1l'~ 

= J dw(j[(p - wn)2 + m2] 

X O(Po - w)I(w)f(p - wn) 

= O(Po - y)I(y)f(p - yo)/2In . pi, 

A2(y) = J dwei(f)UI(w) 

and 
y = (p2 + m2)/2n . p. 

Let p = P1. + rxn + f3n*, n* = (0, -ino), and P1. = 
P - (n/n~)n • p; then 

y = rx + (PI + m2)/4f3 
and 

( 
l + m2) R(p) = O( -(3)I rx + .1 4{3 

( 
p2 + m2)j 

X f P.l' f3 - 1. 4f3 (-4f3). 

Thus, since both I and f are "good" functions we 
need to show that H has left derivatives with respect 

to f3 of any order at {3 = 0 and that 

lim (l)nR = 0, 
p->o- o{3 

so that they will match continuously onto H(P) == 0 
for f3 > O. But this follows immediately since both 
I and f and all their derivatives have infinite zeros at 
f3 = 0 (their respective arguments large), since, for 
example, II(w)1 < (eN/WN), w large. Thus, since the 
Fourier transform of a "good" function is "good," 
we have our desired result. 

APPENDIX B 

In this appendix we wish to show the equivalence 
of the two forms for Fix) used in the text. We do this 
by calculating A,.(x): 

A(x) = e2J d4x'A2(y')LlR (X - x', m2 + M 2)f(x') 

Let 

=J d
4p

'! O(p~)(j(p'2 + m2)f(p')r(p', x), 
(217) 

x' = x~ + an + tpn*, p = P1. + rxn + (3n*, 

then 

d4x' = d2X~ da dp and d4p = 2 d2p1. drx df3. 

f becomes, after doing the d2X~ and d2p.l integrations, 

f' == e-iJl1."i!: J.f = ~ J2 dct. d{3 dp da A2(p) exp [i(ocy.+ (3n* . x - ocp - 2{3a + an' p' + ipn* . p')] . 
(217)2 p~ + 2oc{3 + m2 + M2(y, p) - i€€(rx - (3)] 

The a integration gives (j(2f3 - n . p') so that the f3 integration.can be done, which gives 

f' = £ Idoc dpA2(p) exp [i(ct.y + in . p'n*' x + ipn* . p' - ocp)] . 
217 [p'; + 2rxn . p' + m2 + M2 - i€€(2rx - n . p')] 

In the oc integration there is a pole at 

Thus closing the ex. contour in the upper (lower) half
plane for y - p > 0 «0), f' becomes, using 
p'2 + m2 = 0, 

f' = ~ dpA2(p) • 2 100 
2n' p' " 

X exp -i --, dy'A 2(y') + ip;,' x" . [ e
2 1" ] 

2n' p p 

l oo 0 
= - " dp op 

x exp [-i~ ("dy'A2(y') + ip;,' x,,] 
2n . p Jp 

= exp(ip;,' x,,)[l - exp (-iJ~dY'Jpt(Y'»)l 
Thus 

F = f - A = (217)-! I d4ptJ(l + m2)oEpo)f(p) 

X exp (ip' x) exp (-if~dY'JP(Y'»)' 
which is Eq. (7) of the text. 
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APPENDIX C 

In this appendix we evaluate (31) for r .. p. We note 
that, if instead of letting Xo -+ 00, we let Xo -+ - 00, 

we obtain from (18) just ~ .. p. We consider the 
expression 

Now, 

r .. p(xo) == if d3Xf:(x)~Fp(x) '"° ...... 00 ) r .. p 

--~) ~p. 
~o-.-C() tI 

a,r .. p(xo) = i J d3
x{ -a~f .. *Fp + f .. *a~Fp} 

Hence, 

= -e2f d3xA2(y)f:(x)Fp(x). 

r"p = ~ .. p + L:dxoatr .. p(t) 

= ~ .. p - ie2f d4xA2(y)J:(x)Fp(x) 

== IJ"p - R"p' 

Using the form (7) for F, we have 

R .. p = (~:)3f d4p'~(p'2 + m2)O(p~)J:(p') 

X f d4x d4pIJ(p2 + m2)O(po)fp(p)A2(y) 

X exp [i(P - p,). x - iIdy'Jiy')] 

Letting p = Pl. + rxn + f3n*, x = xl. + an + !pn*, 
as in Appendix B, we have 

R .. p = f d4p'~(p'2 + m2)O(p~)f:(p')I 

with 

I = ie
2 
fd p da2 drx df30(rx - f3) 

27T 
x IJ(p'l + 4rx.{3 + m2)f(pl.' rx. + (3)A2(p) 

X exp [i(rxP "+ 2aj3 - an' p' - tpn* . p') 

- i e
2 

fP dy' A2(y')] 
4{3 00 

= ie2f dp2 drx d{30(rx - (3)~(p'l + m2 + 4rx(3) 

X ~(2j3 - n . p')A2(p)f(pl.' rx + f3) 

X exp [i(rxP - lpn*' p') - if~dy'J7,.(y')l 

Using p'2 + m2 = 0 and the ~ functions, we find 

{3 = tn' p' < 0, rx = tn* . p', 

IX + f3 = n • p', IX - (3 = p~ > o. 
Hence, 

1= -je~[p(~')fdPA2(p) exp [( -ie
2 

)fP dY'A2(y')] 
2n . p 2n . p'oo 

= !pep') f dp :p exp (-i[ J) 

= fp(P'{ 1 - exp ( - i f:oo
oo 

d y' J p,(y') ) 1 
Putting I into R and then into r, we obtain the result 
given in (32), since 
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A relativistically exact theory of elastic dielectrics is developed, plus incidentals useful in a wider context. 
The most general form of a relativistically objective elastic response function is found in terms of Bressan's 
deformation gradient and of arbitrary tensors on the body manifold depending on the Born strain tensor. 
A form for constitutive relations is postulated for dielectrics which involves objective response functions, 
physical laws are stated in terms of integrals of exterior forms on the world manifold, and the resultant 
differential equations' of motion are derived. Facts about algebra and calculus of exterior forms are 
developed which will be useful in continuum physics whenever one introduces laws involving exterior 
forms on manifolds. The relation to historical theories of dielectrics is indicated. 

1. INTRODUCTION 

The present paper develops a theory of elastic di
electrics which is based on essentially the same prem
ises as the theory developed by Toupinl in 1963 
(Secs. I, 2, 4, and 5). The present theory, however, 
is relativistically exact. Toupin's Eqs. (5.1), the con
stitutive equations of his elastic dielectric, can be 
summarized by a statement which also characterizes 
the present theory: The polarization vector and the 
deformation gradient are the independent variables on 
which depend the state of the material and, hence, on 
which depend the energy and stress. 

We describe motions in relativistic space-times in 
terms of the function which assigns to each event the 
material particle which experiences that event. We 
describe kinematical, dynamical, and electromagnetic 
variables in terms of tensors and exterior forms over 
the world manifold. These modes of description are 
designed to be efficient and intuitive when one is 
postulating or discussing the foundations of relativistic 
theories of materials. 

We derive the most general form which an elastic 
response function can take if it is to be objective 
relative to relativistic changes of observer. Postulating 
constitutive relations for elastic dielectrics in terms of 
objective response functions and inserting these 
relations into the commonly accepted laws of motion, 
we derive the forms which these laws of motion take 
for elastic dielectrics. 

The reader wishing to construct relativistic response 
functions governing the behavior of particular 
materials for which nonrelativistic response functions 
are known may read Secs. 2, 3, and 5. The reader 
interested in the most general form objective-response 
functions can take may read Secs. 2 and 3. He who is 
interested only in seeing how concepts of kinematics, 
dynamics, and electromagnetics can be treated in the 
terms which we have chosen, without regard to how 
the present theory of a particular class of materials is 

1 R. A. Toupin, Intern. J. Eng. Sci. 1, 101 (1963). 

constructed, may read Secs. 2, 4, and 6. A reader who 
does not see readily how the preceding six sections 
relate to theories which he knows by similar names 
may read Sec. 8 in conjunction with the first five 
sections of Toupin,l Sees. 283 and 284 on polarization 
and magnetization and on electromagnetic energy, 
momentum, stress, and energy flux of Ref. 2, and 
pp. 392-405 of Ref. 3. 

The primary inathematical tool used is the theory 
of exterior differential forms. The particular concrete 
realization of these abstract entities which we employ 
is the realization as skew-symmetric multilinear 
functions of k-tuples of tangent vectors. We treat 
metric tensors, electromagnetic field tensors and such, 
not as bilinear forms, but as linear transformations of 
the tangent vector space into the dual space of real
valued linear one-forms. To indicate the real number 
which is the value of anyone-form A at any vector V, 
we write the names of the one-form and the vector 
with a centered dot between them, A • V. In particular, 
if G is a metric tensor and U and V are vectors, then 
GU is a one-form and V· (GU) is a real number, the 
inner product of V and U. Other similar centered dot 
notations are introduced ad hoc to indicate the values 
of various types of functions whose arguments are one
forms or vectors. 

2. MOTION, ENERGY-MOMENTUM, AND 
ELECTROMAGNETISM 

Consider a three-dimensional manifold S*, which 
we will call "the body," and consider a relativistic, 
universe E. By "relativistic universe," we mean any 
four-dimensional manifold supplied with a metric 
tensor having signature plus or minus two, supplied 
with a future direction choice among the timelike 
vectors, and supplied with an orientation. In partic
ular, the common variety of special relativistic 

• C. Truesdell and R. A. Toupin, The Classical Field Theories; 
Hand6uch der Physik, 111/1 (Springer, Berlin. 1960). 

• E. T. Whittaker, A History of the Theories of Aether and Electric
ity, Volume 1, The Classical Theories (Nelson, London, 1951; and 
The Philosophical Library, New York, 1951). 
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universe, with a t, x, y, z coordinate system singled 
out, is included; this is probably the 1110St interesting 
type of universe in connection with the present theory. 
The time direction and the orientation are implicitly 
determined, of course, by the choice of the specially 
significant coordinate system. 

Consider the class .At, of all smooth functions , of 
E onto S* which have the following properties: At 
every point p, the rank of the gradient V'(p) is the 
maximum possible, three. The (one-dimensional) null 
space of V'(p) is timelike. Given a function' having 
at least these two properties, then, for each X in S*, 
the set of all points p in E such that '(p) = X will be 
called "the world line of the particle x." It is possible 
for such a function , that some particles X can have 
"world lines" which consist of many separate curves in 
8. To eliminate this possibility, we add a final property 
to the list of membership requirements which define 
the class .At,. We insist that if a function, is to belong, ,-1 (X) must be a connected set for every X in S*. On a 
local scale, this last property is no real restriction on 
the class of functions. 

The functions , which belong to .At, will be called 
"motions." The interpretation of such a function is 
that, for every event-point p in the universe 8, X = 
'(p) is the material particle which experiences the event. 
It is somewhat customary-perhaps largely for 
historical reasons-to consider the inverse relation. 
To each material particle X, we associate all of the 
events p which X experiences. To express this one-to
many relation in terms of a single-valued function, 
one embeds S* into a four-dimensional manifold, 
with an absolute-time or a proper-time parameter 
representing the added dimension. One then introduces 
invariance requirements which express the nonrele
vance of the four-dimensional ambient manifold. 
This procedure is natural when the body S* consists of 
a finite number of points, and is fairly natural in 
general when 8 has a classical structure, with an 
absolute time function. For dealing with relativistic 
universes, we prefer the simpler procedure of dealing 
with the function which associates to each event the 
particle which experiences the event. 

For each given motion , and given point p in 8, 
denote by W = Wa;p) the unique future-directed 
timelike unit vector in the null space ofV,(p). We will 
call W the world velocity of the motion. We note that 
the worldlines of , are the loci of the solutions p of the 
following differential equation: 

dfi(s) = W(,; pes»~. 
ds 

(2.1) 

The parameter s along each worldline, which is deter-

mined by Eq. (2.1) up to the addition of a constant, 
will be called the proper time. 

Consider a collection of functions consisting of a 
motion " two scalar-valued skew-symmetric bilinear 
forms cp and {J on E, and a scalar-valued multilinear 
form t on 8 of the following type: t has four vector 
arguments and is skew-symmetric as a function of its 
last three arguments. We will call such a collection a 
"dynamic motion with dielectric polarization" if the 
equations which we give in Sec. 6 are satisfied as 
physical laws. We will call cp the electromagnetic 
field, and call {J the dielectric polarization field. We 
will call t the energy-momentum flux field. Denote by 
E, and also by cpW, the one-form whose value E· X = 
(cpW)· X at every vector X is the value cp(W, X) of 
cpo We will call E the electromotive intensity. 

The interpretations of these fields in terms of in
tuitive concepts of flow of charge, polarization charge, 
and magnetic induction, and concepts of work and 
flow of energy, will be given in Sec. 6 as the physical 
laws are introduced. The representations of the 
electromagnetic entities cp and {J in terms of the 
historically primary electric, magnetic, and polariza
tion vectors will be given in Sec. 8. The representation 
of t in terms of mass and energy density and a stress 
tensor will be developed in Secs. 3 and 4 as we develop 
forms for response functions whose values are energy
momentum tensors t. In Sec. 6 this will be summarized 
and expressed in terms of classical concepts. It is more 
efficiept to work with the fields as we have introduced 
them here, while postulating the theory. 

3. OBJECTIVITY OF RESPONSE FUNCTIONS: 
STRAIN MEASURES 

A function R will be called an elastic response 
function if it is of the following type. Its domain 
~ consists of all fourtuples (p, X, H, oc), where p is any 
point in 8, X is any point in the body S*, H is any 
linear transformation whose null space is timelike and 
which maps the tangent space t8(p) of 8 at p onto the 
tangent space tS*(X) of S* at X, and oc is a tensor or 
a collection of tensors of a specified type on the space 
tS*(X). The values R(p, X, H, oc) are tensors on the 
space t8(p). 

An elastic response-function R will be called 
"objective" if, for every (p, X, H, oc) in ~ and for 
every time-sense-preserving Lorentz transformation 
S of the tangent space tE(p') at any p' onto tE(p), the 
following identity holds: Let us denote by S[· .. ] the 
linear operator taking tensors at p' into tensors at p 
which canonically extends the operator S on vectors 
at p'. The identity is 

S[R(P', X, HS, oc)] = R(p, X, H, oc). (3.1) 
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By way of justification for this definition, consider 
the case when 6 is a special relativistic universe. Let , 
be any motion, p be any point in 6, X be '(p), and H 
be V,(p). For any point p' on 6 and any (time-sense
preserving) Lorentz transformation S of t6(p') onto 
t6(p), let/be the affine transformation of 6 such that 
/(p') = p and V/(p') = S. Then " = , 0/ is another 
motion, which we regard as equivalent to " differing 
only in its location and orientation relative to 6. We 
have "(p') = X and VC(p') = HS. Hence we can 
regard R(p', X, HS, IX) as the value of some dynamical 
t,:nsor variable at p' related to the motion ", and 
R(p, X, H, IX) as the value at p of this same tensor 
variable for the motion ,. If R is objective in the sense 
which we have postulated, then these values of the 
dynamical variable are related by the operator 
S[· .. ] which embodies the change of location and 
orientation due to f 

In case 6 is not a special, but a general relativistic 
universe, it may be that automorphisms / of 6 do not 
exist. One can be content to let the justification for the 
definition of objectivity rest on the special relativistic 
case. Alternatively, one can be explicit about the role 
of the metric tensor as a dynamical variable. One 
would have to include at least the value G(p) of the 
metric tensor at p as an argument of a response func
tion R, in order that it is clear just which tensors Hare 
to be included in fourtuples (p, X, H, IX) in the domain 
~ of R, since the null space of H is to be timelike. One 
might, or might not, want to include a dependence of 
R on the values at p of some derivatives of G, such as 
the curvature tensor of G, calling the dependence a 
gravitational interaction. An automorphism / of 6 
would then be any smooth homeomorphism; the 
metric tensor G(p) and any of its derivatives which 
appear as arguments would be transformed like H by 
the appropriate transformation law relative to f We 
leave implicit the dependence of R on G(p) which is 
implied in the nature of R's domain; we include no 
further dependence now upon the metric tensor field 
G and regard the special relativistic case as adequate 
justification. 

For convenience, let us adjoin an abstract vector 
Wo to each of the tangent spaces tS*(X) of S*. For 
each X, let TS*(X) be the vector space of all linear 
combinations (aWo + Z) of Wo and vectors Z in 
tS*(X). Suppose that we are given a linear transforma
tion H which, for some p and X, maps t6(p) onto 
tS*(X) and has a timelike null space. Let W be the 
unique future-directed timelike unit vector in this null 
space, and let w be the linear form on t6(p) whose null 
space is the space S which is orthogonal to Wand for 
which w • W = 1. That is, w is GWor -GW, depend-

ing on the signature of G. Let us denote by <5 the factor 
of plus or minus one such that w = - <5GW, hence 
such that <5U· GU is positive for spacelike U. 

In terms of the given H, define as follows a non
singular linear transformation H* of t6(p) onto 
TS*(X). Denote by Wo @ w the operator which to 
each vector U assigns the product (w' U)Wo of 
(w. U) and Wo. Then set 

H* =H+ Wo@w. (3.2) 

The restriction of H* to the orthogonal complement 
S of W is clearly the same as the restriction of H to 
S. Since the restriction of any linear transformation H 
to any direct-sum complement of its null space has the 
same range as H, the image of S by H, and hence the 
image of S by H*, is exactly tS*(X). Since H*W = 
Wo, it follows in particular that the range ofH* is all 
of TS*(X); hence H* is invertible, as we claimed. 

Denote by A the linear transformation of tS*(X) 
onto S which is the inverse of the restriction of H to 
S. Call A the "Bressan deformation gradient" 4 asso
ciated with H. Extend A from tS*(X) to a linear 
transformation A * of TS*(X) onto t6(p) by setting 
A *Wo = W. Note that A * is in fact the inverse ofH*. 
Define, as follows, linear transformations C* andC 
taking TS*(X) and tS*(X), respectively, onto their 
dual spaces. Recall that U • A denotes the value at a 
vector U of a linear form A in the dual space. Note that 
the factor <5 introduced above is such that bG is posi
tive-definite on spacelike subspaces, hence on S. Then 
C* is the operator such that, for U and V in TS*(X), 

U • C*V = b(A *U) • G(A *V) 

= U· (bA *tGA *)V (3.3) 

The same equation, without the asterisks and with U 
and V restricted to tS*(X), defines C. Note that both 
C and C* are symmetric, since G is symmetric. C is 
positive-definite, since, on the range of A, bG is posi
tive-definite. Once the restriction C of C* is known, 
then C* is determined, since, for all U and V in tS*(X), 

U· C*V = U· CV, U· C*Wo = Wo' C*V = 0, 

Wo' C*Wo = -1. (3.4) 

The components of C are commonly called Born's 
measures of strain5 ; we shall consequently call C the 
Born tensor associated with H. 

Thus far, we have introduced elastic response 
functions and objectivity of such functions, have 
motivated these definitions, and have introduced 

• Aldo Bressan, Ann. Mat. Pura Appl.,Ser. 4, 62, 99 (1963). 
• Max Born, Ann. Physik, Ser. 4, 33, 1 (1909). 
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Bressan deformation gradients A and Born tensors C 
associated with the "motion-function-gradient-" H 
part of the argument of response functions, as well as 
formal extensions A * and C* of such tensors A and C. 
Let us consider the most general form which an 
objective response function can take. Let R be any 
elastic response function. Noting that, for each (p, X, 
H, ex) in the domain, the operator H*[· .. ] takes the 
space of all tensors over t&(p), in which the tensor 
R(p, X, H, ex) lies, into the space of tensors over 
TS*(X) , define a function R* whose value at each 
(p, X, H, ex) is the following tensor over TS*(X): 

R*(p, X, H, ex) = H*[R(p, X, H, ex)]. (3.5) 

Suppose for instance that the values of the given 
response function R are covariant tensors, as are the 
values of all response functions in which we shall be 
interested. For definiteness, suppose that two is the 
number of vector arguments that R(p, X, H, ex) has. 
To find the value of R*(p, X, H, ex) at a pair (U, V) of 
vectors in TS*(X), one substitutes the pair (A *U, 
A *V) of vectors in t&(p) into R(p, X, H, ex). Here A * 
is the inverse of the extension H* of whatever linear 
transformation H appears as the third argument. That 
is, 

R*(U, V,p, X, H, ex) = R(A*U, A*V, X, H, ex). 

(3.6) 

Let (p, X, H, ex) be an arbitrary fixed element in j), 

and let 8 be an arbitrary (time-sense-preserving) 
Lorentz transformation of t&(p') onto t&(p) for an 
arbitrary point p'. Define tensors R' at p', R at p, M at 
X and M' at Xby 

R' = R(p', X, HS, ex), 

R = R(p, X, H, ex), M = H* [R] 

= R*(p, X, H, ex), 

M' = (HS)*[R'] 

= R*(p', X, HS, ex). (3.7) 

Note that R being equal to S[R'] identically in the 
arbitrary arguments is equivalent to objectivity of R. 
The "square bracket" operation of linear transforma
tions on tensors is an associative operation, and (HS)* 
equals the product H*S. Therefore, we have 

(HS)*[R'] = H*[S[R']]. (3.8) 

The operation H*[···] is invertible; hence the 
H*[S[R']] which appears in the right member is equal 
to H* [R] if and only if S[R'] is equal to R. Since 
S[R'] being equal to R is equivalent to objectivity of 

R, we conclude that R is objective if and only if M' = 
(HS) * [R'] is equalto M = H*[R]. That is, if and only 
if the following identity involving the function R* 
holds: 

R*(p, X, H, ex) = R*(p', X, HS, ex). (3.9) 

Theorem: A function R* satisfies the identity Eq. 
(3.9) if and only if there exists a function R such that 
the domain ~o of R consists of all triples (X, C, ex), 
where X is a point in S*, C is a positive-definite sym
metric linear transformation of tS*(X) onto its dual 
space, and ex is a tensor at X of the same type as 
occurs in the members (p, X, H, IX) of ~. The values 
R(X, C, ex) are tensors at X. When (p, X, H, IX) is a 
member of ~ and C is the Born tensor associated with 
H, we have 

R*(p, X, H, oc) = R(X, C, ex). (3.10) 

When it exists, the function R is determined by R*. 

Proof: Let (p, X, H, ex) be any element in ~, let q 
be any point in &, and let K be any linear transforma
tion of t&(q) onto tS*(X) which has a timelike null 
space. Note that (q, X, K, IX) is also in ~. Let S be the 
linear transformation of t&(q) onto tS(p) defined by 

(3.11) 

We shall show that Hand K have the same Born tensor 
if and only if S is a time-sense-preserving Lorentz 
transformation. Note that K* followed by H*-1 takes 
a future-directed vector W in the null space of K into 
W 0 and thence into a vector W' in the null space of 
H, which is a future-directed vector. Thus, if S is a 
Lorentz transformation, it is a time-sense-preserving 
one. 
Cons~der the linear transformation stG(p)S. The 

three factors in turn take vectors U in t&(q) into vectors 
SU in tS(p) into covectors G(p)SU in the dual of t&(P) 
into covectors stG(p)SU in the dual of t&(q). Thus its 
domain and range are the same as G(q); S is a Lorentz 
transformation by definition if stG(p)S equals G(q). 
Since K* and its transpose K*t are invertible, this is 
equivalent to 

The right member is the extended Born tensor D* of 
K, whose restriction to tS*(X) is K's Born tensor D. 
Mter substitution for S of the expression in'Eq. (3.11), 
the left member reduces to the extended Born tensor 
C* of H, whose restriction to tS*(X) is H's Born 
tensor C. Thus Hand K have the same Born tensor 
if and only if Eq. (3.12) holds, which, in turn, holds if 
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and only if S is a time-sense-preserving Lorentz trans
formation. 

It follows from what has been shown that if a 
function R* satisfies the objectivity identity, Eq. (3.9), 
then, for each (p, X, H, at) in its domain, R* takes the 
same value R*(p, X, H, at) = R on all of the members 
of its domain of the form (q, X, K, ee) for which the 
Born tensor D of K equals the Born tensor C of H. 
When this is true, we can define a function R on the 
set of all triples (X, C, at) as follows: For each (X, 
C, at), set R(X, C, at) equal to the tensor R * which is 
the common value of R* on all of the fourtuples 
(p, X, H, at) for which the Born tensor ofH is C. Con
versely, given any function R, we can define a function 
R* by Eq. (3.10), that is, by composition with R of the 
function which to each fourtuple (p, X, H, at) assigns 
the triple (X, C, at). Since the uniqueness of R corre
sponding to a given R* is clear, the proof of the 
theorem is complete. 

Now refer back to Eq. (3.5) and to the paragraph 
containing it, in which we introduced an arbitrary 
elastic response-function R. We have shown in the 
intervening paragraphs that R is objective if and only 
if there exists a function R such that 

H*[R(p, X, H, at)] = R(X, C, at), (3.13) 

where C is the Born tensor of H. We have noted that 
R is unique when it exists. 

Let R be an objective elastic response-function, 
whose values are covariant tensors, and denote by k 
the order of the tensors R(p, X, H, at). The space 
TS*(X) was somewhat artificially manufactured out of 
the tangent space tS*(X) of S* in order to render more 
efficient and clear the derivation of the representation 
of R in terms of the arbitrary function R, as given in 
Eq. (3.10). Let us now reduce this representation to a 
more natural form by replacing the function R by a 
collection of functions whose values are tensors over 
the tangent space tS*(X) instead of over TS*(X). 

Let it be any value R(X, C, at) of R. Or, more gener
ally, let it be any covariant tensor of order k over the 
space TS*(X), for any X. For every subset J of the set 
K of integers from one to k, define a real-valued 
function )'(J; ... ) of ktuples of vectors in tS*(X) by the 
following prescription: To obtain the value ).(J; VI' 
V 2 , ••• ) at any ktuple (VI' V 2 , ••• ), first determine 
for each index i in K whether i is in J or i is not in J. If 
i is in J, substitute the vector Wo into). as the ith 
argument. If i is not in J, substitute the given tangent 
vector Vi into). as the ith argument. A scalar value is 
thus determined, a vector of TS*(X) having been sub
stituted in for each argument of ).. This value is it(J; VI' 
V 2 , ••• ). By an abuse of language, we may refer to 

each such function ).(J;"') as a covariant tensor, 
although it is not a multilinear function of its ktuple 
argument. The function is equivalent to the composi
tion of a covariant tensor, whose order m is k minus 
the number of indices in J, with the prescription that 
tells which of the vectors are to be deleted from a 
given ktuple (VI ,"V2 , ••• ) to obtain an mtuple for 
substitution into the tensor. 

Since the values of R and the values of R are purely 
covariant tensors, the identity, Eq. (3.10), is equiv
alent to the following: For every ktuple (VI' V 2 ,"') 

of vectors in t&(p), 

R(VI , V 2 ,'" ;p, X, H, IX) 

= R(H*VI , H*V2 , ••• ; X, C, at). (3.14) 

For any vector V in t&(p), H*V = HV + (co· V)Wo, 
in which the first vector HV lies in tS*(X) and the 
second is a multiple of Wo. The reader who is skilled 
in the expansion of multilinear functions of unspecified 
order k, each of whose arguments is a linear com
bination of two vectors, will recognize that 

R(VI , V 2 ,'" ; p, X, H, at) 

= t [If (co. Vi)]R(J; HUI , HV2 ,'" ; X, C" at), 

(3.15) 

where the sum is over all subsets J of K and the product 
is Over all i in J. For illustration and for later use, let 
us consider special cases of the general expansion 
formula, Eq. (3.15). Let us now suppress the variables 
(p, X, H, at), upon which all of the functions that have 
tildes depend, and suppress the variables (X, C, at) 
upon which all functions that have carets depend. 

Suppose {j is a response function for which the order 
k is one. There are two subsets of K -namely, K itself 
and the empty set cpo Denote by g the scalar-valued 
function of (X, C, at) obtained by substitution of Wo 
in8;g = 8(K). Thefunction8(cp;" .) is the restriction 
of the given 8 to tS*; denote it simply by 8. Then, for 
every U in t&(p), 

O(U) = (co. U)g + 9(HU). (3.16) 

Suppose P is a response function for which the order 
k is two, and suppose that P is skew symmetric. Then 
p(Wo, Wo) vanishes identically, and p(Z, Wo) = 
-p(Wo, Z) for all Z. Denote by ~ the one-form on 
tS*(X), and denote by A: the one-form on t&(p), which 
are given by 

~(Z) = PCWo, Z), A:(V) = ~(HV) = p(Wo, HV). 

(3.17) 
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Note that by definition of the exterior product, 
(co. U)(A' V) - (00' V)(A' U) is the value of the 
function co A A at (U, V). Therefore, upon expanding 
P(H*U, H*V) and making substitutions for the various 
terms, we find that 

p(U, V) = (co A A)(U, V) + PeHU, HV). (3.18) 

For a final example, suppose 1 is a response function 
for which the order k is fOllr, and suppose that 1 has 
the symmetries suitable for an energy-momentum 
flux. That is, 1 is skew symmetric in its last three 
arguments. There being 16 subsets J of the set K = 
(1,2, 3,4), the direct derivation of the relevant 
special case of the formula, Eq. (3.15), would be so 
difficult that it is worthwhile to use the general formula. 
In view of the skew symmetry of t in its arguments 
number 2, 3, and 4, every term in the right member of 
Eq. (3.15) vanishes in whichJ contains two or more of 
the integers 2, 3, 4. Furthermore, there are relations 
among the terms in which J contains exactly one of 
these integers 2, 3, 4. 

Define p, p, a, and ~ to be the forms which one 
obtains by substituting Wo into t for the arguments 
whose indices are, respectively, (none), (1), (2), and 
(1, 2), and restrict the resulting functions of the 
remaining arguments to tS*(X). Denote by p, p, a, 
and r., the forms on t&(p) which one obtains by com
posing the similarly named forms on tS*(X) with H. 
The forms p and r. are skew symmetric in all of their 
arguments, while the forms p and {j are, like l, skew 
symmetric in all except the first one of their arguments. 
Denote by lU,pU, and au the skew-symmetric forms 
one obtains by substituting a vector U in as the first 
argument. The general representation formula, Eq. 
(3.15), can be expressed for 1 as follows: 

lU = pU + (co. U)p + co A (aU) + (co. U)co A h. 
(3.l9) 

Note that (co· W) = 1 and PW and aw both vanish 
identically. Thus, when U is W, the right member 
reduces to p + co A Ii. Thinking of 1 as an energy
momentum flux, we call p the momentum flux, p the 
mass and internal energy flux, a the stress flux, and 
Ii the heat flux. We are not prepared to defend the 
choice of name for r. as well as the other choices. As 
we will show that Ii must vanish identically in our 
theory, it is perhaps unimportant what name we give 
Ii. 

We have shown that any given objective response 
functions 0, p, and 1 can be expressed in terms of 
compositions with H of functions g, (J, l, p, p, p, a, 
and" which depend on (X, C, ex) and sets of vectors in 
the tangent space of S* at X. These representation 

functions are uniquely determined by the given re
sponse functions 0, p, and 1. In fact, one can obtain 
each careted function by substituting W for some of 
the arguments in the response function and substi
tuting for the remaining arguments vectors AZ [which 
are images of vectors Z in tS*(X) by the Bressan 
deformation gradient A]. For instance, 

heX, Y) = leW, W, AX, AV). (3.20) 

Conversely, suppose that arbitrary functions g, 8, l, 
p, p, p, a, and h are given, and that functions 0, p, 
and 1 of (p, X, H, ex) and of sets of vectors in the 
tangent space at p are defined by Eqs. (3.16), (3.18), 
and (3.19). It is clear that 0, p, and 1 will be objective. 

4. ALGEBRA AND CALCULUS 

One can state the iritegrallaws of motion using only 
conventional notation drawn from two widely studied 
theories. The one theory encompasses vector fields, 
covariant derivatives of vector fields, and linear 
transformation fields. The other is the theory of inte
gration of differential forms on manifolds. In order to 
discuss these laws in any detail, it is convenient to 
introduce and study some additional specific tensor 
operations, operations which are of interest only in 
the context of integral conservation laws. This section 
is designed in part to aid the reader in reconciling the 
types of tensors to which we attached electromagnetic 
and dynamic names in Sec. 2 with the types of tensors 
which he is accustomed to associating with these 
names. The results of this section also will be used in 
Sec. 7 to derive differential equations from the integral 
laws which we will have introduced in Sec. 6. 

Let us fix our attention on an arbitrary point p of & 
during the following discussion of multilinear algebra. 
We shorten the name of t&(p) to t&, and introduce 
names of other tensor spaces at p without the specifi
catory symbol "(p)" attached, but with its presence 
understood. 

For each positive integer n, let:Fn be the space of all 
multilinear functions 'Y of ntuples of vectors from t&, 
which are scalar valued and are skew symmetric in all 
n arguments. Let Co be the sp'ace of all multilinear 
functions t of fourtuples of vectors from t&, which are 
scalar valued and which are skew symmetric in the last 
three of their arguments. It is convenient to think of 
substituting a vector V in as the first argument of a 
function t in Co, and considering the result as a function 
of the three remaining arguments. Let us denote this 
function of threetuples by tV. The correspondence 
between V and tV is linear, and for each V, tV belongs 
to :F3; thus, we are interpreting t as a linear operator 
from tE into :F3. 



                                                                                                                                    

324 LINCOLN E. BRAGG 

The space :F3 is of special interest because in it lie 
the tensors which represent fluxes of scalar quantities, 
like charge and mass, across three-dimensional hyper
surfaces. The space Co is of special interest because in it 
lie the tensors which represent fluxes of covector 
valued quantities, like energy-momentum, across 
three-dimensional hypersurfaces. We introduce two 
more spaces :F and C, which we shall canonically 
identify with :F3 and Co, respectively. The tensors m in 
:F have directions associated with them, like vectors in 
It, but do not have scalar magnitudes. Thus one can 
think of a direction of flow of stuff, but the concept 
of rate of flow usually associated with the magnitude 
of the flow vector is not so natural. In a similar and 
related way, the elements T of C are similar to linear 
transformations of It into itself, which are the type of 
tensors usually used to represent energy-momentum 
flux and in connection with which standard ideas of 
physical intuition have been developed. 

Let :F be the space of all multilinear functions m 
of fivetuples of the following type: The values of m 
are scalars, the first argument is a covector, and the 
last four arguments are vectors. Finally, m is skew 
symmetric in its last four arguments. For each m in 
:F and each covector A in :Fl, let A' m denote the 
four-form in 3'4 which one obtains by substituting A 
into m as its first'argument. Call m and A orthogonal to 
each other if this dot product A • m is zero. Let us say 
that a vector V in It and a tensor m in 3' have the same 
direction if the collection of all covectors A which are 
orthogonal to V is the same as the collection of 
covectors which are orthogonal to m. We note that 
each nonzero m has a unique direction, in the sense 
that there is a unique one-dimensional space of 
vectors V which have the same direction as m. 

Having defined :F, we let C be the space of all linear 
transformations T of It into 3'. For T in C and V in 
It, denote by TV the tensor in :F which is the value at 
V ofT. Besides the spaces It, :Fn, Co, 3', and C, which 
we have thus far named, one other space will occur in 
out theory. Let :1'* be the space of all linear operators 
ot taking vectors V in It into forms y in the one-dimen
sional space :1'4. Such operators ot are similar to one
forms A in 3'1, in that they map vectors V into a 
one-dimensional space. In view of the similarity with 
one-forms, we denote the value y of an operator ot 

at a vector V by ot • V. 
We shall employ some multilinear functions defined 

on various Cartesian products of the spaces which we 
have introduced. These functions will have the 
requisite properties of nonsingularity that enable us to 
call them tensor-product functions. Since, for each 
Cartesian product of spaces, there is only one function 

whose domain is that Cartesian product, it will be 
unambiguous to denote the values of anyone of the 
tensor-product functions by the names of its argu
ments with the multiplication sign ® between them. 

For each pair (0, 'T) in the Cartesian product 
:Fl X 3'3, denote by 0 ® 'T the operator I in Co whose 
value tV at any vector V is the product (0. V)'T of the 
scalar 0 • V and the three-form 'T. Similarly, define a 
tensor product on the Cartesian product It X 3'4 
having values in:F, and in turn define a tensor product 
on It X 3'1 X 3'4 having values in C, by the following 
formulas: For U in ft, 0 in 3'1 , and y in :F 4, 

U ® Y = m, for all A, A' m = (A' U)y, (4.1) 

U ® 0 ® Y = T, for all V, TV = (0· V)(U ® y). 

(4.2) 

For a fourth and final tensor product, for pairs (0, y) 
in:Fl X :F 4, let 0 ® Y be the operator ot in :1'* which is 
defined as follows: 

o ® Y = ot, for all V, ot· V = (0· V)y. (4.3) 

We introduce a function on C which takes values in 
the one-dimensional space :F4, which we call the 
"trace" because ~f its close analogy with the function 
of the same name on the space oflinear transformations 
of It into tt, which takes values in the one-dimensional 
space of scalars. We denote the value of the trace of an 
operator Tin C by TrT. The trace is defined by the 
requirements that it be linear and that the following 
equation hold whenever its argument T is a tensor 
product: 

T = U ® 0 ® Y implies TrT = (0 • U)y. (4.4) 

Note for future use that for any T in C, and for any 
linear transformation L of tt into tt, the composition 
TL is in C. Hence, Tr(TL) is well-defined. 

Besides the trace, there are four other linear 
operations on C of the type commonly called tensor 
contractions. These four take values in Co, and they 
differ one from another merely by a multiplicative 
factor of plus or minus unity. We choose one, call it 
"the contraction," and denote its value at an operator 
T by CtT. Making a similar choice among equivalent 
functions on :F, we define a closely related function 
taking :F into 3'3, which we also call "the contrac
tion," and we denote its value at a tensor m by Ctm. 
Each contraction function is defined by the require
ments.that it be linear and that the appropriate one of 
the following equations hold whenever its argument is 
a tensor' product. For any form y in :F 4 and any vector 
U, denote by y(U) the three-form which is obtained by 



                                                                                                                                    

RELA TIVISTICALLY DYNAMIC ELASTIC DIELECTRICS 325 

substituting U into y as its first argument: 

m = U @ Y implies Ctm = y(U), (4.5) 

T = U @ 0 @ y implies CtT = 0 @ y(U). (4.6) 

It is apparent from these equations and from the 
definition of tensor products in Eqs. (4.2) and (4.3) 
that, at least when an operator T in t is a tensor prod
uct U @ 0 @ y, one gets the same result (0. V)y(U) 
whether he contracts T and then operates on a vector 
V, or first operates on V and then contracts. That is, 
for every vector V, 

Ct(TV) = (CtT)V. (4.7) 

Since tensor products span the space t, and the mem
bers of Eq. (4.7) are linear functions of T, the fact 
that it holds when T is a tensor product implies that it 
holds for all T in t. 

Each contraction function is invertible and its range 
is the whole of :F3 or to, respectively, as we shall 
presently show. Thus, the contraction functions will 
serve as canonical identifications of their domain 
spaces t and :F with their range spaces to and :F3. We 
begin the demonstration of invertibility by defining 
the operation which is the inverse. We call the opera
tion "the expansion"; we denote its value at any T in 
:F3 by EpT, and denote its value at any t in to by Ep/. 
The expansion function is defined by the following 
identities in its arguments T and t and in one-forms A 
and vectors V: 

EpT = m, for all A, A· m = A A T, (4.8) 

Epl = T, for all A and V, A· (TV) = A A (tV). 

(4.9) 

Note that, as in contraction, expansion commutes 
with operation on vectors V: If for given t and V, we 
set T = IV, then, from the definition of Ep/, it is clear 
that 

(Ept)V = EpT = Ep(tV). (4.10) 

Theorem: The expansion and the contraction are 
each the inverse of the other. Specifically, for every m 
in :F and for every T in :F3, Ep(Ctm) = m and 
Ct(EpT) = T. Hence, for every T in t and for every t 
in to, Ep(CtT) = T and Ct(Ept) = t. 

Proof: We show that the composition Ep(Ct· .. ) is 
the identity on the set of tensor products in :F. Since 
the composition is linear, it is then the identity on all 
of :F. We show that all of:F3 is included in the range of 
Ct. Since, by the previous result, Ct(Ep(Ct· .. » is Ct, 

it follows that Ct(Ep' .. ) is the identity on the range 
of Ct, hence on :F3. To prove the statement about 
operators T and I, we note that the results about 
elements of:F and .73 so far imply that, for any vector 
V, Ep(Ct(TV» = TV and Ct(Ep(TV) = tV. Since 
operation on V commutes with both Ep and Ct, it 
follows that Ep(CtT) = T and Ct(Ept) = t. The 
details which support these statements follow. 

Let m = U @ y be any nonzero tensor product in 
:F. Since m is nonzero, both U and yare nonzero. 
Hence every four-form in :F 4 is a multiple of y, and the 
result y(U) of substituting U into y as first argument 
is a nonzero three-form. Therefore, for every one
form A there is a scalar factor c such that 

A A y(V) = cy. (4.11) 

Substitution of U into the second factor y(U) of the 
left member amounts to substitution ofU in for two of 
the arguments of y; since y is skew symmetric, the 
result is zero. It follows that substitution of U into the 
product A A y(V) as its first argument yields 
(A. V)y(U). This must equal the result cy(V) of 
substitution ofU into the right member of the equation. 
Therefore c = (A. V). Since then the right member 
cy is (A· U)y, which equals A· (V @ y), we have 
established that, for every A and for every tensor 
product m = U @ y, 

A' (Ep(Ctm» = A· m. (4.12) 

Since this equation holds for every A, we have 
(Ep(Ctm» = m for every tensor product m, which is 
one of the results we set out to prove. 

Let T be any form in :F3. In the null space of T 

choose any nonzero vector U, that is, a vector such 
that if it be substituted into T as one of its arguments, 
then T becomes identically zero as a function of the 
remaining arguments. Then choose a one-form A such 
that A • U = 1. Define a four-fofm y and in turn a 
tensor m in :F by 

y = A AT, m = U @ Y = U @ (A AT). (4.13) 

Since substitution of U into the second factor T of 
y = A A T reduces T to the zero function of its remain
ing arguments, y(U) = (A • V)T = T. Therefore, since 
y = Ctm_by definition of the contraction of a tensor 
product, we have shown that there exists an m in :F 
such that T = Ctm. Thus, the range of Ct on :F is all 
of :F3. This completes the proof. 

One definition and one resulting formula similar 
to the above will be useful, relative to the three
dimensional space tS* of vectors tangent at some 
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point Xto the body manifold S*. For use in Sec. 5 (in 
discussing symmetry of the "stress-tensor" part of an 
energy-momentum tensor-valued objective response 
function f), consider a multilinear three-form a on 
tS* which is skew symmetric as a function of its last 
two arguments. Thinking of a as an operator taking 
vectors V into two-forms aV obtained by substitution 
of V in a as its first argument, we define its "expansion" 
S = Epa as follows as an operator on vectors V: The 
value SV for any V is a linear function of one-forms A, 
with values denoted by A· SV. For given A and V, the 
value A· SV lies in the (one-dimensional) space of 
skew-symmetric three-forms. The definition of Sand 
the explicit formula for its values which is of interest 
are 

A· SV = A A (aV), (4.14) 

(A. SV)(X, Y, Z) = (A. X)(a(V, Y, Z» 

+ (A· Y)(a(V, Z, X» 

+ (A· Z)(a(V, X, V»~. (4.15) 

Let us apply the above algebraic results. For any 
point p such that within some neighborhood of p the 
energy-momentum field t and the charge-flux po
tential (J are continuously differentiable and the 
electromagnetic field cp is continuous, the momentum 
equation [which we .will postulate in Sec. 6 as Eq. 
(6.8)] implies that, for every smooth vector field V, the 
following equation holds at p: 

seVY) = d(tV) + (cpV) A d{J. (4.16) 

Herein, d(tV) denotes the exterior derivative of the 
three-form tV. We shall refer to the second term on the 
right as the work density due to interaction of cp,V, 
and {J, and we shall call the first term the work density 
due to energy-momentum transfer by interaction of 
t and V. It is of interest to make the dependence of 
these two terms on V more explicit. 

Consider arbitrary fields cp, V, and (J. Since the 
expansion Ep(d{J) is the unique tensor m such that 
Ctm = d{J, it is clear from the last paragraph of the 
above proof that Ep(d{J) is a tensor product U @ y
indeed, that every tensor in :F is a tensor product. 
We may think of the tensor Ep(d{J) as a semiclassical 
representation of the charge-flux form d{J. For any 
choice of factors U and y in the representation of 
Ep(d{J) as a tensor product, we may think in the 
classical manner ofU as a flow velocity vector. We can 
keep in mind that the factor y is needed to account for 
volume density and time-rate effects, and that it is only 
the product of U and y that is canonically determined 
by d{J. 

The value Ep(d{J) = U ® y of a tensor product 
does not determine its factors U and y. However, if 
one chooses any favorite nonzero four-form 1J, then, 
for any given factors U and y, the second factor y is 
some scalar multiple g1J of 1J. By removing the factor 
g from y and adding it to U, we do not alter the value 
of the product, but do obtain 1J as the second factor. 
For a chosen value 1J of the second factor, the value 
J ® 1J of the product does determine the first factor 
J. The vector J is the classical charge flow world-vector, 
whose time component in any frame of reference is the 
charge density and whose spatial part is the current 
vector. 

Laying aside the question of interpretation of the 
fa9.tors, let us choose a four-form 1J and let J be the 
unique vector such that d{J = J ® 1J. Since, by defini
tion of the one-form cpV, (cpV). J = cp(V, J), the 
work density is given by 

(cpV) A d{J = (cpV). (J ® 1J) = cp(V, J)1J. (4.17) 

We may replace cp(V, J) in the right member by 
-cp(J, V) = -(cpJ). V. Therefore, by way of isolating 
the dependence on V, we may express the work 
density as follows in terms of the operator (cpJ) ® 1J in 
:F*: 

(cpV) A d{J = - V • «cpJ) ® 1J). (4.18) 

We remark that this tensor (cpJ) ® 1J which we have 
introduced does not depend on the choice of vector 
J and four-form 1J used in factoring Ep(d{J). If we 
remove a scalar factor g from J = gU and add it in 
g1J = y, then (cpJ) ® 1J = (cpU) ® Y is unaltered in 
value. 

We have need of a formula for the exterior deriv
ative d(tV) of the three-form tV which is obtained by 
substituting a vector field V into a tensor field t with 
values in to, to use in the right member of Eq. (4.16). 
Let (U, X, Y, Z) be any ordered fourtuple of vectors 
at p. 'choose four vector fields near p and denote 
them by the same names U, X, Y, and Z; the choice to 
be arbitrary except for the following restrictions: The 
value at p of each vector field must be the given vector, 
and the value of the covariant derivative of each field 
must be zero. The restriction to·fields whose covariant 
derivatives are zero is for convenience, to avoid a 
clutter of irrelevant terms in identities involving the 
fields. We note that if the covariant derivatives of all 
of the fields vanish at p, then the Lie bracket of each 
pair of fields vanishes at p also. Lest the reader wonder 
about the possibility of the choice, we note that it is 
well known that, for any symmetric covariant deriv
ative V and any point p, there exists a coordinate 
system near p such that the gamma symbols of V 
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vanish at p. Given a vector Z at p, with components 
Zi relative to such a coordinate system, the field whose 
components are constant and equal to Zi will reduce to 
Z at p and will have zero covariant derivative at p. 

Let (U', X', Y', Z') be any ordered fourtuple con
sisting of the four fields U, X, Y, and Z, but not 
necessarily in that order. Substitute the last three 
fields into tV, obtaining a scalar field g = t(V, X', 
Y', Z'). Denote the derivative U' • dg of this scalar 
field at p in the direction of U' by f By this we mean 
the derivative of the values of g with respect to the 
parameter s along a curve pes) whose tangent at p is 
U', and we mean the sum of the products with the 
components of U' of the partial derivatives of g with 
respect to coordinates in any coordinate system, etc. 
However one defines the right member, we set 

/= U'· d[t(V, X', V', Z'»). (4.19) 

Consider these four special cases of this formula: 
Let /1 , /2' /3' and /4 denote the numb«rs which one 
obtains by substituting in for (U', X', Y', Z') the four 
cyclic permutations (U, X, Y, Z), (X, Y, Z, U), (Y, 
Z, U, X), and (Z, U, X, Y) of vector fields relative to 
positions in the fourtuple (U, X, Y, Z). Since in this 
collection of permutations each vector field gets ex
actly one turn in position number one, we obtain the 
exterior derivative d(tV) by multiplying each number 
h by the signum of the related permutation and adding 
the results: 

d(ty)(U,X, Y,Z) = (+1)(/1) + (-1)(/0 + (+1)(/3) 

+ (-1 )(/4)' (4.20) 

There would in general be twelve more terms, each 
involving a Lie bracket of some pair of the vector 
fields. Since all such Lie brackets are zero, these terms 
vanish, and we may ignore them. 

The derivative/= U/ • dg in Eq. (4.19) of the value 
g of the tensor t evaluated at the fourtuple (V, X', 
Y', Z') is equal to the sum of five terms, each term 
involving the covariant derivative of one of t, V, X', 
yl, or Z/. Since the last three have zero derivatives at 
p, the sum reduces to one term involving Vt and one 
term involving VV. Denote by Vt(V, X', yl, Z', U/) 
the covariant derivative of t in the direction of U /, 
evaluated at (V, X', Y', Z/), it being customary with 
covariant derivatives to add the direction U' of 
differentiation as a new argument in the far right
hand position, rather than in the left-hand position 
(as with exterior derivatives). Denote by VY • U' the 
covariant derivative of V in the direction of U/. Then 
we have 

/= Vt(V, X', Y/, Z/, U /) + t(VY. U', X', Y/, Z/). 

(4.21) 

Substituting the vector fields into this equation in 
various orders, the reader may evaluate/I '/2'/3' and 
/4 and hence obtain a formula for d(tV)(U,.X: Y, Z). 
Four terms will involve Vr, and four terms wt11mvolve 
VV. These two groups offololr terms are similar to each 
other; we now prove a theorem relating such expres
sions to the trace-and expansion functions, and then 
write down a formula for d(tV). 

Theorem: For every r in Lo, the following identity 
in fourtuples (U, X, Y, Z) of vectors is valid: 

(Tr(Epr»(U, X, Y, Z) = r(U, X, Y, Z) 

- rex, Y, Z, U) 

+ r(Y, Z, U, X) 

- r(Z, U, X, Y). (4.22) 

Proof: Note that if Eq. (4.22) holds whenever 
R = Epr is a tensor product U ® 0 ® y, then it holds 
for all r, since each member of the equation is a linear 
function of r, and the set of contractions 0 ® y(U) of 
tensor products U ® 0 ® Y spans to. Since r is skew 
symmetric in its last three arguments, the particular 
combination of values of r which appears in the right
hand side of Eq. (4.22) is skew symmetric in all four 
arguments. Therefore, for a given r, if there exists a 
single fourtuple (U, X, Y, Z) of linearly independent 
vectors for which Eq. (4.22) is valid, then it is valid for 
all fourtuples. We conclude that it is sufficient to prove 
that Eq. (4.22) is valid in the case where R = Epr is a 
tensor product and (U, X, Y, Z) is anyone fourtuple 
of linearly independent fourtuples. 

Given any tensor product R = U ® 0 ® y in L, 
choose any linearly independent fourtuple (U, X, 
Y, Z) whose first vector U is the same as the first vector 
in R. Since r = CtR is 0 ® y(U), the right member of 
Eq. (4.22) is 

(0. U)y(U, X, Y, Z) - (0. X)y(U, Y, Z, U) 

+ (0. Y)y(U, Z, U, X) - (0. Z)(y(U, u, X, Y) 

= (0. U)(y(U, X, Y, Z) + 0 + 0 + O. (4.23) 

Since TrR = (0. U)y, the left member TrR(U, X, 
Y, Z) also equals (0. U)y(U, X, Y, Z). Thus Eq. 
(4.22) is valid in this case, hence in every case. 

To deal with the four terms which involve VV in 
the formula for d(tY) (which the reader was invited to 
write down just before this theorem was stated), we 
set T = Ept, and then let R be the composition 
TVV ofT and VV. Applying the theorem to r = CtR, 
we find that the four terms which involve VV add up 
to Tr(TVV). 
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For each fixed vector V consider the function r 
defined by 

r(U, X, Y, Z) = VI(V, X, Y, Z, U). (4.24) 

Since the right member is skew symmetric as a function 
of (X, Y, Z), r belongs to Co. Thus Tr(Epr) is well 
defined and belongs to .'F 4. Since the function r is a 
linear function of V, the four-form Tr(Epr) is also a 
linear function of V. Thus the operator which takes 
V into Tr(Epr) is a member of .'F*. Let us denote the 
latter operator by "divTt," which we read as "the 
divergence ofT transposed." Let us use a dot product 
notation when indicating the dependence on V but 
suppressing the other variables. That is, we set 

(divTt)(V, U, X, Y, Z) = (Tr(Epr»(U, X, Y, Z), 

(4.25) 

(divTt) • V = Tr(Epr). (4.26) 

The name divTt can be considered only as mne
monic device referring to a well-known theory in which 
the symbol T denotes a field of linear transformations 
of the tangent space tE into itself, rather than into the 
space .'F as in the present theory. In that case, both 
transposition and divergence-taking are well-known 
operations. Alternatively, one can justify. the name 
divTt as follows: T is an operator on IE, whose values 
TV are operators on .'Fl, whose values A' (TV) are, 
in turn, members of .'F4. Althogether, T is a real 
valued function of six arguments V, A, and the four 
vector arguments of A' (TV), which we think of as 
being substituted into T in stages. It we think of 
substituting A in first, we obtain an operator which we 
call Tt which takes a one-form A into the function 
whose value at a fivetuple (V, U, X, Y, Z) is 

(TtA)(V, U, X, Y, Z) = (J.. (TV»(U, X, Y, Z). 

For any operator such as Tt, which takes .'Fl into 
any tensor space, such as here the space of real
valued functions of five vectors, one can define the 
divergence as follows: The covariant derivative 
V(Tt) is an operator taking pairs (A, K) into the same 
tensor space, where A is the original one-form argu
ment and K is the direction of differentiation vector. 
The contraction of V (Tt) on the two primary argu
ments (A, K) is the divergence divT t of the operator 
Tt. This tensor divTt is an element of the range space 
of T t , in this case the space of functions of five 
vectors. 

The following is the formula which we have derived 
for the exterior derivative d(tV): 

d(tV) = Tr(TVV) + (divTt). V, T = Ept. (4 .. 27) 

The right member is a familiar expression to the 
student of continuum mechanics, except that the 
meanings of the symbols are not the familiar meanings. 
In particular, each term in this equation is a skew
symmetric four-form. 

5. CONSTITUTIVE RELATIONS 

Suppose that a body manifold S* and a relativistic 
universe E are given. What we shall call a "material 
state" is a collection (p, X, H, IX, ... ) of things, one 
thing corresponding to each entry in a list of inter
pretations. The first thing is a point p in E, and the 
second is a point X in S*. The third is a linear trans
formation H of tE(p) onto tS*(X), whose null space is 
timelike. The remaining objects (IX,"') are to be 
tensors of various speCified types, over tS*(X). Their 
interpretations and the types depend on the kind of 
material being described; we shall refer to them as 
"the nonkinematical variables." Given a motion 
function, and given tensor fields IX on IS"" to play the 
role of nonkinematical variables, for each p we call 
(p, Up), V'(p), lXaCp», ... ) the "state of the material 
at p during the motion '." 

To every state (p, X, H, IX) we associate what we 
shall call an "internal state": (X, C, IX), where X and 
IX are the same as in the given material state, and C is 
the Born tensor associated with the H which appears in 
the given state. Note that if an internal state (X, C, IX) 
be given, then each of the material states (p', X, H', IX) 
which are associated with (X, C, IX) can be obtained 
from anyone (p, X, H, IX) as follows: Let p' be an 
arbitrary point of S and let S be an arbitrary (time
sense-preserving) Lorentz transformation of tE(p') 
onto tf,(p). Set H' = HS. Thus the internal state 
determines the material state up to location in E and up 
to what may be intuitively called the orientation of the 
material relative to directions in the tangent space. 

To "define a type of material" means to us to 
specify the following things: One must specify E, S*, 
and the nature of the nonkinematical variables. One 
must specify the natures of a number of fields on &, 
these fields to be called the dyn~mical variables. One 
must give a number of objective response functions, 
defined on the set of all material states. Finally, one 
must specify a number of "constitutive equations," 
equations which relate the values of the dynamical 
variables and the values of the response functions. 
Given a definition of a type of material, a set of fields 
on E will be called an "admissible dynamical motion 
of the material" if the following is true: The set 
consists of a motion function ~, appropriate fields to 
play the roles of nonkinematical state variables, and 
appropriate fields to play the roles of dynamical 
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variables. At each point p on &, the constitutive 
equations are satisfied by the values at p of the 
dynamical variables and by the values at the state of 
the motion (p, '(p), V'(p), oc('(p») of the response 
functions. 

To do all that is required for definition of a material 
except specification of the response functions (merely 
placing restrictions on the choice of response func
tions) is to define a class of materials. We shall define a 
class, which we shall call the class of polarization
responsive elastic dielectrics. These materials have 
just one nonkinematical state variable oc, and it is a 
scalar-valued skew-symmetric two-form over the tan
gent space tS* of the body. The dynamical variables 
include an electromagnetic field cp, a dielectric polari
zation charge-flux potential p, and electromotive 
intensity E, and an energy-momentum flux t. 

The value of the charge-flux potential p is given by 
a specific response function, for polarization-respon
sive elastic dielectrics. We have noted that, in general, 
a skew-symmetric two-form-valued response function 
P which' is objective is a function of the following 
form: 

p(U, V,p, X, H, oc)" . = P(HU, HV, X, C, oc) 

+ (co· U)~(HV, X, C, oc) 

- (co· V)~(HU, X, C, oc), 

(5.1) 

in which P and i. are arbitrary functions of their 
arguments, except that they must be multilinear and 
skew symmetric in the vectors. For the specific response 
function in which we are interested, we set ~ equal to 
zero, and we set P equal to oc, in the following sense: 

lI(u, V,p, X, H, oc) = oc(HU, HV). (5.2) 

We note that since HW = 0, if W be substituted into 
P as one argument, the resulting function of the 
remaining argument vanishes identically. Conversely, 
given a partial state (p, X, H,' .. ) with oc unspecified, 
and given any skew two-form p atp such that peW,. .. ) 
vanishes identically, there exists a unique oc at X such 
that P(U, V) = oc(HU, HV) for all U and V. It follows 
that if we arbitrarily specify a motion , and a field p 
on & whose null space at each point contains the world 
velocity W of " then for each point p there will exist 
a unique oc and hence a unique material state (p, '(p), 
V'(p), oc), at which the value of the response function 
II is the given field p. Thus, we may equally well think 
of oc or p as the independent variable. 

As a second and a third constitutive equation, we 
adopt the standard relation among the electromagnetic 

field cp, the world velocity W, and the electromotive 
intensity E, and then postulate that the value of E 
must be given by a response function. We have noted 
that a general response function E whose values are 
one-forms is a function of the following form: 

E(U,p, X, H, oc) = (co. U)g(X, C, oc) 

+ E(HU, X, C, oc). (5.3) 

In order that it be possible that there exist some 
skew-symmetric two-form cp such that cp(W, U) = 
E(U, p, X, H, oc) for all U, it is necessary that E{U, ... ) 
vanish whenever U = W. Since co· W equals I and 
HW equals 0, E(W, ... ) = g( . .. ). Thus, it is neces
sary that g vanish identically. Conversely, if g is 
identically zero, then the collection of such two-forms 
cp is not empty: (co A E) is a two-form and 

(co A meW, U) = E(U, ... ). 

Therefore, it is reasonable to restrict the choice of the 
response function E by insisting that g vanish. 

Let E be any scalar-valued function which is linear 
as a function of its first argument. Define a response 
function E as in the right-hand equality below. Then 
introduce the remaining equations relating E, CP. W, 
and the values' of the response function, whenever 
(p, X, H, oc) is the actual state of the material: 

E· U = E(U,p, X, H, oc) 

= (EHU, X, C, oc), (5.4) 

E· U = cp(W, U). (5.5) 

As a fourth and final constitutive equation, we 
postulate that the value of the energy-momentum 
flux t be given by a response function. We have noted 
that a general objective response function l whose 
values lie in the space Co of energy-momentum flux 
tensors is a function of the following form: For every 
vector U, 

tv = pU + (co· U)p + co A (aU) + (co. U)co A Ii, 
(5.6) 

where p, ,0, 0', and Ii are compositions with H of 
multilinear functions p, p, &, and h on tS*(X), which 
depend furthermore on the internal state (X, C, oc). 
The functions p, p, <1, and" are arbitrary except that 
p is skew symmetric in the last three of its four argu
ments and <1 is skew symmetric in the last two of its 
three arguments; p is skew symmetric in all three of its 
arguments, and fz is skew symmetric in its two argu
ments. 'We shall restrict the choices of these functions 
by requiring' that, in a sense which we shall make 
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precise, f is a symmetric tensor and the world velocity 
vector W is an eigenvector of f. 

One of the consequences of the physical laws to be 
postulated in Sec. 6 is that the value t of the response 
function f at a state (p, X, H, IX) must be symmetric if 
that state is to occur in any dynamic motion with 
dielectric polarization. We are making the usual 
requirement that this symmetry condition constitute 
no restriction on the class of states which can occur. 
We say that a tensor tin Lo is symmetric iffor all pairs 
of vectors V and V in the tangent space t[;(p), 

(GV) A (tV) = (GU) A (tV). (5.7) 

We call a vector V an eigenvector of a tensor t in 
to if the three-form tV has the same direction as V, 
in the sense that everyone-form A which is orthogonal 
to V is also orthogonal to tV. An equivalent condition 
not involving A is that V be in the null space of tV, that 
is, that t(V, V, .. " ... ) vanish identically as a func
tion of its remaining arguments. A motivation for 
insisting that W be an eigenvector of the energy
momentum tensor is that in most of the known 
reasonable theories, W is an eigenvector, and that in 
certain simple theories involving clouds of particles, 
the fact that W is an eigenvector is related to highly 
plausible properties of the flow of particles. One feels 
that it is normal for W to be an eigenvector, and that 
one needs a definite reason for proposing a theory in 
which W is not. 

Theorem: The world-velocity vector W is an eigen
vector of every tensor value t of an energy-momentum 
response function f if and only if the "heat flux" 
function Ii vanishes identically. Every value t of 1 is 
symmetric if and only if these two conditions hold: 
The "Piola-Kirchoff tensor" S, which is defined 
below and which involves only a, is symmetric relative 
to the Born tensor C; ft is a certain linear function of 
h. In particular, W is an eigenvector of every t and 
every t is symmetric if and only if both p and h vanish 
and S is symmetric. 

Definition: Given an objective response function 
f, and hence given a, let S be the operator on vectors 
U in tS*(X) whose value SU is a function of one
forms A over tS*(X), the value A . SU of SV in turn 
being a skew-symmetric three-form over tS*(X)
namely, the following three-form: 

A • SU = A A (aU). (5.8) 

[See the discussion of such operators in Sec. 4 and 
Eqs. (4.14) and (4.15) there.] We call S the Piola-

Kirchoff tensor. We call S symmetric, relative to the 
Born tensor C which occurs as part of the internal 
state (X, C, IX) on which S depends, if the bilinear form 
obtained by substituting one-forms CV for the A above 
is a symmetric function of the two vectors V and U. 

The symmetry of S is the only hard property to 
ensure when trying to formulate an objective response 
function f whose values are symmetric and have W as 
eigenvector. Aside from this problem, one can simply 
use Eq. (3.19), with ft and Ii replaced by zero. For 
every vector U, 

lU = (w • U),o + w A (iTU), (5.9) 

where p is the composition with H of an arbitrary 
skew-symmetric three-form p on tS*(X) which depends 
on the internal state (X, C, IX), and where jj is the 
composition with H of an arbitrary three-form a, 
which is skew symmetric in its last two variables, 
which depends on the internal state. 

We shall indicate how to choose the function a 
so that S is symmetric, and in the process indicate how 
to use the elastic response function of a material which 
describes behavior of the material in terms of classical 
space-time to write down the corresponding rela
tivistic response function f. To define a a, for each 
internal state (X, C, IX) and for each pair of vectors 
U and V in tS*(X) we specify the three-form (CU) A 

(aV). Since this form is to be skew symmetric, it is 
enough to specify its value at any basis (VI, V 2, V 3) 
and then extend the definition to all triples of vectors 
using the skew-symmetric multilinearity. Let (VI' 
V 2, V J be any basis; let Ai be the one-forms in the 
dual basis, which is to say Ai • Vi = bii ; and let U i be 
the vectors such that Ai = CUi' We arbitrarily choose 
a three-by-three matrix of real numbers Sii' and set 

(5.10) 

Brief arguments will show that each matrix deter
mines a unique function a, and the corresponding S is 
symmetric if and only if the matrix is symmetric. 
Because the V k are dual to the Ai' the expression for 
the exterior product reduces to one term: If (i, p, q) 
is the cyclic permutation of (1, 2, 3) which starts with 
i, the right member is a(U;,V1" Vq). Thus, Eq. (5.10) 
assigns a~ value for a to each triple (Ui , V 1" Va) in 
which the first vector is anyone of the U's and the 
second and third are from the V basis and have their 
indices (p, q) in natural cyclic order. One can obtain 
a value for any triple (V;, Va' V 1') in which (q, p) is 
in reverse of cyclic order by introducing a minus 
sign and reversing the vectors (Va , V,,), and then 
using Eq. (5.10). Extending a by multilinearity, we 
obtain a unique function of all triples of vectors. 
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Finally, since Ai = CUi' the three-form (CUJ II (aUi) 

depends symmetrically on the basis vectors Ui and Ui 

if and only if its value Sii at the V basis depends 
symmetrically on i andj, and a function is symmetric 
on pairs of basis vectors if and only if it is symmetric 
on all pairs of vectors. 

By definition of S, Sii is the value of (CVi) • (SV i ) at 
the chosen basis triple (VI' V 2, V J. Suppose that one 
has a Piola-Kirchoff stress tensor So which describes a 
material relative to classical space-time and relative 
to some "reference configuration" of S* in space. 
So will depend on position X in S*, on a positive
definite symmetric linear transformation C of tS*(X) 
into its dual space, and on a tensor ~ over tS*(X). The 
tensor C that is to be substituted into this function 
So, when So is used to find the stress during a motion in 
classical space-time, is the right Cauchy-Green tensor. 
One can define a Piola-Kirchoff tensor S for use 
during relativistic motions as follows: Choose a basis 
(VI' V2 , Vs) of tS*(X) which corresponds to a right
handed orthonormal basis in the reference configura
tion. Find the related basis (VI' V 2 , Vs). Then for any 
internal state (X, C, ~) define the matrix entries Stj to 
be equal to (CV i )· (So(X, C, IX)Ui ) and then define 
S in terms of the Sij. It makes sense to substitute the 
Born tensor C into the function So where the fight 
Cauchy-Green tensor "belongs, since both tensors are 
positive-definite symmetric linear transformations of 
tS*(X) into its dual. 

It is reasonable to identify the Born tensor with the 
right Cauchy-Green tensor, in that the two kinds of 
tensors describe in the same way the distortion of the 
material from the abstract body S* to the actual 
world E during a motion, the right Cauchy-Green 
tensor when the structure of E is classical and the 
Born tensor when the structure of E is relativistic. In 
fact, if one has both a classical and a relativistic 
structure for E, and if the material particle X is at rest 
relative to the classical structure at some particular 
event during some motion, then the Born tensor 
equals the right Cauchy-Green tensor at that event; 
if the whole body S* is nearly at rest relative to the 
classical structure during the whole motion, then the 
Born tensor nearly equals the right Cauchy-Green 
tensor during the whole motion. Finally, note that the 
reason for choosing (VI' V 2, V 3) in this definition to 
be a right-handed orthonormal basis relative to the 
reference configuration is that So depends implicitly, on 
the unit of volume of the reference configuration, 
whereas the corresponding dependence for S is the 
explicit dependence on the triple (VI' V 2, V 3)' The 
values of the two functions are related only when 
the volume associated with the triple is unity. 

Proof: Each of the functions p, p, a, and Ii vanishes 
when anyone of its arguments equals W. From this, 
from the fact that 0) • W = I, and from Eq. (5.6), we 
conclude that lW = P + 0) II fi. Since 

p(W,"',"') = 0, 

p has the same direction as W. Since 

(0) II 1i)(W, .. " ... ) = Ii(· .. , ... ), 

0) II fi does not have the same direction as W unless 
"fi vanishes identically. Thus the condition that IW 
have the same direction as W is equivalent to the 
condition that Ii vanish. 

Equation (5.7), which expresses the condition that 
I be symmetric, will hold for all U and V if it holds in 
these two special cases: when V = Wand 0) • V = 0, 
and when both 0). U = 0 and 0). V = O. Consider 
the right member of Eq. (5.7) in the case when 
V = W. The one-form 0) and the numerical factor 6 
are defined so that 0) = -6(GW). Therefore, for any 
vector V such that 0). V = 0, -!5(GW) II (IV) equals 
0) II (flV), plus two terms which drop out because they 
are proportional to 0). V, plus 0) II 0) II (aV), which 
drops out because 0) II w is zero. Thus, it equals 
0) II (pV) alone. Consider next the left member of Eq. 
(5.7). Since (GV)· W = 0 and p(W,"',"') = 0, 
the form (GV) II P has a nonzero vector in its null 
space-namely, W. Since (GV) II P is a skew-sym
metric four-form on a four-dimensional space, it must 
vanish identically. Since IW = P + 0) II Ii and we have 
just noted that the product of (GV) with the p in the 
right member must be zero, we have -!5(GV) II 
(lW) = -!5(GV) II w II Ii = 60) II (GV) II Ii. We have 
shown that the symmetry condition involving pairs 
W. V such that 0) • V = 0 is that the exterior product 
with 0) of the left member of the following equation 
equals the exterior product with 0) ofthe right member: 

pV = !5(GV) II fi. (5.11) 

Since W is in the null space of each member of this 
equation and w • W is nonzero, this equation holds if 
and only if the equation holds which one would obtain 
by multiplying each member by 0). Thus this Eq. (5.11) 
is equivalent to the symmetry condition involving 
pairs W, V. 

For any two vectors V and V such that 0) • V = 
0). V = 0, consider the exterior product of GV with 
the expression for TV which is displayed in Eq. (5.6). 
The first term (GV) II (pV) is a skew-symmetric four
form whose null space contains a nonzero vector W; 
hence this term vanishes. The second and third terms 
contain the zero factor 0) • V; hence these terms drop 
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out also. Thus 

(GV) A (lU) = (GV) A W A (aU) 

= -w A (GV) A (aU). (5.12) 

As a function of U and V orthogonal to w, the four
form on the right is a symmetric function if and only if 
the three-form factor (GV) A (aU) is symmetric; in 
fact, if and only if the restriction of (GV) A (aU) to the 
space of vectors orthogonal to w depends symmetri
cally on U and V. This is because w·W is nonzero 
and W lies in the null space of all one-forms GV and 
GU and all two-forms aV and aU for which U and V 
are orthogonal to w. 

The space of vectors in tB(p) orthogonal to w is the 
range of the Bressan deformation gradient A. The 
three-form (GV) A (aU) restricted to the range of A 
is a symmetric function of pairs V, U in the range of A 
if and only if the composition with A in all three 
arguments of the three-form (GAV) A (aAU) depends 
symmetrically on pairs V, U of vectors in the domain 
tS*(X) of A. The composition with A of the one-form 
GAV is AtGAV = CV. The composition with A of the 
two-form aAU is aU, this being essentially the defi
nition of a. We conclude that the symmetry condition 
on l involving pairs of vectors orthogonal to w is 
equivalent to symmetric dependence on pairs V, U 
in tS*(X) of 

(CV) A (aU) = (CV)· (SU). (5.13) 

The proof is complete. 

6. PHYSICAL LAWS 

The Maxwell-Lorentz equations involving the 
electromagnetic field c/> and the polarization field fJ 
can be expressed as in Eq. (6.1) below, the meaning 
of which we discuss in the intervening paragraphs. 
Any skew-symmetric bilinear form y can be regarded 
as descriptive of the flux of some scalar quantity in 
either of two ways, depending on our intuitive con
ception of the nature of the flow. Our theory would be 
incomplete without some of the intuitive ideas which 
we discuss below, concerning flowing stuff associated 
with the integrals of the two-forms y on the four
dimensional space B which occur in our theory. 

In the analogous situation when all dimensions are 
lower by one and visualization is easier, consider a 
one-form y defined on a three-dimensional space B. 
For any directed piece of curve A, we call the value of 
the integral of y along A "the flux across A," and y 
itself we call "the density" of the flux. But one does not 
have a good idea of which direction is "across" A. If 
we imagine some piece of oriented surface S of which 

A forms a part of the boundary as, then we can imag
ine stuff flowing in the surface and escaping through 
the edge. For any such surface S, we can interpret the 
line integral of y along A as the rate of escape of stuff 
from the interior of S through.the part A of as. This is 
admittedly a somewhat sophisticated concept of flow, 
since the flux fA: y across A is determined by y and A 
alone, and hence is the same for all of the many 
surfaces S which contain A as part of their boundaries. 
As we shall see, however, this is the way the electro
magnetic field is commonly treated, and the approach 
has advantages. 

The validity of any laws binding on y which one 
makes about conservation of stuff, etc., is inde
pendent of how we visualize the flow, so we may in 
fact use several different visualizations. For each piece 
of surface S we have said that the integral of y along 
as represents the total rate of escape of stuff from S. 
We may think of this escape as occurring from the 
front face of S, rather than out the edges. In this case, 
y is called a "potential" for the flow. Because the 
dimension of S is one lower than that of the ambient 
space 6, S divides the space within a small neighbor
hood N of any point on S into two separate regions, 
with S between the regions. In each such neighborhood 
N, we can visualize stuff from one region flowing iRto 
the one side of S and then escaping out the other side. 
This is a relatively unsophisticated concept of flow, 
directly related to the original concept, that of a 
collection of particles moving about in 6, with the 
flux from any surface S being the number of particles 
crossing S per unit time. However, this concept of flow 
across S, rather than within S and across its boundary, 
has the disadvantage that only integrals of y around 
complete boundaries as can be given intuitive meaning, 
while integrals of y along pieces A of curve are 
unrelated to the physical ideas. Thus the concept of 
flow across surfaces is by itself likely to be not entirely 
adequate for relating physical concepts to forms y. 

In four-dimensional space 6, three-dimensional 
hypersurfaces S locally divided 6 into regions on the 
back side and regions on the front side of S, just as 
surfaces divide three-dimensional spaces. Thus, when 
y is a two-form on a four-dimensional space 6, one can 
visualize stuff flowing from regions on the back side, 
across S, into regions on the front side, the total 
rate of flow being f aSy. If one prefers the alternate 
picture of stuff flowing across pieces A of surface, one 
might have trouble deciding what "across" means, As 
in the lower-dimensional case, one can consider A to 
be part of the boundary of an unspecified hyper
surface S, and the flow in question to be occurring 
within S and out the edge. 
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The first of the Maxwell-Lorentz equations can be 
interpreted to mean that if r/> be regarded as a potential 
for a flow across hypersurfaces S, the total rate being 
J aSy, then the flux is zero across every S. Clearly, this 
mode of visualization of the flow is devoid of intuitive 
content, so it is better to think of flow across pieces .it; 
of edges of hypersurface. Within hypersurfaces, there 
is a nontrivial flow in general, although the net outflux 
from every piece S is zero. 

The usual practice is to consider coordinate systems, 
in which one of the coordinates is interpreted to be 
the time seen by some observer. The set of events at 
which the coordinate time takes a given fixed value, 
which is interpreted as an instantaneous space by the 
observer, is a three-dimensional hypersurface. The 
electromagnetic field r/> is regarded as the density of 
fluxes within such instantaneous spaces, across sur
faces .it; which form parts of boundaries of pieces S of 
the instantaneous spaces. The name of the stuff which 
is considered to be flowing is "magnetic induction." 
A somewhat-less-frequent practice is to consider in 
addition some hypersurface pieces S which do not lie 
in instantaneous spaces, but rather are timelike in the 
sense that there are timelike vectors tangent to them. 
The stuff flowing in such hypersurface pieces is con
sidered to be electrical rather than magnetic in nature 
and named accordingly. We favor what seems to be 
the practice in situations like the present, when it is 
unnatural to separately consider instantaneous spaces 
and time like hypersurfaces, to use the magnetic 
names. For arbitrary pieces of hypersurface S, we call 
the stuff magnetic induction for which r/> is the flux 
density. 

We regard {3 as a potential for the flux of a scalar 
quantity across three-dimensional pieces S of hyper
surface. The name of the flowing stuff is polarization 
charge. As part of the structure of the universe E, there 
is a field of linear transformations K of the space :F2 
of all skew-symmetric bilinear forms into itself. For 
a given electromagnetic field r/>, Kr/> is regarded as a 
potential for a flux, called the "total charge flux." The 
second of the Maxwell-Lorentz equations states that 
the total charge flux equals whatever charge flux we 
recognize as being present and ascribable to various 
causes. We are only going to recognize charge flux due 
to polarization. 

In summary, the Maxwell-Lorentz equations are 
these: For every orientable piece of hypersurface S 
with boundary oS, 

1. r/> = 0, 1. Kcp = 1. {3. (6.1) :ras jaS ja8 
We can describe the linear transformation K by 

listing two of its properties, or by giving its compo
nents in a coordinate system. We define a multilinear 
form K which is canonically associated with K: For 
an arbitrary ordered fourtuple U* = (Ul , U2 , Ua, UJ 
of vectors, consider the two-form y = (GUl) A (GU2) 

defined as follows in terms of the metric tensor G and 
the first two vectors in U*: 

y(X, Y) = (X. GUl)(Y • GUJ 

- (y. GU1)(X . GU2). (6.2) 

Apply K to the two-form y, and then substitute the 
remaining vectors (Ua , U J into the result Ky. The 
resulting number is the value of K at U*. That is, 

K(U1 , U2 , Us, U4) = K[(GUl) A (GU2)](Ua , U4). 

(6.3) 

The first of the two properties by which we describe 
K is that the form K is skew symmetric in all four of its 
variables. It follows from this that in every coordinate 
system the components of K are a multiple of the 
permutation symbols €iik!. The second property of 
K is that it is covariant constant, relative to the 
differentiation operator for which G is covariant con
stant. Equivalently, f{ is covariant constant. It follows 
that there is a constant ao such that the components 
of K are aoClgl)t times €iik! in right-handed systems, 
and minus these values in left-handed systems, where 
g is the determinant of the matrix of components of 
G. We may presume ao to be positive, either by making 
this the definition of which coordinate systems are to 
be called right handed, or by listing positivity of ao as 
a third property of K. From Eqs. (6.2) and (6.3), we 
find that the components of K are 

Kii = .lgrigsj K = 1a (lgl)tgTigsi€ (6.4) 1)q 2 rspq 2 0, rspf} 

in right-handed systems, where the gii are the com
ponents of the contravariant metric tensor G-l, and 
where the factor t arises because there are two terms in 
the right member of Eq. (6.2). The value of ao and the 
name which one gives it depend on the choice of a 
system of units. We note that 'Yhat is involved are the 
dimensional constants EO, 1'0' and c, and numerical 
factors. 

In addition to the Maxwell-Lorentz equations, we 
impose equations of conservation of energy, momen
tum, and angular momentum as physical laws, to be 
binding on collections (~, cp, (3, t) of fields which make 
up dynamical processes with dielectric polarization. 
Let W denote the world-velocity vector field of the 
motion " and let E = cpW denote the electromotive 
intensity one-form. 
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We avoid introduction of individual forces, energy 
densities and such at this point! introducing instead 
the functionals of an arbitrary world-velocity field V 
whose values are the energies that would be acquired in 
an arbitrary region 'ill of E by a hypothetical material 
moving with velocity V, acquired because ofthe action 
of these forces and energy densities and such upon the 
material. At a point where the following of the 
world line of a particle of the hypothetical material 
would take one from the outside into 'ill, any energy 
possessed by that particle is being carried into 'ill. 
Pursuing this idea, one sees that if one were to intro
duce an energy density, this density would correspond 
to a transfer of energy to the material in 'ill, for it to 
possess while it is in 'ill. The amount of transfer would 
depend on the direction of V, into, out of, or along the 
boundary of 'ill. The idea of acquisition of energy by a 
material through interaction with a given force field, 
the amount acquired being dependent on the velocity, 
is more conventional than the idea of a material 
acquiring energy during a certain time period by in
heritance from itself of an earlier time. This idea for 
force fields goes bac,k to the classical mechanics of a par
ticle moving through an applied force field, where the 
work done on the particle is the force times the velocity. 

There is an ambiguity possible in exhibiting a 
functional and saying that its values represent energy 
generated by interaction of a velocity field V and some 
other field. When it is possible to think of the other 
field possessing a store of energy, as one does think of 
an electromagnetic field, then one has to specify 
whether the generated energy is acquired by the mate
rial or by the other field, acquired by both, or gained 
by one and lost by the other. The functionals we will 
introduce all represent energy acquired by the material. 
Although it may be meaningful and worthwhile to 
keep accounts of the energies stored in various fields 
in addition to accounting for the energy possessed by 
the material, we have no occasion to do so. 

Let t be an energy-momentum flux-type of field, 
a scalar-valued multilinear function of four vectors 
which is skew symmetric in its last three arguments. 
For every oriented four-dimensional region 'ill, with 
smooth boundary o'ill, and for every smooth field of 
timelike future-directed unit vectors V, we say that 
"the work done on the material in 'ill," or, "the net 
energy transferred into 'ill by the interaction of V and 
t," is the value w given by 

w = f~tV, (6.5) 

where tV denotes the three-form which one obtains by 
substituting V in as the first argument of t. 

Let cp be any electromagnetic-field type of field 
(cp E .'F2), and let r be any charge-flux density-type of 
field (y E .'F3). For every oriented four-dimensional 
region 'ill and for every world-velocity field V, we say 
that "the work w' done on the material in 'ill," or, 
"the energy generated in 'ill by the interaction of cp, 
I', and V," is the value w' given by 

w' = J'I} cpV) " y, (6.6) 

where (cpV) denotes the one-form which results from 
substitution of V into cp as the first argument. For a 
given charge-flux potential {3, we put y = d{3 into this 
integral to obtain the energy generated, it being pre
sumed that d{3 is defined, if not everywhere, at least 
"almost everywhere," at enough points to use in inte
gration over four-dimensional regions. 

The equation which we call "conservation of energy" 
states that the total energy transferred in and generated 
within because of interactions of t, cp, and {3 with the 
actual world velocity W must 'be zero for every 
oriented region 'ill: 

0= r tW +f E" d{3. (6.7) Jaw w 

The equation which we call "conservation of momen
tum" states that, as a functional of an arbitrary world 
velocity V and of a region 'ill, the total work due to 
interaction with t, cp, and {3 has the form of an integral 
over the interior of 'ill of a fixed linear function of the 
covariant derivative VV of the velocity. That is, for 
given t, cp, and {3 there exists a tensor s which is a 
linear function of linear transformations L and whose 
values s(L) are four-forms. For all V and all 'ill, 

r s(VU) = r tV + r (cpV) " d{3. (6.8) Jw Jaw Jw 
Postulating the existence of an s satisfying this 

equation is equivalent to postulating the existence of 
suitable limits of the right member as the region 'ill is 
allowed to shrink down on points and postulating that 
the values of these limits depend on V only through a 
linear dependence on VU. In any case, it is clear that 
when a tensor s exists, it is determined by t, cp, and 
{3. The equation which we call "conservation of 
angular momentum" states that the tensor s depends 
only on the symmetric part of its linear transforma
tion argument L. That is, 

s(L) = 0 if (GL)t + (GL) = 0, (6.9) 

the expression in the second equation being what we 
mean by the symmetric part of L relative to the metric 
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tensor G, aside from inconsequential factors, like t 
and G-l. 

7. DIFFERENTIAL EQUATIONS OF MOTION 

Suppose we have a collection of fields a, c/>, (3, t) 
which satisfy the integral equations introduced in 
Sec. 6 as physical laws, and hence form a dynamical 
motion with dielectric polarization. For any region 
'UJ throughout which all of the integrands of the 
integrals over o'UJ are continuously differentiable, 
these integrals can be replaced by the integrals over 
'UJ itself of the exterior derivatives of the original 
integrands. An equation among integrals over 'UJ being 
valid for arbitrary regions 'UJ containing a point p at 
which all of the integrands are continuous implies that 
the integrands at p satisfy the same equation. 

The conservation of momentum equation, Eq. (6.8), 
thus implies the following equation, in which we use 
the expression for d(tV) given in Eq. (4.27) and the 
expression for (t/>V) A d{3 given in Eq. (4.18): 

sevY) = Tr(TVV) + V • divT t 
- V· (c/>J) @ 1j. 

(7.1) 

The energy equation, Eq. (6.7), implies that when V 
equals the world velocity W of " the right member of 
this equation vanishes. We shall show that these 
differential forms of the equations of conservation of 
energy and momentum, together with the fact of 
conservation of angular momentum [that s(L) 
vanishes whenever GL is skew symmetric), are equiv
alent to the following equations: 

0= divT t 
- (c/>J) @1j, (7.2) 

(GU)· (TV) = (GV)· (TU), (7.3) 

Tr(TVW) = 0, (7.4) 

f Tr(TVV) = r tV -f (V. c/>J)1j. (7.5) 
w J~w w 

The second equation expresses what we mean in saying 
that T is symmetric. It can be expressed in terms of 
the forms tV and tU in !F3 instead of TV and TU in 
!F, at the cost of using exterior multiplication instead 
of the dot product: (GU) A (tV) = (GV) A (tU). In 
addition, the following differential equations are 
clearly implied by the electromagnetic integral equa
tions, Eq. (6.1): 

dt/> = 0, d(Kc/» = d{3. (7.6) 

The equivalence of Eqs. (7.2)-(7.5) with Eq. (7.1) 
follows from the fact that the values ofVV and V at a 

given point p can be chosen essentially independent of 
each other. That is, one can show that, given any 
future-directed timelike vector Vo at a point p and any 
linear transformation Lo of t&(p) into itself such that 
(GLo)tVo = 0, there exists a smooth field V defined on 
some neighborhood of p such that the values at p 
of V and VV are Vo and Lo, and such that the value 
of V at every point is a future-directed unit vector. 
One constructs first any vector field taking the required 
value Vo and value Lo of the derivative. One shows 
that normalizing this field to unit magnitude does not 
affect the values of itself and its derivative at p. 
Furthermore, if desired, one can easily replace a 
timelike future-directed unit vector-field V defined 
only on a neighborhood of p by a field defined on all 
of 8, which takes the same values as V throughout 
some smaller neighborhood of p. Thus a field V exists 
on 8 having prescribed values of V and VV at p. 

Choosing to set VV = 0 in Eq. (7.1), we find thatthe 
dot product of V with the right member of Eq. (7.2) 
must be zero. Its inner product with every V being 
zero, the tensor itself must be zero. Thus, Eq. (7.2) is 
valid, and our original equation reduces to the terms 
which do not depend on V: seVY) = Tr(TVV). Since 
this equation depends linearly on VV, and since every 
linear transformation L can be expressed as a linear 
combination of L's for which (GL)tV = 0 for some 
timelike vector V, the equation s(L) = Tr(TL) holds 
for all L. In particular, for any pair of vectors U and 
V, this is true for the L defined by 

LX = (GU· X)V - (GV. X)U. 

Since this L is skew symmetric, s(L) vanishes; hence 
TL is traceless. The reader will recognize and be able 
to prove for himself that Tr(TL) is the difference 
between the left and the right members of Eq. (7.3); 
hence that equation is valid. Conversely, since every 
skew-symmetric L is a linear combination of the kind 
defined here in terms ofU and V, jf Eq. (7.3) holds and 
hence s(L) = 0 for these L, then s(L) = 0 for all 
skew-symmetric L. 

We have shown that the momentum and angular 
momentum equations are equivalent to Eqs. (7.2) and 
(7.3). Given Eq. (7.2), the last two terms in Eq. (7.1) 
add up to/ zero for any field V, hence in particular for 
V = W. The energy equation requires that the sum of 
all three terms vanish, hence the first term vanishes; 
this is Eq. (7.4). Finally, Eq. (7.5) follows from the 
fact that Tr(TVV) is equal to, and hence may be 
substituted for, seVY) in the original integral equation, 
Eq. (6.8). 

To derive differential equations of motion for a 
given material, one would have to substitute into 



                                                                                                                                    

336 LINCOLN E. BRAGG 

Eqs. (7.2)-(7.5) the constitutive relations which were 
postulated in Sec. 5, and then carry out some of the 
indicated differentiations to obtain explicit functional 
equations relating the values and values of derivatives 
of the unknown functions. For divTt in Eq. (7.2), 
one would have to examine the definition in Eq. (4.25) 
to work out a formula in terms of partial derivatives of 
components of f or something similar, since a formula 
useful for calculating divTt has not been derived. The 
symmetry condition, Eq. (7.3), would be automatic
ally satisfied and hence need not be considered, and 
Tr(TVW) in the next equation is already in a suitable 
form. The treatment of the derivatives of electro
magnetic variables in Eq. (7.6) would depend on 
exactly what functions are known and what are un
known. The integral relation in Eq. (7.5) would be 
used only in case jump discontinuities occur, to derive 
jump conditions. 

8. ELECTRIC, MAGNETIC, DIELECTRIC, AND 
CURRENT VECTORS 

The representation of dielectric polarization in 
terms of a skew-symmetric two-form {J and of polari
zation charge flux in terms of its exterior derivative 
cannot be considered well known. Even the better
known process of representing the electromagnetic 
field in terms of a two-form cf> is fraught with un
certainties due to the complexity of possible choices of 
sign conventions and systems of units. It will be 
efficient to display one mode of representing {J and cf> 
and related objects in terms of a polarization vector 
P, electric and magnetic vectors E and B, and related 
vectors. The reader can then make suitable modifica
tions to obtain other modes of representation. 

The exposition will be restricted to the case of the 
special relativistic universe, the vector representations 
being of less interest in more general universes. We 
choose a fixed t, x, y, z coordinate system which is 
right-handed, and index the coordinates 0, 1,2, 3. We 
choose the signature of the metric tensor G so that its 
components gii are given by goo = -c2, gu = g22 = 
gS3 = 1, and other gii = O. If the reader prefers co
ordinates in the order x, y, z, t, then he will have to 
modify some of the representation formulas, since for 
a given set of axes in space-time the two orders, t, x, 
y, z and x, y, z, t yield coordinate systems of opposite 
orientations. One can pass from a representation 
appropriate to one system to a representation appro
priate to the other by replacing some of the vectors 
with their negatives, such as the polarization vector 
P. However, since our representations have been 
adjusted to involve the accepted classical vectors, one 
would want to use these same vectors and achieve the 

sign changes by such readjustments of the formulas 
as reversing the order of the vectors Wand P in the 
representation formula for fl. 

Let 1] be the standard hypervolume four-form, and 
let f.Urs be the permutation symbols. Since in the 
chosen coordinate system the determinant of the 
components gii is - c2 , the components of 1] are given 
by 

'f/iirs = Cf.iirs · (8.1) 

Let Wi be the components of the world-velocity vector 
W. Let y = cWo and let Vi be the components of the 
classical world-velocity vector V, obtained from W by 
fact9ring out the positive scalar Woo We have 

(8.2) 

Theorem: Given a world-velocity vector Wand a 
dielectric polarization two-form (J, there exists a 
unique vector P which is spacelike in the sense that 
po = 0 and which satisfies the following representation 
identity: 

1](P, W, X, Y) = y{J(X, Y), 

The relevant facts are that WO is not zero and that W 
is in the null space of fJ, i.e., that W' {Jr. = O. The 
condition po = 0 is but a normalization, which we can 
impose because P is determined by the identity only up 
to the addition of a multiple of W. Inclusion of the 
factor y is but a normalization of the magnitude of 
P, imposed because it yields the historically correct 
polarization vector. 

Proof' Assuming that such a spacelike vector P 
exists, it is easy to determine its components pi in 
terms of the {J,s' For all pairs (r, s) of which neither 
index is' zero, the sum over i and j in Eq. (8.3) con
tains only two terms in which 1]ii,s is nonzero, of which 
the term having i = 0 vanishes because po = O. In the 
surviving term Wi = WO = ylc, which cancels con
veniently. Thus, making suitable choices for (r, s), we 
have 

pI = {J32' p2 = {JI3, p3 = {J2I' (8.4) 

We begin proving the theorem by defining pi by 
Eq. (8.4). Then Eq. (8.3) holds for (r, s) equal to 
(3, 2), (I, 3), and (2, 1) by definition, hence for all 
pairs (r, s) in which both rand s differ from zero, 
because both members of the equation are skew
symmetric functions of(r, s). Again by skew symmetry, 
we shall have shown that Eq. (8.3) holds in the re
maining cases, when one or both of rand s are zero, 
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when we show that it holds whenever r = 0 and 
8 ~ O. The following equation is trivially valid be
cause W is in the null space of {J and 'Y} is skew sym
metric, hence each member is zero: 

(8.5) 

Since 8 ~ 0, the coefficient of each W' on the left for 
which r is nonzero equals the corresponding coefficient 
on the right, by the previous results. Since these terms 
thus cancel, the single remaining term on the left, in 
which r = 0, equals its counterpart on the right. 
Dividing by the nonzero factor wo, we obtain the 
final case of Eq. (8.3) needed to complete the proof. 

The exterior derivative d{J, which plays the role of 
a charge-flux form, can be represented like any skew
symmetric three-form as follows in terms of 'Y} and 
a world vector J: 

(lfc)J8 'Y}"iik = (d{J)iik' (8.6) 

Let Q denote the scalar)O, and call it the polariza
tion charge density. Since QV is a multiple of the 
world-velocity vector V of the material, we can think 
of it as representing the flux of some charge (the 
polarization charge) which moves with the material. 
The remaining part of the actual charge flux is repre
sented by P*, defined by J = QV + P*. Note that 
p* is spacelike: p*o = O. 

To determine Jl for each I and hence determine Q 
and P* in terms of P and V and their partial deriv
atives, let ijk be the remaining integers in any order 
such that lijk is an even permutation. Since Eli;k = 1, 
for each such ijk we have the first equation below, the 
second being a standard formula: 

(PIVi - PiVI) = {Jlk' (8.7) 

(d{J)iik = 0i{Jik + 0i{Jki + Ok{J;;, (8.8) 

wherein 08 denotes partial differentiation with respect 
the 8th coordinate. We obtain the term 0i{Jik for the 
second equation by applying 0i to the first equation. 
Since any cyclic permutation of the positions of i, j, 
k in the fourtuple lijk will yield a permutation which 
is even, we obtain valid equations from Eq. (8.7) by 
replacing ijk by jki and applying ai' and by replacing 
ijk by kij and applying Ok' We thus obtain three of the 
four terms in the following sum over s, the fourth 
term being trivially zero because it is a derivative of 
(P1Vl_ P1Vl): 

(d{J)iik = os(PIP - p·VI). (8.9) 

When lijk is even, the sum over 8 in Eq. (8.6) has 
only one nonzero term, the term when 8 = I, and the 

value of 'Y}li;k is c. Thus, the sum equals Jl; hence 
(d{J)iik and hence the right member of Eq. (8.9) equals 
Jl. Setting / = 0 and noting that po = 0 and va = 1, 
we find that 

Q = -asp· = -divP, (8.10) 

wherein we may restrict the sum over 8 to the three 
spacelike indices, treating P essentially as a spatial 
vector rather than a world vector. Setting I = i and 
thinking of it as a spacelike index, carrying out the 
differentiation indicated in Eq. (8.9), removing the 
term which equals Q Vi, and restricting the range of 
summation to the spacelike indices while separately 
including the terms with timelike index, we obtain 

p*i = api/at + (Ojpi)Vi _ P;(O;Vi) + Pi(OjVi). 

(8.l1) 

This may be compared term by term with Eq. (4.4) 
of Toupin,l and the conclusion drawn that the vector 
p* coincides with his vector of the similar name. 

The connection between the electromagnetic field 
cp and electric and magnetic vector fields E and B 
derives from the following formula for the Lorentz 
force per unit charge: 

F = E + V x B. (8.12) 

The vectors F, E, and Bare spacelike vectors; we can 
take them to be four-dimensional vectors with their 
first components equal to zero. V is the classical world 
velocity of the charged particle on which the force 
acts, the vector whose components are the derivatives 
with respect to coordinate time of the spatial coordi
nates of the position. In accordance with the discussion 
in Sec. 6, we consider the work which this force would 
do on the particle if the velocity were not V but an 
arbitrary vector U. Let u be the positive scalar such 
that (u/c)U is a unit vector. The rate of working 
would be the product of F and U, multiplied by the 
relativistic correction factor u. In terms of components, 
and without the correction factor, this is 

(8.13) 

The reader is invited to check that the second term is 
the triple scalar product of the space parts of U and 
V and ofB, and insert any constant factors required by 
his system of units. 

The comparable energy source postulated in Sec. 6 
is the integral of a four-form which depends upon the 
electromagnetic field cp, an arbitrary world-velocity 
V, and a charge-flux form y. We put (u/c)U in place 
of V as the name of the arbitrary world-velocity 
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vector. If q denotes the charge, then the current 
vector corresponding to the actual velocity vector V is 
qV, and the charge-flux form is 'Y = Ct(qV 0 'YJ): Thus 
the form T whose integral is the energy source IS 

(8.l4) 

To compare the two expressions, we remove the 
charge q and the relativisti~ correction factor u. ~he 
integral of T is the integral of its 0123 co~ponent wIth 
respect to the coordinates; hence we obtam th~ ener~y 
source per unit volume per unit time by replacmg 1] m 
the right member by its component 'YJ0123 = e, can
celling the (lIe) factor. In the resulting expression 
UiCPii Vi, the term in which i = 0 has no counterpart 
in Eq. (6.6). Since UO = 1, this term is independent of 
U and remains even when the spatial components of 
U vanish. Therefore this term represents an energy 
which is acquired by the material by inheritance from 
itself at earlier times, rather than as a result of work 
being done on the material. We omit the term with 
i = 0 and identify the remaining with the Lorentz 
rate of working in Eq. (6.6). 

Upon equating coefficients of Ui
, we obtain two 

expressions for the Lorentz force, for i ::;1= 0: 

(8.15) 

For given cP, this is satisfied for VO = 1 and VI, V2, Va 

arbitrary. Thus, for i and j not equal to 0, we have 

CPiO = Ei , CPii = £OiikBk. (8.16) 

The remaining components of cP are determined by 
these, since CPu = -CPu' Aside from constant factors 
related to choices of systems of units, these expres
sions may be the negatives of what the reader. is 
accustomed to using. To correct the theory WhICh 
appears in this paper, the reader should change the 
definitions of electromotive intensity and of energy 
due to interaction with an electromagnetic field in 
Secs. 3 and 6. Instead of putting the world-velocity 
vector W or V into cP as its first argument, he should 
put it in second position. The expression for the 
Lorentz force in Eq. (8.15) will become ViCPii = 
-CPuVi, and minus signs will appear in ~qs. (8.16). 
Various authors differ in this, so that, for gIVen E and 
B, one man's cP is another man's -cpo 
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A product expansion for the s-particle distribution function (s arbitrary) is derived by means of a 
variational principle involving the entropy associated with the (s + 1)-particle distribution function. 

1. INTRODUCTION 

In an earlier paper, 1 a new method of defining 
correlations in terms of a product expansion of 
distribution functions was introduced to describe the 
statistical mechanics of systems of interacting 
particles, and some of its advantages were demon
strated. It was pointed out that in an equilibrium 
system these correlations can be most simply viewed 
as potentials of average forces. 

In the present paper we wish to show that this 
product expansion can be derived from a variational 
principle for an entropy function. Given an (s - 1)
particle distribution function, we seek that s-particle 
distribution function which is consistent with it and 
maximizes the entropy. We then view the correlations 
produced by particle interactions as deviations from 
this maximum-entropy distribution. 

The basic idea of the method can be illustrated by 
the following simple example. Suppose that the one
body distribution fill is given and it is required to 
determine the two-body distribution Jg' which 
maximizes the entropy. For the entropy we shall use 
the negative of the "H" function 

H[2] = :2 f d3x1 d
3
Pl d3

X 2 d3p21i~) 10gli~). (1.1) 

The problem is to find that Ji~) which minimizes 
H[2] under the constraint 

fill = ~ f d3X2 d
3pdii). (1.2) 

I t can readily be seen that 

1(2) - f(1)/,(1) 
12 - 1 J 2 , (1.3) 

corresponding to complete absence of correlation (and 
indeed to statistical independence). We introduce a 
two-body correlation <X~~) by relatingJ~~) to the actual 
two-body distribution fi~) governed by the dynamics 
of the system: 

f (2) -1(2)(1 + N(2)) 
12 - 12 ""12 • (1.4) 

• Present address: The Courant Institute for Mathematical 
Sciences, New York University. 

1 G. V. Ramanathan, J. Math. Phys. 7, 1507 (1966), 
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Alternatively, we can write this in the form 

f (2) -J(2) exp 111(2) 
12 - 12 r12, (1.5) 

where VJi~) can be interpreted, in an equilibrium 
system,2 as a potential of average force. 

Analogously, given the (s - I)-body distribution 
function PS-l), we seek the s-body function 1 (s) that 
minimizes the quantity 

(1.6) 

(The computation of ]<8) for s > 2 is presented in 
Sec. 4.) Then we relate 1(') to the actual PS) through 
an s-particle correlation !X(') or an s-body potential of 
average force VJ(S): 

P') = l'(l + !X(')) = p') exp VJ('). (1.7) 

Here 1 (8) can be viewed as the minimal correlation 
function at the s level. In this paper an explicit solution 
is obtained for 1(8) in the limit of infinite volume and 
finite correlation length. At the three-particle level 
'the maximum-entropy distribution turns out to be 
the same as that given by the Kirkwood superposition 
approximation, and the form of (1.7) to be the same 
as the one proposed in Ref. 1. This last can, therefore, 
be viewed as a generalization of the superposition 
approximation.3 

A few remarks about the method are in order at 
this point. First of all, what we present here is an 
ad hoc procedure enabling one to define certain func
tions, which, from an intuitive point of view, can be 
called correlations. 

Secondly, it may be questioned whether (1.6) is the 
best form for the negative "entropy." Such a question 
is irrelevant to our problem. The purpose of this 
procedure is merely to define certain functions and 
this cannot lead to any loss of generality. 

Thirdly, the whole procedure could be carried out 
without essential change even in the absence of 
symmetry, i.e., in effect with a variety of species of 
particles. 

• J. O. Hirschfelder, C. F. Curtlss,and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954),"p. 324. 

• Reference 2, p. 328. 
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2. NOTATION AND DEFINITIONS 

We consider a system of N identical particles in a 
region of volume V. We denote by {p}; a generic set 
of p particles chosen from the collection of (s - r + 1) 
particles with labels r, r + I, ... , s. The functions 
ff;l .. , (1.l~i .. , lI'l:?r" etc., are assumed to be symmetric 
functions of the positions and momenta of the chosen 
p particles. By fi:t~!loa2"" ,an we denote a symmetric 
function of the positions and momenta of (p + n) 
particles with the indicated labels. Sometimes when 
there is no ambiguity, we may drop either the super
scripts or the subscripts in these functions. 

The N-particle distribution function Dl%ilN is 
normalized to unity by 

(2.1) 

The reduced distribution function f~:lt' (1 ~ s ~ N) 
is, as usual, defined by 

k = s, we have 

/(s-lh8 - 1 = ~ J d3xs d3ps exp {~%-1),'}' (3.5) 

For orientation, it may be noted that, in the case 
of noninteracting particles in thermal equilibrium, 
we have 

11 = ~(~iexp (-pv~), 
where v = plm (m is the mass of the particle), 11'1 = 
log II, tp12 = tp123 = ... = 0, q{sh' = S-l !:...l tpr' 
Al2 = Al23 = ... = 0 (A quantities defined later). 

Although it does not seem possible to solve (3.5) 
for q{s-lh' explicitly, it would not seem unreasonable 
to conjecture that a unique solution exists.' Here, 
however, we merely solve explicitly in the limit of 
infinite volume with the correlation length remaining 
finite. 

4. SOLUTION IN THE LIMIT OF INFINITE 
VOLUME 

(2.2) A. Three-Body Case 

3. THE VARIATIONAL PRINCIPLE 

Letf{s_lh'-' be given. We seekJ;8h' minimizing 

subject to the constraints 

(3.1) 

where k is the index omitted on the left. These con
ditions (3.1) are all equivalent because of the assumed 
symmetry. Using a common symmetric Lagrange 
multiplier function [{s-lh' for all these conditions in 
order to preserve the formal symmetry, we obtain the 
variational condition 

1 + log hsh' + I l(s-I},' = O. (3.2) 
all (s-llt' 

Setting 
q(.-lh' = _S-l - [(s-Ill" (3.3) 

we can write (3.2) as 

hsh' = exp I Q(s-I),' . (3.4) 
all (s-lil' 

To determine q{S-ilt" we substitute (3.4) into anyone 
of the constraint conditions given by (3.1). Setting 

We shall first solve (3.5) for the special case s = 3 
and recover Kirkwood's superposition approximation. 
It is convenient to introduce functions 11' given by 

11 == exp 11'1, 
so that 

i J d3Xl d
3
PI exp 11'1 = 1. 

Then h2 is given by 

h2 == exp (11'1 + 11'2 + 11'12)' 

Now (3.4) is 

(4.1) 

(4.2) 

(4.3) 

/123 = exp (q12 + q13 + q23) (4.4) 

and, taking the logarithm, (3.5) becomes 

q12 = 11'1 + 11'2 + 11'12 - log i J d3xa d
3
Pa 

X exp (q13 + Q2S)' (4.5) 

It was mentioned earlier that tp12 as defined by 
(4.3) can be interpreted as a potential of average 
force when the system is at thermal equilibrium. Its 
range and strength will be governed by the density of 
the system and the range and strength of the inter
particle potential. It is reasonable to assume that as 
we let the volume of the system become infinite, 
keeping the density constant, the range R of tp12 will 
remain finite. We shall solve for q in terms of tp in the 
limit of R3jV tending to zero. 

4 H. Grad, Commun. Pure Appl. Math. 14,323 (1961). 
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It is convenient to write q in terms of a one-body 
function and a two-body function, 

(4.6) 

Here we have the freedom to choose Al as we please 
and (4.6) can then be viewed as a definition of A12' 

Substituting for q in (4.5),we obtain 

2(A1 + A2) + AI2 

= "PI + "P2 + "P12 

- log [~ J dSxs dSps exp {2As + A13 + A2s} J. 
(4.7) 

Making the (seemingly simplest) choice Al = t"PI' 

this becomes 

A12 = "P12 - log {i J dSxs dSps exp ("Ps + AIS + A2s)}, 

(4.8) 

The choice made for Al is also natural because, in 
the noninteracting thermal-equilibrium case, the 
solution of (4.8) is A12 = O. It can be verified at onc.e that 

(4.9) 

we take the logarithm, (3.5) becomes 

0-1 
q{0-Ih·-1 = Z Z A{rh·-1 ; 

r=I all (rh'-l 

(4.13) 

substituting this in (4.13) and collecting the various 
terins, we get 

8-1 :z :z (s - r)AI;fl·-1 

r=l all (rh,-l 

We are free to and do choose 

A(r) = (8 - r)-111J(r) 
is a solution of (4.8) by substituting and noting that T 

(4.14) 

finite regions around particles 1 and 2 do not con- for all r, 1 ~ r ~ s - 2. Then we have 
tribute significantly, while 

Then 

h2S = exp ("PI + "P2 + "Ps + "P12 + "PIS + "P2S) 

= 112/1s12s/ldd3 . (4.10) 

This is just the Kirkwood superposition approxi
mation. 

The actual three-body distribution 1123 can be written 

1123 == Jus exp "P123' (4.11) 

which defines the new three-body function "P123' 

B. s-Body Case 

Let us suppose that 1'8-ll has been written in the 
form 

{

S-l } Co-lI (r) f = exp Z :z "P{rh,-l, 
r=1 all (rh·-1 

(4.12) 

where every "Pcr ) with r ~ 2 has a finite range. When 

,(0-1) (0-1) I 1 fd3 dS 
1I.{s-lh·-1 = "P{o-lh,-l - og V Xs Ps 

(11 (r+1) 
X exp "Po + L :z "P{rh.-l.s { 

o-S 

r=I aII{rh.-1 

+ '" , (s-1) } k lI.{s-2h·-1 .s· 
all {8-2},,-1 

(4.15) 

From the assumption of finite range and the normal
ization condition 

we obtain 

(4.16) 
or 

8-1 

%_I},.-l = L L (S - r)-l"P{r}'s-l + O(R3/V). 
r=1 all {r},·-l 

(4.17) 
Substituting this into (3.4), we obtain 

JiB}" = exp {Sf L "P{rh'} + O(Rs/V), (4.18) 
r=1 all{r},' 
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and now we write 

f{sh' = ~'h8 exp 1J'{shB
, 

(4.19) 

introducing the new a-body function 1J'{Bh' through a 
relation between the actual distribution and the 
maximum entropy distribution. This is nothing but 
(4.12) with a replacing a-I. It can be readily seen 
that (4.19) is in'the form suggested in·Ref. 1. 

5. FINITE-VOLUME CORRECTIONS 

Equation (4.15) is in a convenient form for comput
ing the finite-volume corrections by iteration. To next 
order in R3/V we have 

A.{.-lh.-1 = 1J'{.-lh,-l 

- log [! fd3
Xs d3ps"i

2 

! 1J'1:~!21 .• J 
V r=O alJ{rh,-l 

+ O«R3/V)2). (5.1) 

In particular,for the three-body case [see Eq. (4.8)], 

A.12 = 1J'12 - log [i f d3X3 d
3
Pa exp (1J'3 + 1J'13 + 1J'23) 

+ O«R3/V)2). (5.2) 

6. REMARKS 

We have shown that the Kirkwood superposition 
approximation and its generalization to higher 
distribution functions can be derived through an 
entropy principle, in the limit that the volume becomes 
infinitely large while the correlation lengths remain 
finite. 

We may expect this generalization of the Kirkwood 
superposition approximation to give a rapidly 
improving description of the system with increasing 
a. This approximation takes the potential of the 
average force for s particles to be a sum of potentials 
involving less than"s particles. The a-particle potential, 
1J'{sh" may be thought of as resulting from a distor
tion of the average potentials of all the other particles 
due to the introduction of s. This distortion should 
be large only if the interaction with all the (a - 1) 
particles is strong. However, since only a few particles 
can get close enough so that all interact strongly at 
the same time, 1J'{.h' should drop off very rapidly for a 
greater than 3 or 4 even in dense gases and liquids. 
Unfortunately, the equations determining the 1J' are 
hard to analyze and the verification of this conjecture 
probably requires extensive numerical calculations. 
Some calculations have been made of the equation of 
state for hard spheres using the generalized formula 
up to 1J'123 •5 It has been found that this approximation 
gives better results for the two-particle correlation 
function (as compared with Monte Carlo data) than 
other commonly used approximations. 
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Spin~r.fields can only ~ defined on a space-time which has been given a spinor structure. A number 
of ~ondltlons (son,te sufficient, others necessary and sufficient) for the existence of a spinor structure are 
d~nve~., By app~ymg one or an~ther of these conditions, it is shown that many well-known solutions of 
Emstem s equations do have spmor s~ructure .. The question of the existence of spinor structure depends 
only on the topology of the underlymg mamfold, not on the (time- and space-oriented) metric. It is 
shown t~.t,. nonetheless, a certain "threshold" of curvature must be exceeded before there can be even 
the POSSlblhty of a space-time's having no spinor structure. 

INTRODUCTION 

Before spinor fields may be defined on a space-time 
M, it is first necessary to endow M with some further 
structure-<:alled the spinor structure-in addition to 
the Lorentz metric. Certain space-times cannot be 
given any spinor structure at all, and, furthermore, 
even when there exists a spinor structure it will not, 
in general, be unique. l However, there is a gedanken 
experiment,2 based on the quantum-mechanical prop
erties of spin-l particles, by which one could, in 
principle, determine a definite spinor structure for our 
own universe. Thus, the existence of a spinor structure 
appears, on physical grounds, to be a reasonable 
condition to impose on any cosmologi~al model in 
general relativity. In the present paper we shall 
investigate the global restrictions this condition places 
on possible cosmological models. 

It was shown in I that a necessary and sufficient 
condition that a noncompact space-time M have 
spinor structure is that M may be given a global 
system of orthonormal tetrads. While this criterion 
represents a strong condition to be satisfied by cos
mological models, it is not always the most convenient 
way to decide whether or not a given space-time has 
spinor structure. The Schwarzschild solution, for ex
ample, has spinor structure, but it is not immediately 
clear that this space-time may be given a system 
of tetrads. [It would not do, for example, to choose 
two of the vectors to lie along the rand t axes (in the 
usual coordinates), for then the other two vectors 
would have to lie in the 2-spheres r = const, t = const, 
which is impossible.] In Sec. I we develop some 

• u.s. Air Force Office of Sci~ntific Research postdoctoral fellow. 
~~~nt address: Dept. of PhYSICS, Syracuse University, Syracuse, 

• 1 See, for example, R. Penrose, "The Structure of Space-Time .. 
ID Batte.lIe Recontres in Mathematics and Physics: Seattle, 1967, 
C. DeWitt and J. A. Wheeler, Eds. (W. A. Benjamin, Inc. ,New York, 
1968); R. Geroch, J. Math. Phys. 9,1739 (1968); this paper will be 
referred to hereafter as I. 

S Y. Aharonov and L. Susskind, Phys. Rev. 158, 1237 (1967)' 
Ref. 1. ' 

criteria for the existence of spinor structure, based on 
the neighborhoods of certain 2-spheres in M. With 
each such 2-sphere. S we associate an index, defined 
as the number of times that S intersects a surface 
obtained by slightly deforming S. That this index be 
even for each S in M is a necessary and sufficient 
condition that M have spinor structure. We may also 
characterize the existence of spinor structure in terms 
of the type of the Weyl tensor. It is shown that a space
time whose Weyl tensor is everywhere type [1, 1, 1, 1], 
[2, 1, 1], [3, 1], or [4] necessarily has spinor structure. 
In the "generic" case, however, we would expect that 
the Weyl tensor would be algebraically general every
where except in certain regions of lower dimension
ality. It t~rns ou~ that the behavior of these regions in 
the large IS suffiCient to determine whether or not the 
space-time has spinor structure. Finally, we show that 
every space-time which arises from initial-value data
that is, every space-time which has a Cauchy surface
also has spinor structure. The goal of Sec. I is to 
obtain a list of criteria which may be used to test in 
practice whether a given space-time has spinor 
structure (or, equivalently, a global system of tetrads). 
M~st common solutions of Einstein's equations 
satisfy one or another of the conditions in Sec. I. 

In Sec. II we discuss the relation of spinor structure 
to the amount of curvature present in the space-time. 
That there should be any relation at all is somewhat 
surprising, for the existence or nonexistence of a 
spin?r stru~ture is a property only of the underlying 
mamfold, m~e~e~dent of the metric (provided only 
that the met~lc IS tIme and space oriented). We display 
a curvature Integral over 2-spheres: that this integral 
be less than a certain value is a sufficient (but not 
necessary) co~~ition for the existence of spinor 
structure .. IntUitively, we may think of the integral as 
representmg a threshold condition on the curvature: 
the threshold must be exceeded before there is even 
the possibility that the space-time have no spinor 
structure. This integral represents one of the few 

343 
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situations in which, without imposing symmetries, 
the curvature of a space with ~n indefinite metric is 
known to have a bearing on the global structure of the 
space. 

I. CRITERIA FOR THE EXISTENCE OF 
SPINOR STRUCTURE 

By a space-time M we understand a 4-dimensional 
manifold with a metric of signature (+, -, -, -). 
We shall assume, furthermore, that Mis noncompact 
and both space and time oriented.3 The noncompact
ness assumption is reasonable from the physical point 
of view because every compact space-time is known4•5 

to have closed time1ike curves. If, on the other hand, 
M were not space and time oriented, then we could 
always find a covering space of M-representing 
exactly the same physical universe-which is.s 

Let S be a fixed (not necessarily spacelike) 2-surface 
in M which is topologically equivalent to a 2-sphere, 
but which may cross itself at isolated points. 6 By 
slightly deforming S, we obtain another 2-sphere S' in 
M. In general, two 2-dimensional surfaces in a 4-
dimensional manifold will intersect in a region of 
dimension zero, i.e., in points. Choose S' so that it 
intersects S only at isolated, nondegenerate points 
b ,k = 1,2, ... , m , that is, so that Sand S' have no 
common tangent vectors at their points of intersection. 
Let us assign an orientation to S, whence S', which is 
obtained by deforming S, is also assigned a definite 
orientation. Now at each intersection point b, the 
vectors tangent to the oriented surfaces Sand S' span 
the set of all vectors at b, and so define an orientation 
of this 4-dimensional vector space. Define l(b) to be 
+ 1 if this orientation is he same as that of M, and 
-1 it it is the opposite. The index of the surface S is 
defined by' 

m 

I(S) == L l(Pk)' 
k=l 

If we reverse the orientation originally assigned to S, 
the orientation of S' is also reversed, and so the index 
is unchanged. Furthermore, the index of S is inde
pendent of the distortion by which S' is obtained 

• A space-time M is said to be time oriented if the light con.es of A! 
are divided into two systems, past and future, and space orlente~ If 
any collection of three independent space.like vector~ at ~ pomt 
which are all orthogonal to a single t1mehke vector IS assIgned a 
definite parity, +1 or -I. .. 

• E. Kronheimer and R. Penrose, Proc. Cambfldge Phil. Soc. 63, 
481 (1967). 

• R. Geroch, J. Math. Phys. 8, 782 (1967). . . 
• We shall regard such a crossing point as representmg two dIS

tinct points of S, each of which must be trea.ted independently o~ the 
other. More precisely, S represents a mappmg from a 2-sphere mto 
M, not just the image of suc~ a mapping. 

7 This index is well known m homology theory. See, for example, 
P. S. Aleksandrov, Combinatorial Topology (Graylock Press, Albany, 
N.Y., 1960), Vol. 3, p. 73. 

from S, for under any further deformation of S' new 
points of intersection are created in pairs whose (
values are - 1 and + 1. Finally, the index must be 
continuous under deformations of S, and so, since 
reS) takes only integral values, the index is invariant 
under such deformations. Note also that the definition 
of the index does not involve the metric on M. 8 

Alternatively, the index of S may be characterized 
in the following way. Consider any vector field ~a 

which is nonvanishing in a neighborhood of Sand 
which is tangent to S only at nondegenerate points. 
Define a new 2-surface S', obtained from S by moving 
a small distance along the trajectories of ~a. The 
intersection points of Sand S' now correspond 
precisely to the points at which ~a is tangent to S. 
Thus, the index of S is equal to the number of times 
(properly counted with regard to sign) that ~a is 
tangent to S. 

The relationship between the index and spinor 
structure is given by the following result: A necessary 
and sufficient condition that M have spinor structure is 
that the index reS) be even for every 2-surface S, topo
logically a 2-sphe,e, in M. To prove this statement, 
we make use of the fact (see I) that there exists a 
neighborhood of S which is topologically equivalent 
to just one of.a certain collection of 4-dimensional 
manifolds M m" m = 0, 1, 2, . " . (If S happens to 
cross itself, then any neighborhood of S will overlap 
itself. We must then count each point in the overlap 
region twice, that is, we treat the neighborhood as 
though it did not intersect itself.) The M m are defined 
as follows. Let Al and A2 be two copies of the Car
tesian product of a closed unit 2-disc (polar coordinates 
()i and 'i, i = 1,2) and a 2-dimensional plane (Car
tesian coordinates Xi and Yi)' Join Al and A2 across 
their boundaries (rl = 1 and '2 = 1, respectively) by 
identifying the point «()l' r I' Xl' YI) of Al and the 
point (02, r2, X2, Y2) of A2 whenever9 

'1 = r 2 = 1, Xl = X 2 cos (m()l) - Y2 sin (m()l), 

()l = ()2' Yt = Y2 cos (m()l) + X 2 sin (mOl)' 

The 2-sphere S in M is to correspond to the 2-sphere 
Sm in M m given by Xi = Yi = O. It was shown in I that 

8 The various properties of the index are most easily understood 
by considering a lower-dimensional case: closed. curves on a 2-
dimensional manifold. There is, however, a CUflOUS property of 
intersections of 2-surfaces in a 4-dimensional manifold which is not 
present in the 2-dimensional case. The surfaces in Minkowski space 
given (in the usual coordinates) by y = Zl - (2, X = tz and y = 
_z2 + tl, x = -zt intersect only at the or!gin. If,. how~ver, we 
distort either surface slightly, the number of mtersectlons mcreases 
to two: there is no way-:-as there would be in the analogous situation 
in two dimensions-slightly to distort the surfaces so that they do 
not intersect. 

• The 'corresponding expressions were given incorrectly in I: the 
term 111'fJl there should have been mOl' 
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the space-time.M has spinor structure if and only if, 
for every S in M, the corresponding M m has an even 
value for m. Consider the vector field in M m whose 
components in the coordinate patches Al and A2 are 

and 

~rl = 0, ~Xl = (rl)2 cos (mOl) 

+ [I - (rl)2], 

~81 = (rl)2[1 - (rl )2], ~1I1 = (rl )2 sin (mOl)' 

respectively. The field ~a is tangent to Sm at the m 
(nondegenerate) points rl = 2-1, Xl = Yl = 0, 01 = 
1T/m, 31T/m,· .. , (2m - 1)1T/m, and so the index of 
Sm is simply m (or -m, depending on the orientation 
chosen for Mm). Thus, the index of S is even precisely 
when m is even, and our theorem follows. 

Choosing ~a to be everywhere timelike, we see that 
the index of S is determined by the number of times 
that the light cone "cuts across" S. In particular, if S 
is spacelike everywhere, then its index is necessarily 
zero, because a timelike ~a will never be tangent to S. 
Consider, for example, the Schwarzschild solution. 
The 2-spheres r = cost, t = const, in the usual 
coordinates, are spacelike. Furthermore, every 2-
sphere S in the Schwarzschild solution may be con
tinuously deformed to one of these 2-spheres, perhaps 
described several times. (In other words, the second 
homotopy group has a set of spacelike generators.) 
Therefore, the index of every S is even, and so the 
Schwarzschild solution has a spinor structure. As 
another application of our theorem, we see that any 
space-time in which every S may be contracted to a 
point (i.e., whose second homotopy group vanishes) 
necessarily has spinor structure,lO for the index, 
which is invariant under continuous deformations of 
S, clearly vanishes when S is a small sphere in some 
coordinate patch. In particular, the Robertson-Walker 
models, the G6del solution, the fluid-ball solutions 
and the plane waves all have spinor structure,u , 

A further criterion for the existence of spinor 
structure can be obtained in terms of the algebraic 
properties of the Weyl tensor. It is known that if the 

10 This result follows directly from the usual characterization of 
spinor structure in terms of Stiefel-Whitney classes. See for ex
ample, J. Milnor, L'Enseignement Math. 9,198 (1963); K. Bichteler, 
J. Math. Phys. 9, 813 (1968). 

11 Each of these spaces have topology R4, except for certain of the 
Robertson-Walker models (those with positive spatial curvature) 
whose topology is S· x R. 

Weyl tensor Cabell is type12 [1,1,1,1], [2,1,1], or 
[3, 1] at a point p, then Cabell determines four ortho
normalvectorsatp.(Fortypes[l, I, I, I] and [2, 1, 1], 
the vectors are completely determined by the prin
cipal null directions, but this is not the case for type 
[3, I].) These vectors are uniquely defined up to sign, 
but are not assigned any particular ordering. That is 
to say, if we select one of the vectors to be labeled 'fja 

and keep track of 'fjG around some closed curve, then, 
on our return to the starting point, it may be that 'fja 

now coincides with one of the other vectors of the 
tetrad. Furthermore, the vectors may change discon
tinuously when the type of the Weyl tensor changes. 
If, for example, Cabed is type [I, I, I, I] in some region 
Rl and type [2, 1, 1) in some other region R 2 , then the 
tetrad defined by the Weyl tensor will not be contin
uous across the boundary region between Rl and R 2 • 

We first show that the space-time M must have 
spinor structure provided its Weyl tensor is every
where type [1,1,1,1], [2,1,1], or [3,1). We may 
take M to be simply connected (i.e., such that every 
closed curve in M may be contracted to a point) 
because the universal covering space of M, which is 
always simply connected, has spinor structure if and 
only if M does (see I). At every point of M we have an 
orthonormal tetrad of vectors defined by the Weyl 
tensor. If we carry any vector of this tetrad continu
ously around some closed curve y in M, then we must 
return with the same element of the tetrad. This 
property certainly holds in the limit as y is contracted 
to a point, and is invariant under continuous de
formations of y, and so, since M is simply connected, 
it holds for all closed curves y. The directions defined 
by the Weyl tensor therefore constitute a global system 
of orthonormal tetrads, and so M must have a spinor 
structure. 

In particular, certain of the Robinson-Trautman 
solutions13 are everywhere type [2, 1, 1) or [3, 1). We 
conclude that these space-times have a spinor structure. 

A similar, but slightly more complicated, argument 
suffices to show that a space-time must also have 
spinor structure if its Weyl tensor is everywhere type 
[4). In this case the Weyl tensor defines, at each point, 
a null direction la and a pair of orthogonal null 
2-planes containing lao We may therefore choose a 
triad of independent vector fields xa, ya, and la 

11 We shall adopt Penrose's notation for the six types of Weyl 
tensors. The relation to Petrov's notation is given by [I, I, I, I] = J, 
[2, I, I] = II, [3, I] = III, [2,2] = 0, [4] = N, H = O. For a dis
cussion of the classification of the Weyl tensor, see, for example, R. 
Penrose, Ann. Phys. (N.Y.) 10, 171 (1960); R. Penrose, W. Rindler, 
and R. Geroch, The Spinor Approach to Space-Time (Cambridge 
University Press, to be published). 

131. Robinson and A. Trautman, Proc. Roy. Soc. (London) 265A, 
463, 1962. 
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on M, where xa lies in one of the 2-planes defined 
by the Weyl tensor and ya lies in the other. To con
struct an orthonormal tetrad on M, we first choose an 
arbitrary unit timelike vector field tao Two of the 
spacelike vectors of the tetrad are obtained by pro
jecting xa and ya into the space orthogonal to ta at 
each point, while the third spacelike vector is that 
vector orthogonal to the other three. Thus, a type [4] 
space-time must have spinor structure. 

It is not possible to construct an orthonormal tetrad 
in this way from a type [2, 2] or [-] Weyl tensor. Of 
course, a similar analysis could be carried out for tqe 
stress-energy tensor-or, indeed, for any tensor which 
has been defined on M. However, the Weyl tensor is 
perhaps the most convenient object for this purpose 
because it is always available and, except in very 
special cases, is nonzero. 

In the case of a "generic" space-time, we would not 
expect that the Weyl tensor would be the same type 
throughout the entire space. The collection of all 
tensors at a point which have both the symmetries of 
the Weyl tensor and vanishing contractions is ten
dimensional. The tensors of type [I, 1, I, I] form a 
ten-dimensional subset of this collection, those of 
type [2, 1, 1] an eight-dimensional subset, and those 
of type [3, I], [2,.2], [4), and [-) subsets of six 
dimensions or fewer. Hence, in the generic case, we 
would expect that the Weyl tensor Cabcd would be 
type [1,1,1,1] everywhere except in some 2-dimen
sional region D. Let S be any 2-sphere in M, chosen to 
intersect D in nondegenerate isolated points. If we 
move in a small circle on S about one such point, the 
tetrad defined by the Weyl tensor will undergo a 
rotation (relative to a fixed tetrad at the intersection 
point) which, in the generic case, is through an angle 
of 21T. Adding these rotations over all of S, we obtain 
the total rotation ofthe tetrad. It was shown in I that a 
necessary and sufficient condition that the index of S 
be even (i.e., that there exist a tetrad in a neighborhood 
of S) is that this total rotation be an even multiple of 
21T. Thus, M will have spinor structure if and only if 
D intersects every 2-sphere Sin M an even number of 
times (with nondegenerate intersection points). 

Consider, for example, the algebraically general 
Weyl solutions.14 The Weyl tensor is type [1, I, I, I] 
everywhere except on the symmetry axis (r = 0 in the 
usual coordinates), where Cabea is type [2, 2]. In the 
full four-dimensional space-time, the symmetry axis 
defines a 2-surface. The tetrad defined by Cabell' on 
being taken around the axis, undergoes one complete 
rotation. (This property follows from the axial 

U See, for example, J. L. Synge, Relativity: The General Theory 
(North-Holland Publ. Co., Amsterdam, 1960), p. 312. 

symmetry: it is not necessary to calculate the Riemann 
tensor explicitly.) But every 2-sphere S in the Weyl 
solution which intersects the symmetry axis at non
degenerate points does so an even number of times. 
(The sphere about the singular region, for example, 
intersects r = 0 at one positive and one negative value 
of z.) Thus, the Weyl solutions have spinor structure. 

Finally, consider a space-time M which may be 
expressed in the form of a topological product of a 
3-surface with the real line such that each of the 
embedded 3-surfaces is spacelike. That is to say, 
suppose that there is some scalar field t on M such 
that (i) Vat is timelike (and nonzero) everywhere, and 
(ii) the spacelike 3-surfaces Qt, given by t = const, 
are topologically identical where, for any t and t', 
Qt is mapped onto Qt' by following along the tra
jectories of Vat. Since M is space oriented, the surface 
Qo is oriented. But every oriented 3-manifold may be 
given a global system of triads. IS Choose the elements 
of this triad to be covariant vectors in M (lowering 
indices with the metric on M) and extend the vector 
fields to all of M by imposing the requirement that the 
Lie derivative of each vector of the triad with respect 
to vat be zero. We thus obtain four independent vector 
fields on M such that, at each point, three of the 
vectors are spacelike and orthogonal to the timelike 
vector Vat. Finally, orthogonalize the tetrad (e.g., by 
the Gram-Schmidt orthogonalization procedure). 
Thus, every space-time which satisfies the above 
"topological-product" condition has spinor structure. 
In particular, every space-time which has a Cauchy 
surface, which is globally hyperbolic, or which is 
asymptotically simple with null J is knownI6 to satisfy 
the topological-product condition. We conclude that 
anyone of these three conditions implies the existence 
of a spinor structure. 

Suppose we begin with initial-value data for Ein
stein's equations (with or without sources) on a 
spacelike 3-surface Q. This initial data defines some 
space-time M. It may be that M can be further ex
tended (as is the case, for ~xample, in the Reissner
Nordstrom solution), but the metric in the extension 
will not be determined uniquely by the data on Q. 
That is,-Q is necessarily a Cauchy surface for the 
space-time M, and so M must have a spinor structure. 
Thus, we see that the initial data on Q will never 

.. See. for example, N. Steenrod, The Topology of Fibre Bundles 
(Princeton University Press, Princeton, N.J., 1951), p. 204. 

1. In fact, every space-time with a Cauchy surface is a topological 
product (R. Penrose, "An Analysis of the Structure of Space-Time," 
preprint; S. W. Hawking, "Singularities and the Geometry of Space
Time," preprint; R. Geroch, "The Domain of Dependence," to be 
published in J. Math. Phys.); global hyperbolicity is completely 
equivalent to the existence of a Cauchy surface ("The Domain of 
Dependence"); and asymptotic simplicity with null J is sufficient 
(but not necessary) for global hyperbolicity. 
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suffice to "predict" that at some later time no spinor 
structure will be possible. The absence of spinor 
structure can occur only in a space-time which has 
been extended in some way not defined by initial data. 

n. SPINOR STRUCTURE AND CURVATURE 

In our discussion of spinor structure so far we have 
been concerned only with the topological properties of 
the space-time M. The relationship of spinor structure 
to the Weyl tensor, for example, did not directly 
involve the amount of curvature present, but rather 
merely the qualitative behavior of certain directions 
constructed from the metric. That the existence of 
spinor structure should be related to the topological 
properties of tensor fields is not particularly suprising, 
for it is only the topology of the underlying manifold
not the choice of metric-which determines whether 
or not there will be a spinor structure. We shall now 
show that the degree of curvature is also related to the 
question of the existence of spinor structure. A certain 
minimum amount of curvature-expressed in the form 
of a surface integral-is necessary if there is to be even 
the possibility of a space-time's having no spinor 
structure. 

The integral expression itself, while too complicated 
to be of much use in deciding whether or not a space
time has spinor structure, is of interest primarily 
because it provides a definite link between spinor 
structure and curvature. Thus, certain manifolds
the M 2n+1 of Sec. I for example-are themselves 
sufficiently "twisted" already that any metric defined 
on them must contain at least a certain minimum 
amount of curvature. It may even turn out to be true 
that all exact source-free solutions of Einstein's 
equations have spinor structure. (As far as the author 
is aware, all known solutions whose global structure 
has been analyzed do have spinor structure.) 

Consider a (noncompact, space- and time-oriented) 
space-time M, and let S be a 2-surface, topologically 
a 2-sphere, in M. The idea is to attempt to construct a 
tetrad on S using a certain kind of "parallel transport" 
in M. Such a construction must succeed if the curvature 
is sufficiently small in a neighborhood of S. Choose a 
point p of S and a one-parameter family ys(w) of 
curves on S, where S E [0, 1] labels the individual 
curves and w E [0, 1] is a parameter along each curve. 
The curves are to all begin and end at p, and each 
point of S (except p) is to lie on exactly one curve. 
The curves s = 0 and s = 1 correspond to "zero 
curves" which remain at p (Fig. 1). Let wa and aa 

denote the vectors tangent to the lines s = const 
and w = const, respectively, where w a and aa are 

FIG. l. A one-parameter family of curves cov~ring the 2-sphere 
S. Each curve begins and ends at p. and each pomt of S (except p) 
lies on exactly one curve. 

normalized by the conditions 

Our construction proceeds as follows. Choose an 
arbitrary unit timelike vector field t a on M. At p, 
choose a triad1? x~ of spacelike vectors which, together 
with t a , form an orthonormal tetrad at p. For each 
value of s, we transport the triad x~ along the curve y. 
according to the equation 

(1) 

Under the transport (1) the ~ remain orthogonal 
to ta and orthogonal to each other. On returning to p, 
we have a new tetrad whose timelike vector coincides 
with ta , but whose spacelike vectors will in general be 
different from our original ~ Let :R~(s) denote the 
corresponding rotation matrix: 

X~IW=l;' = :R!(s)(xplw=o;s=o), 

:R,~(s):R~(s) = ~~. (2) 

Thus, for each value of s, we obtain a rotation at p, 
and so we define a curve :R~(s) in the rotation group. 
For s = 0 and s = I, the rotation is just the identity, 
and so :R~(s) represents a closed curve, beg~nning and 
ending at the identity element of the rotation group. 
The tangent to this curve is obtained by taking the 
derivative of the first equation (2) with respect to s: 

17 Greek letters are triad indices (range 1.2. 3) which label in
dividual spacelike vectors. while Latin letters .are tensor. indices. 
The Greek indices are raised and lowered usmg the Unit 3 X 3 
matrix. 
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where 

P~p = P[~Pl = wCVC<X:(lVbXap), (4) 

Expanding (4) and using the transport equation (1) 
and the fact (which follows from our construction) 
that the Lie derivative of aa with respect to wa vanishes, 
we have 

P ~p = 2x:x;a[Cwdl[(V Ctb)(V dta) + Rabcd]' (5) 

The closed curves in the rotation group are divided 
into. two classes: those (such as a small loop, or a 
rotation through angle 41T) which may be contracted 
to a point, and those (such as a rotation through 21T) 
which cannot. If our curve :R,~(s) is of the latter type, 
then there is an essential 21T twist in our tetrad system 
on S; in this case, it will not be possible to find a tetrad 
in a neighborhood of S, and so M will not have spinor 
structure. We may characterize the curve :R,~(s) in 
terms of a length using the standard invariant metric 
on the rotation group: 

Whenever the length L is less than 21T, the curve 
:R~(s) may always be contracted to a point. (The length 
is exactly 21T for a 3600 rotation about a single axis.) 
We conclude that there will necessarily be a tetrad 
system in a neighborhood of S provided L < 21T. 

To obtain an upper bound for L which is inde
pendent of the coordinate grid (s, w), we first sub
stitute Eq. (3) into (6): 

L = 2-1 f ds [ ( :R,~p :S :R,pp) (:R~V :S :Rpv) J! 
= 2-1fdS[ (f dwP~p )(fdwpap) r 

(7) 

But 
p~ppap = 4(gap _ tatP)(gbq _ tbt(/)a[cwdla[rwsl 

X [(Vctb)(Vdta) + Rabcd][(Vrtq)(V8tp) + Rpqrs] 

::;;; 8a[ C wd1a[r W 8l[(V Ctb)(V ata)('V rtb)('V sta) 

+ RabcaRabrs - 2tbtPRabcdRapr.]' (8) 

Finally, substituting (8) into (7) and introducing the 
surface element of S, dSab = a[awbl ds dw, we obtain 

L ::;;; Is 2[(RabcaRabrs - 2tbtPRabcaRapr8) dSCd dSr.]l 

+ Is2[('Vctb)(Vrtb)(Vdta)('Vsta) dsca dSrB]!. (9) 

Equation (9) still depends on the arbitrary unit time
like vector field t a .18 We may eliminate this dependence, 
at least formally, by defining 'Y(S) to be the minimum 
value of the right side of (9) over all possible choices 
of ta. (Note that the right side is always nonnegative.) 
Unfortunately, the quantity 'Y depends on S in a 
nonlocal way because of the second integral on the 
right in (9): it appears, in fact, that 'Y cannot be 
expressed as a single integral over S. Thus, our 
relationship between spinor structure and curvature 
is the following: A sufficient (but not necessary) 
condition that M have spinor structure is that every 
S may be so deformed that 'Y(S) < 21T. 

H follows immediately that every flat space-time 
has spinor structure. (By "flat" we mean only that the 
Riemann tensor vanishes: M could still have a quite 
complicated topology.) We may, without loss of 
generality, take M to be simply connected. Choosing 
t a to be (covariantly) constant over M, we see from 
(9) that 'Y(S) = 0 for every S, and, therefore, that M 
has spinor structure. In particular, none of the 4-
manifolds M 2n+1 of Sec. I can be given a flat metric. 

18 If the metric of space-time were positive-definite, then we 
could parallel transport the entire tetrad around each curve y., and 
so obtain a formula which does not involve an arbitrary vector field. 
This procedure does not work, however, in the indefinite case be
cause there is no invariant positive-definite length defined for curves 
in the Lorentz group. 
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